现代测试技术介绍

现代测试技术介绍
现代测试技术介绍

现代测试技术介绍

一、元素成分分析

物质都是由各种元素组成的,要知道一个样品是由哪些元素组成,最重要的分析手段就是原子光谱分析。它是利用原子(包括离子)所发射的辐射或原子(或离子)与辐射的相互作用而进行样品分析的一类测试技术。

图33-1 光谱仪示意图

A.火焰发射光谱仪

B.原子吸收光谱仪

C.原子荧光光谱仪

原子光谱分析中应用最广泛的是原子发射光谱法(AES)、原子吸收光谱法(AAS)、原子荧光光谱法(AFS)和X射线荧光光谱法(XFS)。

前三种方法涉及的是原子(或离子)外层电子的能级跃迁过程中的辐射发射、吸收和荧光的产生。图33-1为火焰发光谱法、原子吸收光谱法和原子荧光光谱法最简单的工作原理示意图。三种原子光谱法的关键都是使试样产生原子蒸气(游离态气体原子或离子)。产生原子蒸气的手段有火焰、电孤、电热原子化器、射频等离子体以及激光等,其中火焰是最简单和广泛使用的原子蒸气源之一。

在原子发射光谱法(图33-lA)中,试样的气态原子蒸气进一步受热激发,使原子(或离子)外层电子由最低能态(称基态)激发到较高能态(称激发态),当其返回低能态或基态时,便发射出在紫外和可见光区域内的特征辐射,这就是发射光谱。根据原子结构理论,由于原子的电子能级高低和分布是每一种元素所特有的,因此元素都有各自的特征光谱.而谱线的强度与其元素的含量成正比。因此原子发射光谱法可用作元素的定性分析和定量分析。

在原子吸收光谱法(图33-1B)中,辐射源辐射出待测元素的特征辐射通过样品的原子蒸气时,被蒸气中待测元素的基态原子所吸收。由辐射强度的减弱程度即可以求出待测元素的含量。

在原子荧光光谱法(图33-1C)中,当样品的原子蒸气受一次辐射源照射,待测元素基态原子吸收辐射后跃迁到较高能态(激发态),激发态原子再以辐射跃迁形式过渡到基态。由此而获得的辐射光谱称为原子荣光光谱。荧光光谱的观测方向与一次辐射方向成90°角。通过测量待测元素的原子蒸气在辐射能激发下所产生的原子荧光强度可以非常灵敏地测量元素的含量。

三种原子光谱分析仪除上述各自的特点外,正如图33-1所示,利用单色器对光源进行分光、光源强度的检测和记录是三种仪器所共同的。

X射线荧光光谱法涉及的是原子内层电子能级的跃迁。当用X射线轰击试样中的原子时,一个电子从原子的内层(例如K层)被袭击,此时较高能级电子层(例如L层)的一个电子会立即填补空位,同时多余的能量被释放出来。如果这种能量以辐射形式释放,则产生次级X射线,也称为X荧光,各种元素所发射的X荧光的波长决定于它们的原子序数,原子序数越高,X荧光的波长越短。所以根据X荧光的波长可以对元素进行定性分析.同样.根据谱线的强度可以定量分析。

二、分子结构与含量分析

对分子的结构分析和定量测定是分析化学中最繁重的任务。随着现代科学的发展,特别是生命科学和环境科学的发展,人们不仅要知道一个生物大分子的一级结构,还要知道它的二级、三级甚至更高级的构造。从量的角度来说,现代分析化学早已从常量、微量分析发展到痕、超痕量分析,甚至发展到单个分子的测定。

1.分子光谱法

它是研究分子结构和定量分析中最常:用的方法,包括可见-紫外吸收、红外吸收;分子荧光等方法。

分子对辐射能吸收比单个原子对辐射能的吸收要复杂得多。因为对于分子的能级跃迁而言,除了分子外层价电子跃迁所引起的电子能态的变化外,还有分子中原子或原子团在它们的平衡位置上作相对振动产生的振动能态的变化以及整个分子旋转产生的转动能态的变化。通常在分子每个电子能态下,都有若干个可能的振动能态,而在每个振动能态下又有若干个转动能态。换言之,分子的电子能态的变化所需酌能量比振动能态的变化大,振动能态的变化所需的能量比转动能态大。分子的外层电子跃迁所需的能量通常对应于紫外、可见辐射,而振动跃迁由能量较小的近红外和中红外辐射所引起,至于转动跃迁仅需能量更小的远红外和微波辐射即可。

(1)紫外和可见吸收光谱法

紫外和可见吸收光谱法研究被测物质对可见和紫外区域辐射吸收。当分子吸收了此区域内的辐射,分子的价电子发生跃迁,所以也称为电子不镰。因为分子电子能级改变的同时也伴随着振动能级和转动能级的变化,因此,分子的电子光谱。可见和紫外吸收光谱是应用范围十分广泛的分析方法。在现代分析化学中差不多有60%左右的分析任务是由该方法完成的。该方法利用化合物的吸收过程波长的变化可以对许多的有机化合物,特别是具有共轭体系的有机化合物进行定性分析,而利用被测物对某一波长的辐射的吸收程度(称吸光度)进行定量分析。这在化合物的定量分析中占有重要的地位。

(2)红外吸收光谱法

利用物质分子受红外辐射照射后,分子吸收部分红外辐射使分子的振动能级和转动能级跃迁而产生的吸收光谱。红外吸收光谱与分子结构有着密切的关系。因为分子结构的微小变化,都会引起分子振动能级的改变,所以,除了光学异构体外,凡是具有结构不同的两个化合物其红外吸收光谱必然不同。通常,红外吸收带的波长和吸收谱带的强度反映了分子结构的特性,可以用于鉴定未知物的结构或确定某些基团。同时,吸收谱带的吸收强度与分子组成或其化学基团的含量有关,因此可以进行定量分析和纯度鉴定。

(3)分子荧光光谱法

利用许多化合物分子吸收紫外可见区域的辐射后,会再发射出波长相同或不同的特征辐射,即分子荧光,通过测量其荧光强度,对痕量化合物进行定性定量分析。分子荧光光谱法的最大特点是

具有很高的灵敏度和非常好的选择性,它比紫外和可见吸收光谱的灵敏度高2~3个数量级,因此,它在生命科学中有着重要的应用。

2.核磁共振波谱法

核磁共振波谱是鉴定有机化合物结构的最重要的手段之一。它实际上也是一种吸收光谱,只不过研究的是在外加磁场的存在下,原子核能级的跃迁。在强磁场存在下,一些具有磁性的原子核的能量可以分裂为两个或两个以上量子化的能级。此时,如果外加一个能量,使其恰好等于裂分后相邻两个能级的能量差,则该核就可能吸收能量,发生能级跃迁,从而产生核磁共振吸收信号。在核磁共振吸收中所吸收的能量非常低,其数量级相当于频率范围为0.1到100兆赫的电磁波(属于无线电波范畴,简称射频)。目前在核磁共振波谱法中,应用量广的是1H氢核的按磁共振谱,同时13C、15N核磁共振谱也得到应用。以1H氢核的核磁共振谱为例,因为在有机化合物的分子体系中每个氢原子核都被不断运动着的电子云所包围,致使原子核实际上受到的磁场作用减弱,不同的分子结构,每个氢原子核周围所处的电子云环境不同,则在磁场中反映每个氢核的共振吸收频率的不同。核磁共振波谱法正是利用此效应(称化学位移)可以达到鉴别有机化合物结构的目的。

