第九章 细胞信号转导

合集下载

第九章MAPK信号转导通路

第九章MAPK信号转导通路
例:ERK2 — Tyr-185 , Thr-183 pY185 — 解除L12对底物结合的阻断
• MAPK是Pro指导的蛋白激酶
对于ERK2来说,其底物的一般保守性 序列为 Pro-X-Ser/Thr-Pro • 活化环中Tyr-185 和Thr-183的磷酸化, 引起该环重新折叠,与Arg结合位点相 互作用 • 酸性氨基酸替代,不导致组成性活化 • MAPK的点突变不影响其活性
五、酵母MAPK通路 酿酒酵母 — 已鉴定出5条 • 单倍体的交配途径 • 浸润性生长通路 • 细胞壁重构通路 • 双组分渗透压感受器通路 • Sho1渗透压感受器通路
(一)酵母菌中MAPK模式的组成和作用 酿酒酵母:4种MKKK 4种MKK 6种MAPK 其中,4种参加明确的5种MAPK通路 2种 (SMK1, YKL161C)参加未知 的MAPK通路 3个成员通过与支架蛋白结合而联在一起
(四)细胞壁重构通路
• 酵母的生长依赖于 有效的细胞壁重构
• PKC1:MKKKK • MKK1和MKK2的
重叠作用意义不清
(五)渗透压感受器和应激通路 酿酒酵母的2种渗透压感受器: • “双组分”渗透压感受器 低渗透压条件下激活 • 膜渗透压感受器 高渗透压条件下激活 • 2种渗透压感受器对MAPK通路的调节 作用不同
在心肌细胞 A-Raf → MEK1 → ERK1/2
在PC细胞 B-Raf → MEK1 → ERK1/2
3. ERK1/2蛋白激酶的作用底物及灭活 • 底物的保守性磷酸化位点模体为 Pro-Lue-Ser/Thr-Pro • 底物蛋白 — 胞质蛋白: p90S6K 、cPLA2 、EGF 受体 细胞骨架: MAP1、2 、4 、Tau 转录因子:Elk-1, Ets-1, Sap1a, c-Myc等 • 灭活: MKP-1, -3, -4

第九章细胞信号转导

第九章细胞信号转导
– 水溶性信号分子:生长因子(蛋白质和肽类)、 局部化学递质、神经递质
– 气体性信号分子:NO、CO(脂溶性)
• 性质:蛋白质及短肽、氨基酸的核苷酸衍生物、脂 肪酸和胆固醇衍生物、气体分子(NO、CO)等。
• 特点:①特异性; ②高效性; ③可被灭活。
• 脂溶性信号分子(如甾类激素和甲状腺素):可直接穿 膜进入靶细胞,与胞内受体结合形成激素-受体复合 物,调节基因表达。

神经递质
(B) 受体(receptor)
受体概念:两种解释
• 其一:能够识别和选择结合信号分子(配体)并能 引起一系列生物学效应的生物大分子,多为糖蛋白, 少数为糖脂或糖蛋白与糖脂的复合物。
• 其二:能够识别和选择性结合某种信号分子 (配体) 的大分子,当与配体结合后,通过信号转导(signal transduction)作用将胞外信号转换为胞内化学或物 理的信号,以启动一系列过程,最终表现为生物学 效应。
Robert F. Furchgott Louis J. Ignarro Ferid Murad
• NO可快速扩散透过细胞膜,作用于邻近细胞。
• 血管内皮细胞和神经细胞是NO的生成细胞,NO 的生成由一氧化氮合酶(nitric oxide synthase, NOS)催化,以L-精氨酸为底物,以NADPH作 为电子供体,生成NO和L-瓜氨酸。
细胞表面受体: 为胞外亲水性信号分子所激活。
细胞表面受体分属三大家族: 离子通道耦联的受体(ion-channel-linked receptor) G-蛋白耦联的受体(G-protein-linked receptor) 酶连的受体(enzyme-linked receptor)
每一个细胞对胞外各种特异的信号 分子作出反应导致不同的效应

第9章 细胞信号转导(1)

第9章 细胞信号转导(1)

受体酪氨酸激酶及RTK-Ras蛋白信号通路



受体酪氨酸激酶(Receptor tyrosine kinase,RTK)又称 酪氨酸蛋白激酶受体。迄今已鉴定有50多种,包含7个 亚族。 RTK的N端位于胞外,是配体结合结构域,C端位于胞 内,具有酪氨酸激酶结构域,并具有自磷酸化位点。 大多数RTK是单体跨膜蛋白,配体结合导致受体二聚 化,形成同源或异源二聚体。 胞外配体是可溶性或膜结合的多肽或蛋白类激素,包 括多种生长因子、胰岛素和胰岛素样生长因子。 RTK的主要功能是控制细胞生长、分化而不是调控细 胞中间代谢。
NO参与的信号途径


NO是一种具有自由基性质的脂溶性气体分子,能够 透过细胞膜迅速扩散 NO在细胞内极其不稳定,半衰期2-30s,被氧化后以 NO3-和NO2-形式存在细胞外液中 NO只能在组织中局部扩散,对邻近的靶细胞发挥作 用 血管内皮细胞,神经细胞时NO的生成细胞,以精氨 酸为底物
细胞因子受体与JAK-STAT信号通路
3 其它细胞表面受体介导的信号通路


Wnt受体和Hedgehog受体介导的信号通路:通 过配体与受体结合引发胞质内多蛋白复合物去 装配,从而释放转录因子,在转位到核内调控 基因表达。 NF-B和Notch信号通路涉及到抑制物或受体本 身蛋白切割作用,从而释放活化的转录因子, 再转位到核内调控基因表达。
cAMP-PKA信号通路


cAMP为第二信使,激活蛋白激酶A(Protein kinase A, PKA)。 无活性PKA含有两个调节亚基(R)和2个催化亚基组 (C)成的四聚体,每个R亚基有2个cAMP结合位点。
cAMP-PKA信号通路对肝细胞和肌细胞糖原代谢的调节 GS:糖原合成酶 PKA:蛋白激酶A IP:磷蛋白磷酸酶抑制蛋白 PP:磷蛋白磷酸酶 G-1-P: 葡萄糖-1-磷酸 GPK:糖原磷酸化酶激酶 GP:糖原磷酸化酶

细胞信号转导精品课件

细胞信号转导精品课件

05
细胞信号转导的未来展 望
细胞信号转导与药物研发
细胞信号转导与药物研发
随着对细胞信号转导机制的深入了解,药物研发正逐渐转 向针对特定信号通路的治疗方法。这有助于开发更精确、 副作用更小的药物,提高治疗效果。
针对特定疾病的信号通路
针对特定疾病的信号通路进行药物设计,可以更有效地治 疗某些难以治愈的疾病,如癌症、神经退行性疾病等。
细胞信号转导精品课件
目录
• 细胞信号转导概述 • 细胞信号转导的分子机制 • 细胞信号转导与疾病 • 细胞信号转导的研究方法 • 细胞信号转导的未来展望
01
细胞信号转导概述
细胞信号转导的定义
细胞信号转导
是指细胞接收到胞外信号后,通 过一系列的信号转导过程,将胞 外信号转导至胞内,调控基因的 表达,从而影响细胞的生命活动
个性化治疗的可能性
通过对个体基因组和信号转导通路的深入研究,有望实现 个性化治疗,根据患者的具体情况制定最合适的治疗方案 。
细胞信号转导与基因治疗
基因治疗与信号转导
基因治疗是一种通过修改或替换缺陷基因来治疗遗传性疾病的方法。细胞信号转导在基因表达和调控中起着重要作用 ,因此对信号转导机制的理解有助于优化基因治疗方案。
癌症治疗中的细胞信号转导
针对癌症治疗中的细胞信号转导,可以采取多种手段,如抑制信号 转导、诱导细胞凋亡等。
神经退行性疾病与细胞信号转导
神经退行性疾病概述
01
神经退行性疾病是一类以神经元退行性病变为主要特征的疾病
,如阿尔茨海默病、帕金森病等。
细胞信号转导与神经退行性疾病
02
细胞信号转导在神经退行性疾病的发生、发展中起着重要作用
针对糖尿病的治疗,可以采取多种手段,如抑制 信号转导、调节血糖等。