3.质谱分析法

质谱分析法同样是作为有机化合物结构分析的重要手段,同时还对无机化合物分析,特别是同位素分析具有着独特的优点。质谱法的基本原理是荷电分子(常称分子离子)或分子裂片阳离子在磁场下,依其质荷比进行分离和分析的方法。质谱分析所使用的仪器-质谱仪的类型虽然很多,但一般均由原子源、质量分析器、离子检测器和一个高真空系统组成。离子源中的试样在高能量的离子源(例如电子轰击源、场效电离源、激光电离源、ICP离子源等)轰击下,被电离成分子离子或进一步使分子中某些化学健断裂,产生各种各样的分子裂片阳离子,离子—分子复合物等。在加速电场的作用下,把这些阳离子进行加速和聚焦成离子束,进入质量分析器。质量分析器其作用如同光学光谱法的单色仪,能把具有不同质荷比(m/e)的离子依其质荷比大小顺序分别聚焦和分离开。这个过程一般是利用电磁场对电荷的偏转性质来实现的。例如以图33-2所示的半圆形单聚焦质谱仪中,进入分析器的离子束具有相同的动能,因此离子束在分析中运动轨道的曲率半径R与离子的质荷比(m/e)之间具有如下关系:

式中H是分析器的磁场强度,V是加速场的加速电压。可见只要适当调节加速电压或磁场强度便可改变质荷比不同的离子的运动轨道的曲率半径R,使离子依次通过质量分析器的发射狭缝,从而实现质量分离。通过检测器可记录试样的质谱图。

图33-2 半圆形单聚焦质谱仪装置原理示意图

三、晶体结构分析

对于固体物质,仅仅知道它的化学组成和含量是远远不够的,还需要确定固体物质中的原于排布和分子的主体结构。自然界中的固态物质绝大多数是晶体。晶体是由原子、离子或分子在空间周期性地排列的固体。

X射线衍射法是目前测定晶体结构的最主要的测试技术。晶体中周期性重复排列的原子,其间距大小一般是以pm来量度的,例如C-C单键的长度是154.15pm,而X射线的波长也是这个数量级。例如,铜的α射线波长是154.45pm,恰恰可与它相比拟。所以晶体可作为X射线的衍射光栅。当入射X线按一定方向射入晶体并与晶体中电子发生作用后,再向各个方向发射X射线的现象称为散射,原子散射X射线的能力和原子中所含电子数成正比,电子越多,散射能力越强。由于晶体中原子散射的电磁波互相干涉和相互叠加,在某一方面得到加强或抵消的现象称为衍射。其衍射的方向称为衍射方向。晶体衍射x射线的方向与构成晶体的晶胞大小、形状以及入射X线的波长有关。衍射的强度则与晶胞内原子的类型、数量和位置有关。因此,根据晶体的衍射方向和衍射强度可进行晶体结构分析。

X射线衍射技术分为多晶粉末法和单晶衍射法。多晶粉末法常用于测定方晶系的晶体结构的点阵型式、晶胞参数及简单结构的原子坐标,还可对固体样品进行物相分析。X射线衍射仪由X射线发生器、测角仪(样品台)和检测器组成。单晶衍射法是以单晶作为研究对象,它比多晶粉末法更方便、更可靠。目前,测定单晶体结构主要利用四周衍射仪,它是由X射线发生器、四周测角仪(样品台)和检测器所组成。它与多晶衍射仪的主要区别在于试样台能在四个圆的方向运动,使晶体依次转到每个晶面所要求的反射位置,以便探测器收集到晶体的全部反射数据,根据四圆衍射仅收集到的大量衍射点的衍射方向和衍射强度数据,通过计算机的晶体结构解析程序对这些数据进行处理计算,并使结构图像显示出来。单晶结构分析是结构分析中最有效的方法,它能为一个晶体给出精确的晶

胞参数,同时还能给出晶体中原子之间的键长、键角等重要的结构化学数据。因此,鉴定一个新合成的化合物,要是没有单晶结构分析的报告,该产品的可信性将会大大降低。

四、表面结构分析

随着现代科学的发展,特别是金属材料、半导体材料和生命科学的发展,对物质的表面结构的分析显得梏外的重要。在现代化学测试技术中有许多方法是用于表面结构分析。例如电子能谱、电子探针以及扫描电镜等。

1.电子能谱技术

在通常的光谱分析方法中。主要研究光和物质相互作用后产生的和信息,而在电子能谱技术中主要研究物质在高能电子或光子的轰击下,样品的电子受到激发而发射出来,通过测量这些电子的能量分布及其强度的关系而获得固体表面结构的有关信息。根据激发不同可以得到不同的电子能谱。用X射线作为激发源的称为X射线光电子能谱(XPS),用紫外光作为激发源的称为紫外光电子能谱(UPS)。若用X射线或高速运动的电子束作为激发源,测量物质激:发后产生的俄歇电子,则称为俄歇电子能谱(AES)。俄歇电子产生机理是X射线或高速运动的电子束与原子的内层电子作用,内层电子被激发后产生一个空穴,其外层的电子向空穴跃迁,电子跃迁的能量被释放出来,释放的能量如果被更外层的电子吸收,使更外层的电子脱离原了核的束缚而电离出来,这种电子便为俄歇电子。紫外光电子能谱由于反映的是价电子的运动状态,因此,直接与分子结构相关联,可以直接提供分子价电子轨道能级和振动结构等信息。X射线光电子能谱可以显示包括价电子及原子的内层电子在内的完整的轨道能级,可用来识别元素,并可有效地了解分子中原子成键状态。俄歇电子能谱常用于轻元素(原子序数33以下)能谱的研究。

电子能谱是非破坏性分析,主要用于对表层涉及<10mm深度内的化学物质及表面微结构状态进行研究。它是以固体表面几个原子层为研究对象的表面科学赖以发表的主要技术之一。

2.电子探针X射线显微技术

电子探针(EPMA),它是利用汇集的细电子束轰击物质的表面,使其激发出许多有用的信息,利用这些信息对样品进行结构和成分分析的技术。电子探针因为可以分析μm范围的微区表面且不损坏试样,它还能够做各种扫描图像的观察从而能够获得微区内元素的分布状态、表面物性、结构特征等信息,所以它是表面科学中重要的测试技术之一。

当一束直径约为50nm~lμm具有一定能量(0~50keV)的电子来轰击固体物表面时,它能与物质内的原子或离子发生复杂的物理作用过程。例如,一个入射电子可能与原子核碰撞,也可能与核外的电子碰撞,并且这种碰撞可能会发生多次。当入射电子与原子按碰撞时,入射电子会发生弹性散

射而飞出样品表层形成“背散电子”;当入射电子与原子的外层电子或近外层电子发生有效碰撞时,可能会使这些电子打出样品表面而形成二次电子;当入射电子撞击物质、被物质阻挡时会产生连续X射线;当入射电子轰击使原子的内层电子电离产生空穴,次外层的电子向空穴跃迁过程中会产生特征X射线或者俄歇电子。总之,电子探针利用这些信息得到相应的图像,综合研究各种图