9 第九章 细胞信号转导

9 第九章 细胞信号转导
一个细胞发出的信息通过介质(配体,信号分子)传递到 靶细胞,与靶细胞的受体作用,通过信号转导产生细胞内 一系列生理生化变化,最终表现为靶细胞整体生物学效应 的过程。
Gene transcription Cell proliferation Cell differentiation Cell death Cell mobility Immune responses
离子通道偶联受体 细胞表面 受体类型 G蛋白偶联受体 酶偶联受体
受体至少有2个功能域: 结合配体的功能域 产生效应的功能域
7
根据受体引发细胞反应作用过程的时间特 点,可以分为2种主要的细胞反应:
一、细胞内存量蛋白活性或功能的改变,进 而影响细胞代谢功能的短期反应(快反应); 二、通过转录因子的修饰激活或抑制基因表 达的长期反应(慢反应)
双信使系统
→DAG→激活PKC→蛋白磷酸化或促 Na+/H+交换使胞内pH DAG-PKC途径
35
IP3-Ca2+ 和DAG-PKC 双信使信号通路
36
1、IP3-Ca2+途径
激素
受体
G蛋白
PLC
IP3
CaM 钙调蛋白
内质网上的配 体门Ca2+通道
Ca2+
Ca2+ CaM复合体 Ca2+—CaM复合体 结合并激活靶酶
G蛋白偶联受体(G Protein-Coupled Receptors, GPCRs) 是细胞表面受体中最大的多样性家族; 统计表明:现有25%的临床处方药物是针对GPCRs所介 导信号通路为靶点研制和开发的。
23
一、G蛋白偶联受体的结构与激活

G蛋白偶联受体---配体受体复合物与靶 蛋白(酶或离子通道)的作用要通过G 蛋白偶联,才可产生第二信使。 G蛋白是三聚体GTP结合调节蛋白 (trimetric GTP-binding regulatory protein)的简称,由α,β,γ三个亚基组成, α 亚基和βγ二聚体亚基共价结合脂分子 锚于质膜PS面。 当配体结合受体后, α 亚基与受体胞内 部分偶联,引起α 亚基构象变化,使得 GDP被GTP交换, α 亚基脱离受体,产 生游离的活化α 亚基以及游离的活化βγ 二聚体。

第九章细胞信号转导

第九章细胞信号转导

膜受体Frzzled(Fz) 膜辅助性受体LRP5/6 糖元合酶激酶3(GSK3) 支架蛋白(Axin) 抑癌蛋白(APC) T细胞因子(TCF)
Wnt→Fz → LRP/DSH → Axin/APC/GSK3/β-catenin →β-catenin →β-catenin/TCF → 激活靶基因转录
级联反应等, 即信号的识别、转移与转换。
主要内容:
细胞信号转导概述 细胞内受体介导的信号传递 G蛋白偶联受体介导的信号转导 酶联受体介导的信号转导 其他细胞表面受体介导的信号通路 细胞信号转导的整合与控制
第一节
细胞信号转导概述
一、细胞通讯 二、信号分子与受体
三、信号转导系统及其特性
分泌化学信号
Hedgehog(Hh):Hh信号分子是一种由信号细胞分泌的局域性蛋白质 配体,作用范围小。 Hh受体:Ptc、Smo和iHog蛋白,介导细胞对Hh信号应答反应。Ptc和Smo 具有接受和转导Hh信号的功能,iHog可能作为辅助性受体参与Ptc 与Hh信号的结合。
相关的信号分子超家族,无活性的分泌性前体需经蛋白酶水解作用形成以
二硫键连接的同源或异源二聚体,即成熟的活化形式。
TGF-β受体: 与TGF-β结合的细胞表面受体复合物,可将胞外信号将胞内转导, 包括RⅠ、RⅡ和RⅢ受体,本质上是受体Ser/Thr激酶。
TGF-β-Smad信号通路
TGF-β(配体)与TGF-β受体结合 形成复合物后便被激活,受体的激 酶活性能在胞质内直接磷酸化并激 活特殊类型的转录因子Smad,进入 核内调节基因表达。 ① 配体与RⅢ结合 ② RⅢ将配体递交给RⅡ或配体直接 结合RⅡ。RⅡ自磷酸化被激活 ③ 与配体结合的RⅡ募集并磷酸化 RⅠ的Ser/Thr残基,RⅠ受体被 激活 ④ 激活的R1受体磷酸化Smad ⑤ Smad激活靶基因转录