现代测试技术课后习题详解答案 申忠如 西安交通大学出版社

现测课后习题答案 第1章 1. 直接的间接的 2. 测量对象测量方法测量设备 3. 直接测量间接测量组合测量直读测量法比较测量法时域测量频域测量数据域测量 4. 维持单位的统一,保证量值准确地传递基准量具标准量具工作用量具 5. 接触电阻引线电阻 6. 在对测量对象的性质、特点、测量条件(环境)认真分析、全面了解的前提下,根据对测量结果的准确度要求选择恰当的测量方法(方式)和测量设备,进而拟定出测量过程及测量步骤。 7. 米(m) 秒(s) 千克(kg) 安培(A) 8. 准备测量数据处理 9. 标准电池标准电阻标准电感标准电容 第2章 填空题 1. 系统随机粗大系统 2. 有界性单峰性对称性抵偿性 3. 置信区间置信概率 4. 最大引用0.6% 5. 0.5×10-1[100.1Ω,100.3Ω] 6. ± 7.9670×10-4±0.04% 7. 测量列的算术平均值 8. 测量装置的误差不影响测量结果,但测量装置必须有一定的稳定性和灵敏度 9. ±6Ω 10. [79.78V,79.88V]

计算题 2. 解: (1)该电阻的平均值计算如下: 1 28.504n i i x x n == =∑ 该电阻的标准差计算如下: ?0.033σ == (2)用拉依达准则有,测量值28.40属于粗大误差,剔除,重新计算有以下结果: 28.511?0.018x σ '='= 用格罗布斯准则,置信概率取0.99时有,n=15,a=0.01,查表得 0(,) 2.70g n a = 所以, 0?(,) 2.700.0330.09g n a σ =?= 可以看出测量值28.40为粗大误差,剔除,重新计算值如上所示。 (3) 剔除粗大误差后,生于测量值中不再含粗大误差,被测平均值的标准差为: ?0.0048σσ ''== (4) 当置信概率为0.99时,K=2.58,则 ()0.012m K V σ'?=±=± 由于测量有效位数影响,测量结果表示为 28.510.01x x m U U V =±?=± 4. 解: (1) (2) 最大绝对误差?Um=0.4,则最大相对误差=0.4%<0.5% 被校表的准确度等级为0.5 (3) Ux=75.4,测量值的绝对误差:?Ux=0.5%× 100=0.5mV

现代分析测试技术论文

西安科技大学研究生考试试卷 学号______ ________ 研究生姓名______ ________ 班级______ ________ 考试科目______ ________ 考试日期________ ______ 课程学时_______ _______ 开(闭)卷________ ______

现代分析测试技术在煤热解催化剂制备中 的应用 摘要:现代分析测试技术在化工生产的研究中占据着重要的地位,本文主要讨论X射线荧光分析(XRF)、X射线衍射分析(XRD)、扫描电子显微镜(SEM)在制备煤热解催化剂中的应用。 关键词:XRF、XRD、SEM、煤热解催化剂、应用 Abstract: the modern analysis determination technique in the study of chemical production occupies the important position, this article focuses on the application of X-ray fluorescence analysis (XRF), X-ray diffraction analysis (XRD) and scanning electron microscope (SEM) in the preparation of the coal pyrolysis catalyst. Key words:XRF, XRD, SEM, the coal pyrolysis catalyst, application 1、引言 现代分析测试技术是化学、物理等多种学科交叉发展、前沿性应用以及合而为一的综合性科学研究手段,主要研究物质组成、状态和结构,也是其它学科获取相关化学信息的科学研究手段与途径,因此想要获得准确有效的实验数据就必须能够正确的运用各种分析测试 手段,对化工类学生更是如此。本次论文主要对煤热解催化剂制备过程中用到的分析测试技术手段进行论述。在煤热解催化剂制备中用到的分析测试手段主要有X射线荧光分析、X射线衍射分析、扫描电子显

现代材料测试技术期末测试题汇总

《材料现代分析测试技术》思考题 1.电子束与固体物质作用可以产生哪些主要的检测信号?这些信号产生的原理是什么?它们有哪些特点和用途? (1)电子束与固体物质产生的检测信号有:特征X射线、阴极荧光、二次电子、背散射电子、俄歇电子、吸收电子等。 (2)信号产生的原理:电子束与物质电子和原子核形成的电场间相互作用。 (3)特征和用途: ①背散射电子:特点:电子能量较大,分辨率低。用途:确定晶体的取向,晶体间夹角,晶粒度及晶界类型,重位点阵晶界分布,织 构分析以及相鉴定等。 ②二次电子:特点:能量较低,分辨率高。用途:样品表面成像。 ③吸收电子:特点:被物质样品吸收,带负电。用途:样品吸收电子成像,定性微区成分分析。 ④透射电子:特点:穿透薄试样的入射电子。用途:微区成分分析和结构分析。 ⑤特征X射线:特点:实物性弱,具有特征能量和波长,并取决于被激发物质原子能及结构,是物质固有的特征。用途:微区元素定 性分析。 ⑥俄歇电子:特点:实物性强,具有特征能量。用途:表层化学成分分析。 ⑦阴极荧光:特点:能量小,可见光。用途:观察晶体内部缺陷。 ①电子散射:当高速运动的电子穿过固体物质时,会受到原子中的电子作用,或受到原子核及周围电子形成的库伦电场的作用,从而 改变了电子的运动方向的现象叫电子散射 ②相干弹性散射:一束单一波长的电子垂直穿透一晶体薄膜样品时,由于原子排列的规律性,入射电子波与各原子的弹性散射波不但 波长相同,而且有一定的相位关系,相互干涉。 ③不相干弹性散射:一束单一波长的电子垂直穿透一单一元素的非晶样品时,发生的相互无关的、随机的散射。 ④电子衍射的成像基础是弹性散射。 3.电子束与固体物质作用所产生的非弹性散射的作用机制有哪些? 非弹性散射作用机制有:单电子激发、等离子激发、声子发射、轫致辐射 ①单电子激发:样品内的核外电子在收到入射电子轰击时,有可能被激发到较高的空能级甚至被电离,这叫单电子激发。 ②等离子激发:高能电子入射晶体时,会瞬时地破坏入射区域的电中性,引起价电子云的集体振荡,这叫等离子激发。 ③声子发射:入射电子激发或吸收声子后,使入射电子发生大角度散射,这叫声子发射。 ④轫致辐射:带负电的电子在受到减速作用的同时,在其周围的电磁场将发生急剧的变化,将产生一个电磁波脉冲,这种现象叫做轫 致辐射。 1)二次电子产生:单电子激发过程中,被入射电子轰击出来并离开样品原子的核外电子。应用:样品表面成像,显微组织观察,断口形貌观察等 2)背散射电子:受到原子核弹性与非弹性散射或与核外电子发生非弹性散射后被反射回来的入射电子。应用:确定晶体的取向,晶体间夹角,晶粒度及晶界类型,重位点阵晶界分布,织构分析以及相鉴定等。 3)成像的相同点:都能用于材料形貌分析成像的不同点:二次电子成像特点:(1)分辨率高(2)景深大,立体感强(3)主要反应形貌衬度。背散射电子成像特点:(1)分辨率低(2)背散射电子检测效率低,衬度小(3)主要反应原子序数衬度。 5.特征X射线是如何产生的,其波长和能量有什么特点,有哪些主要的应用? 特征X-Ray产生:当入射电子激发试样原子的内层电子,使原子处于能量较高的不稳定的激发态状态,外层的电子会迅速填补到内层电子空位上,并辐射释放一种具有特征能量和波长的射线,使原子体系的能量降低、趋向较稳定状,这种射线即特征X射线。 波长的特点:不受管压、电流的影响,只决定于阳极靶材元素的原子序。 应用:物质样品微区元素定性分析

现代测试技术习题解答--第二章--信号的描述与分析---副本

第二章 信号的描述与分析 补充题2-1-1 求正弦信号0()sin()x t x ωt φ=+的均值x μ、均方值2 x ψ和概率密度函数 p (x )。 解答: (1)0 00 11lim ()d sin()d 0T T x T μx t t x ωt φt T T →∞== +=? ? ,式中02π T ω = —正弦信号周期 (2) 2 222 2 2 0000 1 1 1cos 2() lim ()d sin ()d d 22 T T T x T x x ωt φψx t t x ωt φt t T T T →∞-+== += = ? ? ? (3)在一个周期内 012ΔΔ2Δx T t t t =+= 000 2Δ[()Δ]lim x x T T T t P x x t x x T T T →∞<≤+=== Δ0Δ000 [()Δ]2Δ2d ()lim lim ΔΔd x x P x x t x x t t p x x T x T x →→<≤+==== 正弦信号 x

2-8 求余弦信号0()sin x t x ωt 的绝对均值x μ和均方根值rms x 。 2-1 求图示2.36所示锯齿波信号的傅里叶级数展开。

2-4周期性三角波信号如图2.37所示,求信号的直流分量、基波有效值、信号有效值及信号的平均功率。

2-1 求图示2.36所示锯齿波信号的傅里叶级数展开。 补充题2-1-2 求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出|c n|–ω和φn–ω

图,并与表1-1对比。 解答:在一个周期的表达式为 00 (0)2 () (0) 2 T A t x t T A t ? --≤

现代材料测试技术试题答案

一、X射线物相分析的基本原理与思路 在对材料的分析中我们大家可能比较熟悉对它化学成分的分析,如某一材料为Fe96.5%,C 0.4%,Ni1.8%或SiO2 61%, Al2O3 21%,CaO 10% ,FeO 4%等。这是材料成分的化学分析。 一个物相是由化学成分和晶体结构两部分所决定的。X射线的分析正是基于材料的晶体结构来测定物相的。 X射线物相分析的基本原理是什么呢? 每一种结晶物质都有自己独特的晶体结构,即特定点阵类型、晶胞大小、原子的数目和原子在晶胞中的排列等。因此,从布拉格公式和强度公式知道,当X射线通过晶体时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个反射晶面的晶面间距值d和反射线的强度来表征。 其中晶面网间距值d与晶胞的形状和大小有关,相对强度I则与质点的种类及其在晶胞中的位置有关。 衍射花样有两个用途: 一是可以用来测定晶体的结构,这是比较复杂的; 二是用来测定物相。 所以,任何一种结晶物质的衍射数据d和I是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相,分析的思路将样品的衍射花样与已知标准物质的衍射花样进行比较从中找出与其相同者即可。 X射线物相分析方法有: 定性分析——只确定样品的物相是什么? 包括单相定性分析和多相定性分析定量分析——不仅确定物相的种类还要分析物相的含量。 二、单相定性分析 利用X射线进行物相定性分析的一般步骤为: ①用某一种实验方法获得待测试样的衍射花样; ②计算并列出衍射花样中各衍射线的d值和相应的相对强度I值; ③参考对比已知的资料鉴定出试样的物相。 1、标准物质的粉末衍射卡片 标准物质的X射线衍射数据是X射线物相鉴定的基础。为此,人们将世界上的成千上万种结晶物质进行衍射或照相,将它们的衍射花样收集起来。由于底片和衍射图都难以保存,并且由于各人的实验的条件不同(如所使用的X射线波长不同),衍射花样的形态也有所不同,难以进行比较。因此,通常国际上统一将这些衍射花样经过计算,换算成衍射线的面网间距d值和强度I,制成卡片进行保存。

现代分析测试技术

X射线荧光分析 X-Ray Fluorescence X射线的产生和特点 特征X射线 L壳层由L1、L2、L3三个子能级构成;M壳层由五个子能级构成;电子跃迁必须服从选择定则N壳层由七个子能级构成; X射线的特点: ?波粒二象性 ?直线传播,折射率约为1 ?具有杀伤力 ?具有光电效应 ?散射现象

–相干散射:散射线能量不变,与入射线相互干涉。 –不相干散射:入射线部分能量传递给原子,散射线波长变长,与入射线不相互干涉。 ?吸收现象 X射线的吸收现象 ?X射线在穿过被照射物体时,因散射、光电效应、热损耗的影响,出现强度衰减的现象,称为X射线的吸收。与物质的厚度、密度、入射线强度有关。 突变点λ(波长)称为吸收 限 原因:X射线将对应能级的 电子轰出,使光子大量吸收。?X射线吸收现象的应用 ?阳极靶镀层,获得单色X射线 ?X荧光的特点 荧光X射线的最大特点是只发射特征X射线而不产生连续X射线。试样激发态释放能量时还可以被原子内部吸收继而逐出较外层的另一个次级光电子,此种现象称为俄歇效应。被逐出的电子称为俄歇电子。俄歇电子的能量也是特征的,但不同于次级X射线。 ?波长色散型X荧光光谱仪 ?分析原理 当荧光X射线以入射角θ射到已知晶面间距离d的晶体(如LiF)的晶面上时,发生衍射现象。根据晶体衍射的布拉格公式λ∝dsinθ可知,产生衍射的入射光的波长λ与入射角θ有特定的对应关系。逐渐旋转晶面用以调整荧光X射线的入射角从0°至90°,在2 θ角度的方向上,可依次检测到不同λ的荧光X射线相应的强度,即得到试样中的系列荧光X射线强度与2 θ关系的X射线荧光光谱图 X射线衍射分析 X Ray Diffraction X射线衍射的理论基础