细胞生物学:第九章 细胞信号转导

细胞生物学:第九章 细胞信号转导

气体性信号分子:NO ➢能自由扩散,进入细胞直接激活效应酶。
受体(Receptors)
能够识别和选择性结合某种配体(信号分 子)的大分子。
多为糖蛋白 至少包括两个功能区域
➢与配体结合的区域,具有结合特异性; ➢产生效应的区域,具有效应特异性。
类型 ➢细胞内受体:细胞质基质、核基质 小的亲脂性信号分子 ➢细胞表面受体 亲水性信号分子(分泌型和膜结合型)
B) constitutive activation of type II TGFb receptor
C) loss of Smad3 function
D) constitutive activation of Smad3
E) loss of Smad 4 function
Clicker Question 15-4
亲脂性信号分子:甾类激素、甲状腺素等。 ➢疏水性强,可穿过细胞膜进入细胞,与细 胞质或细胞核中受体结合形成激素-受体复 合物,调节基因表达。
亲水性信号分子:多肽类激素、生长因子、神经 递质、局部介质等。
➢不能穿过靶细胞质膜的脂双层,只能通过与靶 细胞表面受体结合,再经信号转换机制,在细 胞内产生第二信使或激活蛋白激酶或蛋白磷酸 酶的活性,引起细胞的应答反应。
细胞内核受体:依赖激素激活的基因调控 蛋白 ➢C端的配体结合域 ➢中部的DNA或抑制性蛋白(如Hsp90) 结合位点 ➢N端的转录激活域
在细胞内,受体与抑制性蛋白(如Hsp90) 结合形成复合物,处于非活化状态;
配体(如皮质醇)与受体结合,将导致抑制 性蛋白从复合物上解离下来,从而受体通过 暴露它的DNA结合位点而被激活。
➢ 旁分泌(paracrine):细胞通过分泌局部化学介质到细 胞外液中,经局部扩散作用于邻近靶细胞。

细胞生物学课件:9-细胞信号转导

细胞生物学课件:9-细胞信号转导
受体数目(胰岛素受体)
内在活性-- 配体与受体结合后是否表现功 能反应。
受体激动剂/受体阻断剂
胞内信号传递关键分子(分子开关)
蛋白激酶protein kinase能将磷酸基团转移到底 物特定的氨基酸残基(ser/thr/tyr)上,使蛋白 质磷酸化,从而改变蛋白构象、促进或阻碍与底 物的结合。
G蛋白偶联受体(G-protein-coupled receptor)
识别胞外信号,自身构象改变,与G蛋白作用, 由G蛋白调节底物蛋白活性,在细胞内传递信号 。
与受体偶联的G蛋白
由α、β、γ亚基构成异三聚体,可结合GTP( 活化)/GDP(失活),具有GTP酶活性,本身 的构象改变可活化效应蛋白,进行下一步信号传 递。
胞质受体/核受体
配体多为甾体类激素/甲状腺素类激素/维生素D等。 以简单扩散的方式或借助于载体蛋白跨越靶细胞 膜,结合胞质或胞核内受体的羧基端并激活受体。
胞质受体/核受体
受体的DNA 结合区与位于靶基因的启动子或增 强子区域的特定的应答元件相结合,来行使转录 调节功能。
甾体激素受体
膜受体
DAG结合于质膜上,可活化与质膜结合的蛋白激酶C (Protein Kinase C,PKC)。PKC以非活性形式分布 于细胞质中。当DAG的产生增多时,PKC转位到质膜内 表面,被DAG活化,同时此时它与Ca2+的亲和力增加, 在Ca2+ 、DAG的共同作用下具有了对底物进行磷酸化的 功能。
I使P3胞与内内C质a2网+浓上度的升IP高3受,体激门活控各钙类通依道赖结钙合离,子开的启蛋钙白通。道,
胞内信号传递关键分子(分子开关)
衔接蛋白(adaptor protein)一般不具有酶活性, 而是起到一个结构枢纽的作用。