现代材料测试技术作业

现代材料测试技术 作业

第一章X射线衍射分析 一、填空题 1、X射线从本质上说,和无线电波、可见光、γ射线一样,也是一种。 2、尽管衍射花样可以千变万化,但是它们的基本要素只有三个:即、、。 3、在X射线衍射仪法中,对X射线光源要有一个基本的要求,简单地说,对光源的基本要求是、、。 4、利用吸收限两边相差十分悬殊的特点,可制作滤波片。 5、测量X射线衍射线峰位的方法有六种,它们分别是、、 、、、。 6、X射线衍射定性分析中主要的检索索引的方法有三种,它们分别是、 、。 7、特征X射线产生的根本原因是。 8、X射线衍射定性分析中主要的检索索引的方法有三种,它们分别是、 和字顺索引。 9、X射线衍射仪探测器的扫描方式可分、、三种。 10、实验证明,X射线管阳极靶发射出的X射线谱可分为两类:和 11、当X射线穿过物质时,由于受到散射,光电效应等的影响,强度会减弱,这种现象称为。 12、用于X射线衍射仪的探测器主要有、、、,其中和应 用较为普遍。 13、X射线在近代科学和工艺上的应用主要有、、三个方面 14、X射线管阳极靶发射出的X射线谱分为两类、。 15、当X射线照射到物体上时,一部分光子由于和原子碰撞而改变了前进的方向,造成散射线;另一部分光子可能被原子吸收,产生;再有部分光子的能量可能在与原子碰撞过程中传递给了原子,成为。 二、名词解释 X-射线的吸收、连续x射线谱、特征x射线谱、相干散射、非相干散射、荧光辐射、光电效应、俄歇电子、质量吸收系数、吸收限、X-射线的衰减 三、问答与计算 1、某晶体粉末样品的XRD数据如下,请按Hanawalt法和Fink法分别列出其所有可能的检索组。 2、产生特征X射线的根本原因是什么? 3、简述特征X-射线谱的特点。 4、推导布拉格公式,画出示意图。 5、回答X射线连续光谱产生的机理。

现代测试技术试题A----答案

现代道路交通测试技术 试题A----答案 一. 解:由题意频谱函数:x (ω)= dt e t x j ? +-∞ ∞ -t )(ω = dt e j ?+--2 /2 /t ττ ω =2/2/12t/ττω ω-+--j e j = () 2 /2/1ωτωτω j j e e j -- = ω 2 sin 2 ωτ =τ /2 /2sin ωτωτ ∴频谱函数虚部为0,故相频谱为0; X(0)=τωτωττ ωωω==→→2 /2 /sin lim )(lim 0 x 当ω= τ π n (n=1,2,3……)时 X (ω)=0 故幅频谱图如下: 二.解:因为信号是周期信号,可以用一个共同周期内的平均值代替整个历程的平均值 故:dt t y t x T R T T xy ? +=∞→0)()(1lim )(ττ = 1 T dt t y t x T ? -+++0 00])(sin[)sin(φθτωθω =)cos(2 1 00φωτ-y x

三.1.试述瞬态瑞雷面波无损检测基本原理及其相应的测试技术要求。 参考答案: ①基本原理:对于均匀的弹性半空间分层介质,其结构表面受到瞬态冲击作用时,将产生瞬态振动。振动组份中包括纵波、横波和瑞雷波。在一次冲击产生的波能中,瑞雷波占67%,即从一个振源向一个半无限介质表面辐射的总能量的三分之二形成瑞雷型表面波。而纵波和横波只占有少量能量;并且在表面,随着波传播距离的增大其衰减比瑞雷面波大得多。确切地说,纵波和横波引起的位移振幅沿表面随着距离的平方衰减,而瑞雷面波是随着距离的平方根而衰减,因此,在地基表面的瞬态振动中,瑞雷面波的衰减比纵波和横波衰减慢得多,瞬态表面波主要是由瑞雷波组成。我们通过一系列的关系可以得出,利用瞬态瑞雷面波的传播速度和频率可以确定不同介质的穿透深度。 ②技术要求:检测系统设计是否合理、仪表选型与安装是否符合要求,是保证质量检测精度和可靠性的关键,对其各组成部分有相应的技术要求。 1).激振部分——力锤的选择 它是整套测量系统的前哨,对路面冲击信号的产生和冲击响应信号的正确检取,是系统准确测试的基本保证。预先应根据检测深度做一些力锤冲击试验,以选择合理的力锤重量或合适材料的锤头。使瞬态冲击施加于路面表面后,能产生一组具有不同频率的瑞雷面波在介质中传播。 2).垂向检波器的选型 垂向检波器选用压电式加速度传感器。 对于层状路面结构来说,一般选择小冲击源作为振源,使其产生具有丰富频率的瑞雷面波沿地表一定深度向四周传播。对于高频短波长的波来说,选择加速度传感器,因为它具有频率范围宽,对冲击振动的频响特性好等特点。如检测像硅酸盐、水泥混凝土和沥青混凝土路面的刚性层状体系时需要选择加速度传感器。 速度、位移传感器一般不用作冲击测量。另外,正确选定压电式加速度传感器的型号也是十分重要的(必须考虑它的频率范围、动态范围、灵敏度等主要特征参数是否符合测试精度要求)。 3).安装位置的确定 测试前,应对现场路面进行调查,确定检测点,并合理布置。一般两个垂向检 波器之间的距离应视测试的路面深度而定,通常应使两个间距大于路面深度的一半以上,并且取振源到最近的传感器的距离等于两传感器之间的距离。 4).连接导线选择 仪器之间的连接导线应尽量短,且记不应将各种导线混合使用,尽量选择相同线种,且忌抖动,以免引起现场测量不稳定。 四. 参考答案:令SAM(t)=Х(t)﹡cos ω0t,则SAM(t)的傅立叶变换为 SAM(ω)= ? ∞ ∞ - Х(t)﹡cos ω0t*e t j ωdt=1/2[X(ω+ω0)+X(ω-ω0)]

现代测试技术复习试题

一、选择 1.把连续时间信号进行离散化时产生混迭的主要原因是( ) a.记录时间太长; b.采样时间间隔太宽; c.记录时间太短; d. 采样时间间隔太窄 2.下述参量的测量属于间接测量法的是( ) a.用天平测量物体质量; b.用弹簧秤称物体重量; c.声级计测声强级; d.线圈靶测速 3.磁感应测速传感器中的速度线圈之所以用两个线圈串联而成,其作用主要为( ) a.提高传感器的灵敏度及改善线性; b. 提高传感器的灵敏度及改善频响特性; c.改善传感器的频响特性及补偿永久磁铁在线圈铁心垂直方向上的微小跳动对感应电动势的影响; d.提高传感器的灵敏度及补偿永久磁铁在线圈铁心垂直方向上的微小跳动对感应电动势的影响; 4.表示随机信号中动态分量的统计常数是( ) a.均方值; b.均值; c.均方差; d.概率密度函数 5.半导体应变片是根据( )原理工作的。 a.电阻应变效应; b.压电效应; c.热阻效应; d.压阻效应 6.压电式加速度计测量系统的工作频率下限取决于( ) a.压电测压传感器的力学系统的频率特性; b.压电晶体的电路特性; c.测量电路的时间常数; d.放大器的时间常数τ 7.二阶系统中引入合适的阻尼率的目的是( ) a.使得系统输出值稳定; b.使系统不共振; c.获得较好的幅频、相频特性; d.获得好的灵敏度 8.带通滤波器所起的作用是只允许( )通过。 a.低频信号; b.高频信号; c.某一频带的信号; d.所有频率分量信号 9.压电加速度测量系统的工作频率下限取决于( ) a.加速度力学系统的频率特性; b. 压电晶体的电路特性; c. 测量电路的时间常数 10. 自相关函数是一个( )函数 a.奇函数; b.偶函数; c.非奇非偶函数; d. 三角函数 11.在光作用下,使物体的内部产生定向电动势的现象,称( )效应。 a.内光电; b.外光电; c.热电; d.阻挡层光电 12.( )传感器是根据敏感元件材料本身的物理性质变化而工作的。 a.差动变压器式; b.变间隙电容式; c.变阻器式; d. 电压式 13.半导体热敏电阻的电阻温度系数α可用下式( )表示(已知半导体热敏电阻与温度系数关系可用T B Ae R =描述) a.α=dT R dR ;b. α=2T B ;c. α=2T A ;d. α=00111ln ln T T R R --(R 1,R 0分别是温度T 1,T 0时的电阻值) 14.如果一信号的自相关函数R x (τ)是一定周期性不衰减,则说明该信号( ) a.均值不为0; b.含周期分量; c.是各态历经的 ; d.是各态不历经的 15.用方程法求解回归直线时,误差最小的方法是( )

《现代分析测试技术》复习知识点答案

一、名词解释 1. 原子吸收灵敏度:也称特征浓度,在原子吸收法中,将能产生1%吸收率即得到0.0044 的吸光 度的某元素的浓度称为特征浓度。计算公式:S=0.0044 x C/A (ug/mL/1%) S——1%吸收灵敏度C ——标准溶液浓度0.0044 ——为1%吸收的吸光度 A——3 次测得的吸光度读数均值 2. 原子吸收检出限:是指能产生一个确证在试样中存在被测定组分的分析信号所需要的该组分的最 小浓度或最小含量。通常以产生空白溶液信号的标准偏差2?3倍时的测量讯号的浓度表示。 只有待测元素的存在量达到这一最低浓度或更高时,才有可能将有效分析信号和噪声信号可靠地区分开。 计算公式: D = c K S /A m D一一元素的检出限ug/mL c ――试液的浓度 S ――空白溶液吸光度的标准偏差 A m――试液的平均吸光度K――置信度常数,通常取2~3 3.荧光激发光谱:将激发光的光源分光,测定不同波长的激发光照射下所发射的荧光强度的变化, 以I F—入激发作图,便可得到荧光物质的激发光谱 4 ?紫外可见分光光度法:紫外一可见分光光度法是利用某些物质分子能够吸收200 ~ 800 nm光谱 区的辐射来进行分析测定的方法。这种分子吸收光谱源于价电子或分子轨道上电子的电子能级间跃迁,广泛用于无机和有机物质的定量测定,辅助定性分析(如配合IR)。 5 ?热重法:热重法(TG是在程序控制温度下,测量物质质量与温度关系的一种技术。TG基本原 理:许多物质在加热过程中常伴随质量的变化,这种变化过程有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。热重分析通常可分为两类:动态(升温)和静态(恒温)。检测质量的变化最常用的办法就是用热天平(图1),测量的原理有两种:变位法和零位法。 6?差热分析;差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技 术。差热分析曲线是描述样品与参比物之间的温差(△ T)随温度或时间的变化关系。在DAT试验中, 样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如: 相转变,熔化,结晶结构的转变, 沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。 7. 红外光谱:红外光谱又称分子振动转动光谱,属分子吸收光谱。样品受到频率连续变化的红外光 照射时,分子吸收其中一些频率的辐射,导致分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强度减弱,记录经过样品的光透过率T%寸波数或波长

材料现代测试技术

材料现代测试技术 学院:材料科学与工程学院专业班级:材料科学02班 姓名:吴明玉 学号:20103412

SnO 基纳米晶气敏材料微观结构的表征 2 一.摘要 随着现代物理科学技术的迅速发展,现代分析测试技术的不断更新和进步为人们对材料结构和性能的深入研究提供了可能,从而促进人们对气敏材料机理有了更为客观的认识。本文主要以X衍射分析仪(XRD),X射线光电子能谱(XPS),扫描电镜(SEM),高分辨电子显微镜(HRTEM)等现代材料测试技术为基础,设计出了可行的气敏材料微观结构表征方案。 关键词:XRD XPS SEM HRTEM 二.引言 材料是人类社会赖以生存和发展的物质基础,材料的发展关系到国民经济发展,国防建设和人民生活水平的提高。半导体SnO2气敏材料在防止火灾爆炸事故的发生、大气环境的检测以及工业生产有毒有害气体的检测等领域的发挥了巨大作用。但是,目前开发的半导体气敏材料仍存在着灵敏度不高、交叉敏感严重、长期使用敏感材料易中毒失效稳定性差、重复性不好等缺点。针对上述问题,研究者们做了大量工作。气敏材料的研究热点主要集中在改进、优化成膜工艺和对现有材料进行掺杂、改性、表面修饰等处理,以提高气体传感器的气敏性能,降低工作温度,提高选择性稳定性等性能。掺杂不仅可以提高元件的电导率,还可以提高稳定性和选择性,金属掺杂是最为常见的掺杂方式,掺杂物的电子效应可以起到催化活性中心的作用,降低被测气体化学吸附的活化能,有效提高气敏元件的灵敏度和缩短响应时间。 成分,结构,加工和性能是材料科学与工程的四个基本要素,成分和结构从根本上决定了材料的性能,对材料的成分和结构进行精确表征是实现材料性能控制的前提。材料的分析包括表面和内部组织形貌,晶体的相结构,化学成分和价键结构,相应地,材料分析方法有形貌分析,物相分析,成分与价键分析和分子结构分析。为了对SnO 掺杂金属离子复合材料的性能进行研究,本文设计出了 2 微观结构表征方案,为微观结构研究做好了铺垫。 三.正文 3.1材料的制备及表征方法 纳米材料,并对其分别进行Cd,Ni等金属的掺杂。通采用水热法制备SnO 2 过X衍射分析仪(XRD),X射线光电子能谱(XPS)等,得到薄膜的晶体结构以及表面的化学组成,原子价态,表面能态分布信息;通过扫描电镜(SEM)等得到材料的表面微观形貌信息;通过高分辨电子显微镜(HRTEM)得到材料的晶体取向, 3.2表征方案 3.2.1X衍射分析仪(XRD)

现代测试技术计算题习题集(附答案)1

补充习题参考答案 1、 有一个电容测微仪,两极板介质为空气,其圆形极板半径r = 4 mm ,工作初始间隙δ=0.2 mm ,已知 ε0=8.58×10-12 F/m ,ε=1,问: 1)、工作时,如果传感器与工件的间隙变化量Δδ=1μm 时,电容变化量是多少? 2)、如果测量电路的灵敏度S 1=100mV/pF ,读数仪表的灵敏度S 2=5格/mV ,在Δδ=1μm 时,读数仪表的指示值变化多少格? 解:1)、ΔC=εε0A ×Δδ/-δ2=1×8.58×10-12 (F/m )×3.14×(0.004)2(m 2)×1×10-6 (m ) =-4.94×10-3 pF 2)、S=ΔC ×S 1×S 2=-4.94×10-3 (pF) ×100(mv/pF )×5(格/mv)=-2.47格≈-2.5格 2、 应变片的计算:已知试件尺寸如图,试件材料为45#钢,E=2.0×10+7 N/cm 2 ,应变片电阻R=120Ω,K=2.0, 康铜电阻丝的电阻温度系数α=-50×10-6 /℃,温度线膨胀系数β2=15×10-6 /℃,45#钢的温度线膨胀系数β 1 =11×10-6 /℃。求: (1)、不考虑温度的影响,当P=10吨时,求电阻应变片的电阻相对变化量ΔR/R 和绝对变化量ΔR。 (2)、当P=0,环境温度在-20℃变到+20℃时,求电阻应变片的相对变化量ΔR/R 和绝对变化量ΔR。 解:(1)拉伸变形 A E A P εδ== 得 EA P = ε 所以005.01 2100.210100.263 =?????===?EA KP K R R ε R ?=0.005×120=0.6 Ω (2)当p =0,t ?=20-(-20)=40 ℃时 Ω -=??-?+?-???-+=?--2784.040]10)1511(0.21050[120t )]([6621=ββαK R R 31032.2120 2784.0-?-=-=?R R 3、 脱粒机滚筒轴上,沿与轴线方向成45o方向贴一应变片,在工作时应变片的阻值从120Ω增加到120.006Ω ,

现代分析检测技术

现代分析检测技术课程 论文(报告、案例分析) 液态奶黑白膜包装重点卫生性能检测 商品学专业学生王伊萌学号1221251011 一、导语 液态奶黑白膜主要是以PE类树脂、黑白色母料为主要原料,并根据需要加入阻隔性树脂共挤而成的复合膜,其在使用过程中采用油墨表印工艺,因此由制膜过程及印刷过程引入的不溶物等有害成分在酸性、油脂性环境中极易迁移至液态奶中,进而危害消费者健康。所以,需及时采用蒸发残渣等测试设备监测包装接触材料的重点卫生性能。本文介绍了鲜牛奶黑白膜中高锰酸钾消耗量、蒸发残渣、重金属、脱色试验这四项重点卫生性能,并详细介绍了蒸发残渣仪的检测原理、试验步骤及应用,可为行业内包装材料蒸发残渣的测试提供参考。 二、检测标准 ·BB/T 0052-2009 《液态奶共挤包装膜、袋》 ·GB 9687-1988《食品包装用聚乙烯成型品卫生标准》 ·GB/T 5009.60-2003《食品包装用聚乙烯、聚苯乙烯、聚丙烯成型品卫生

标准的分析方法》 三、测试意义 液态奶黑白膜是采用LDPE、LLDPE为主要树脂原料,再加入黑、白色母料,采用共挤工艺吹制而成的复合膜,一般为三层或三层以上结构。液态奶黑白膜又分为阻隔类与非阻隔类,非阻隔类即不再添加任何具有较高阻隔性的树脂原料,而阻隔类的黑白膜会另外加入EVOH、PA等阻隔性树脂共挤成膜,高阻隔类的液态奶黑白膜在低温环境下的氧气透过率可达到2.0 cm3/(m2?24h?0.1MPa)。另外,为了获得良好柔韧性及热封口效果,有些种类的液态奶黑白膜会加入mLLDPE树脂。因此,鉴于PE类液态奶黑白膜可具有优异的阻隔性、热封性、 避光性以及柔韧性,是目前液态奶生产行业广为采用的一种包装材料。 液态奶黑白膜多采用表面印刷工艺,即利用专用耐水耐高温的表印油墨印刷在黑白膜包装外表面,因此油墨层是直接暴露在外部。鉴于液态奶黑白膜的制造工艺及印刷工艺,树脂原料及油墨极易出现有害的小分子物质或有机溶剂残留,而这些残留物质采用何种手段进行严格监控,则需要进行相关卫生化学性能指标的检测。BB/T 0052-2009 《液态奶共挤包装膜、袋》产品标准中规定了PE类液态奶黑白膜中相关卫生性能参考GB 9687-1988《食品包装用聚乙烯 成型品卫生标准》,即严格检测“蒸发残渣”、“高锰酸钾消耗量”、“重金属”、“脱色试验”这四项重点卫生性能指标。这些指标可准确反映包装材料中有机小分子成分或重金属等有害物质的含量,有效降低在制膜或印刷过程中因工艺参数控制不当或油墨成分使用不当而产生的有害物质,最大程度的减轻因包装材料引起的液态奶污染。 四、检测指标 液态奶黑白膜重点卫生性能指标均按照GB/T 5009.60-2003《食品包装用聚乙烯、聚苯乙烯、聚丙烯成型品卫生标准的分析方法》中规定的相应检测方法,这四项指标在试验前需在特定的温度下在特殊的溶液中浸泡2 h,再按照不同的测试方法进行各指标的检测。 蒸发残渣:将试样分别经由不同溶液浸泡后,将浸泡液分别放置在水浴上蒸干,于100℃左右的环境下干燥2 h后,冷却称重。该指标即表示在不同浸泡液中的溶出量。不同浸泡液可分别模拟接触水、酸、酒、油不同性质食品的情况。 高锰酸钾消耗量:将浸泡后的试样,用高锰酸钾标准滴定溶液进行滴定,通过测定其高锰酸钾消耗量,再计算出可溶出有机物质的含量。该指标是表征包装材料中小分子有机物及制膜过程中高温分解的小分子有机物质的总含量。

《现代分析测试技术》复习知识点

《现代分析测试技术》复习知识点 一、名词解释 1. 原子吸收灵敏度、指产生1%吸收时水溶液中某种元素的浓度 2. 原子吸收检出限、是指能产生一个确证在试样中存在被测定组分的分析信号所需要的该组分的最小浓度或最小含量 3.荧光激发光谱、4.紫外可见分光光度法 5.热重法、是在程序控制温度下,测量物质质量与温度关系的一种技术。 6.差热分析、是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。 7.红外光谱、如果将透过物质的光辐射用单色器加以色散,使光的波长按大小依次排列,同时测量在不同波长处的辐射强度,即得到物质的吸收光谱。如果用的是光源是红外辐射就得到红外吸收光谱(Infrared Spectrometry)。 8.拉曼散射,但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。 9.瑞利散射、当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅是改变了方向,发生散射,而光的频率仍与激发光源一致,这种散射称为瑞利散射 10.连续X射线:当高速运动的电子击靶时,电子穿过靶材原子核附近的强电场时被减速。电子所减少的能量(△E)转为所发射X 射线光子能量(hν),即hν=△E。 这种过程是一种量子过程。由于击靶的电子数目极多,击靶时间不同、穿透的深浅不同、损失的动能不等,因此,由电子动能转换为X 射线光子的能量有多有少,产生的X 射线频率也有高有低,从而形成一系列不同频率、不同波长的X 射线,构成了连续谱 11.特征X射线、原子内部的电子按泡利不相容原理和能量最低原理分布于各个能级。在电子轰击阳极的过程中,当某个具有足够能量的电子将阳极靶原子的内层电子击出时,于是在低能级上出现空位,系统能量升高,处于不稳定激发态。较高能级上的电子向低能级上的空位跃迁,并以光子的形式辐射出标识X 射线 13.相干散射、当入射X射线光子与原子中束缚较紧的电子发生弹性碰撞时,X射线光子的能量不足以使电子摆脱束缚,电子的散射线波长与入射线波长相同,有确定的相位关系。这种散射称相干散射或汤姆逊(Thomson)散射。 14.非相干散射,,当入射X射线光子与原子中束缚较弱的电子(如外层电子)发生非弹性碰撞时,光子消耗一部分能量作为电子的动能,于是电子被撞出原子之外,同时发出波长变长、能量降低的非相干散射或康普顿(Compton)散射

现代材料检测技术

一、DTA的基本原理 (1)差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线描述了样品与参比物之间的温差(ΔT)随温度或时间的变化关系。 (2)影响差热分析的主要因素 1 气氛和压力的选择 气氛和压力可以影响样品化学反应和物理变化的平衡温度、峰形,因此必须根据样品的性质选择适当的气氛和压力,有的样品易氧化,可以通入N2、Ne等惰性气体。 2 升温速率的影响和选择: 升温速率不仅影响峰温的位置,而且影响峰面积的大小: 快的升温速率下峰面积变大,峰变尖锐。使试样分解偏离 平衡条件的程度也大,易使基线漂移,并导致相邻两个峰重 叠,分辨力下降。慢的升温速率,基线漂移小,使体系接 近平衡条件,得到宽而浅的峰,也能使相邻两峰更好地分 离,因而分辨力高。但测定时间长,需要仪器的灵敏度高。 升温速率对高岭土差热曲线的影响 : 升温速率越大,峰形越尖,峰高也增加,峰顶温度也越高 3试样的预处理及粒度 试样用量大,易使相邻两峰重叠,降低了分辨力。一般尽可能减少用量,最多大至毫克。样品的颗粒度在100目~200目左右,颗粒小可以改善导热条件,但太细可能会破坏样品的结晶度。对易分解产生气体的样品,颗粒应大一些。参比物的颗粒、装填情况及紧密程度应与试样一致,以减少基线的漂移。 试样量越大,差热峰越宽,越圆滑。其原因是因为加热过程中,从试样表面到中心存在温度梯度,试样越多,梯度越大,峰也就越宽。 4 参比物的选择 要获得平稳的基线,要求参比物在加热或冷却过程中不发生任何变化,在整个升温过程中其比热、导热系数、粒度尽可能与试样一致或相近。

常用α-三氧化二铝Al2O3)或煅烧过的氧化镁(MgO)或石英砂作参比物。如果试样与参比物的热性质相差很远,则可用稀释试样的方法解决;常用的稀释剂有SiC、铁粉、Fe2O3、玻璃珠Al2O3等。 5 纸速的选择 在相同的实验条件下,同一试样如走纸速度快,峰的面积大,但峰的形状平坦,误差小;走纸速率小,峰面积小。因此,要根据不同样品选择适当的走纸速度。不同条件的选择都会影响差热曲线,除上述外还有许多因素,诸如样品管的材料、大小和形状、热电偶的材质以及热电偶插在试样和参比物中的位置等。 二.热重分析 (Thermogravimetric Analysis) (1)热重法(Thermogravimetry, TG)是在程序控温下,测量物质的质量与温度或时间的关系的方法,通常是测量试样的质量变化与温度的关系。热重分析的结果用热重曲线(Curve)或微分热重曲线表示。 (2)影响热重测定的因素 1. 升温速度 升温速度越快,温度滞后越大,Ti及Tf越高,反应温度区间也越宽。对于无机材料试样,建议采用的升温速度一般为10-20K·min-1。 2.气氛 常见的气氛有空气、O2、N2、He、H2、CO2 、Cl2和水蒸气等。样品所处气氛的不同导致反应机理的不同。气氛与样品发生反应,则TG曲线形状受到影响。例如PP使用N2时,无氧化增重。气氛为空气时,在150-180 C出现氧化增重。 3.样品的粒度和用量 样品的粒度不宜太大、装填的紧密程度适中为好。同批试验样品,每一样品的粒度和装填紧密程度要一致。 4.试样皿(坩锅) 试样皿的材质有玻璃、铝、陶瓷、石英、金属等,应注意试样皿对试样、中间产物和最终产物应是惰性的。如聚四氟乙烯类试样不能用陶瓷、玻璃和石英类试样皿,因相互间会形成挥发性碳化物。白金试样皿不适宜作含磷、硫或卤素的聚合物的试样皿,因白金对该类物质有加氢或脱氢活性。 5 温度的标定 热天平可采用不同居里温度的强磁体来标定。标定时在热天平外加一磁场,坩埚中放入标准磁性物质。磁性物质的居里点是金属从铁磁性向顺磁性相转变的温度,在居里点产生表观失重。 三.示差扫描量热法Differential Scanning Calorimeter,DSC (1)差示扫描量热法(DSC)是在程序控温下,测量物质和参比物之间的能量差随温度变化关系的一种技术(国际标准ISO 11357-1)。根据测量方法的不同,又分为功率补偿型DSC和热流型DSC两种类型。常用的功率补偿DSC是在程序控温下,使试样和参比物的温度相等,测量每单位时间输给两者的热能功率差与温度的关系的一种方法。 (2)与在DTA曲线中,吸热效应用谷来表示,放热效应用峰来表示所不同的是:在DSC曲线中,吸热(endothermic)效应用凸起正向的峰表示凹下的谷表示 (热焓增加),放热(exothermic)效应用凹下的谷表示(热焓减少)。 三.扫描电子显微镜(SEM) 透射电镜的成像——电子束穿过样品后获得样品衬度的信号(电子束强度),利用电磁透镜(三级)放大成像

现代测试技术复习要点

复习重点 第一章 信号分析基础(作业题重点) ——信号的分类: (确定性信号与非确定性信号) 1.确定性信号:是指可以用明确的数学关系式描述的信号。它可以进一步分为周期信号、非周期信号与准周期信号。 周期信号是指经过一段时间可以重复出现的信号,满足条件()()x t x t nT =+。 非周期信号:往往具有瞬变性。 准周期信号:周期信号与非周期信号的边缘。 2.非确定性信号:是指无法用明确的数学式描述,其幅值、相位变化是不可预知的,所描述的物理现象是一种随机过程,通常只能用概率统计的方法来描述它的某些特征。 (能量信号与功率信号) 1. 能量信号:在所分析的区间里面(,)-∞+∞,能量为有限值的信号称为能量信号,满足 条件: ()2 t dt x ∞ -∞ <∞? 2. 功率信号:有许多信号,它们在区间(,)-∞+∞内能量不是有限值。在这种情况下,研 究信号的平均功率更为合适。在区间12(,)t t 内,信号的平均功率()2 2 1 21 1t t P t dt x t t -= ? (连续时间信号与离散时间信号) 1. 连续时间信号:在所分析的时间间隔内,对于任意时间值,除若干个第一类间断点外, 都可以给出确定的函数值,此类信号称为连续时间信号或模拟信号。 2. 离散时间信号:又称时域离散信号或时间序列。它是在所分析的时间区间,在所规定的 不连续的瞬时给出函数值。可以分为两种情况:时间离散而幅值连续时,称为采样信号;时间离散而幅值量化时,称为数字信号。 ——信号的时域分析 (信号的时域统计分析) 1.均值:表示集合平均或数学期望值,也即信号的静态分量。用x μ表示。 2.均方值:也称平均功率,用2 x ψ表示。 3.方差:描述信号的波动分量,用2x σ表示。 三者之间的关系为:2 x ψ=2x σ+2 x μ 4.概率密度函数:随机信号的概率密度函数是表示幅值落在指定区间的概率。定义为 [] 0()1()lim lim lim x x x T P x x t x x T p x x x T ?→?→→∞<≤+???==?????? 5.概率分布函数:概率分布函数是信号幅值()x t 小于或等于某值x 的概率,其定义为:

相关文档
最新文档