细胞生物学 第九章 细胞信号转导 名词解释和重点知识

细胞生物学 第九章 细胞信号转导 名词解释和重点知识

第九章细胞信号转导细胞通讯cellcommunication信号细胞发出的信息传递到靶细胞并与受体相互作用,引起靶细胞产生特异性生物学效应的过程。

细胞通讯的方式A、分泌化学信号(内分泌、自分泌、旁分泌、化学突触传递神经递质);B、接触依赖性通讯(细胞直接接触,通过与质膜结合的信号分子与其相接触的靶细胞质膜上的受体分子相结合,影响靶细胞);C、间隙连接和胞间连丝内分泌由分泌细胞分泌信号分子到血液中,通过血液循环运送到体内各个部位,作用于靶细胞。

旁分泌细胞通过分泌局部化学介质到细胞外液中,经过局部扩散作用于临近靶细胞。

如表皮生长因子、淋巴因子、前列腺素、NO等自分泌内分泌细胞将激素或调节肽分泌到细胞外,通过组织间液,再作用于本细胞膜上的受体,使内分泌细胞的功能发生改变。

这一途径的靶细胞就是该细胞的本身。

细胞对自身分泌的信号分子产生反应。

化学突触传递神经递质电信号-化学信号-电信号Ca2+的功能A、是骨骼的重要组成元素,生物体的重要结构成分;B、参与生物体动作电位的形成C、作为酶的激活剂或者抑制剂调节酶的活性D、参与细胞内信号转导过程钙调蛋白CaM calmodulin 一种高度保守、广泛分布的小分子Ca2+结合蛋白,参与许多Ca2+依赖性的生理反应与信号转导。

每个钙调蛋白分子有4个钙离子结合位点。

CaM本身没有活性,只有同Ca2+结合形成复合体后才能活化多种靶酶。

细胞内受体:接受亲脂性信号分子;一般有三个结构域:1、激素结合结构域(位于C端);2、抑制蛋白结合位点(富含Cys,具有锌指结构);3、转录激活结构域(位于N端)细胞表面受体:接受亲水性信号分子(分为离子通道偶联受体、G蛋白偶联受体、酶联受体);至少还有两个结构域:配体结合区域和效应区域第二信使second messenger 第一信使分子(激素或其他配体)与细胞表面受体结合后,在细胞内产生或释放到细胞内的小分子物质,如cAMP,IP3,DAG,Ca2+等,有助于信号向胞内进行传递。

第九章细胞信号转导习题及答案

第九章细胞信号转导习题及答案

细胞生物学章节习题-第九章一、选择题1、动物细胞内引起储存Ca2+释放的第二信使分子是( A )。

A. IP3B. DAGC. cAMPD. cGMP2、一氧化氮的受体是(B )。

A. G蛋白偶联受体B. 鸟苷酸环化酶C. 腺苷酸环化酶D. 受体酪氨酸激酶3、表皮生长因子(EGF)的穿膜信号转导是通过(A )实现的。

A. 活化酪氨酸激酶B. 活化酪氨酸磷酸酶C. cAMP调节途径D. cGMP途径4、有关cAMP信号通过,下列说法错误的是(B)。

A. 被激活的蛋白激酶A的催化亚基转为进入细胞核,使基因调控蛋白磷酸化B. 结合GTP的α亚基具有活性,而βγ亚基复合物没有活性C. βγ亚基复合物与游离的Gs的α亚基结合,可使Gs的α亚基失活D. 这一通路的首要效应酶是腺苷酸环化酶,cAMP被环腺苷磷酸二酯酶消除5、霍乱弧素引起急性腹泻是由于(A )。

A. G蛋白持续激活B. G蛋白不能被激活C. 受体封闭D. 蛋白激酶PKC功能异常E. 蛋白激酶PKA功能异常6、G蛋白具有自我调节活性的功能,下列哪种说法可以解释G蛋白活性丧失的原因(A )。

A. α亚基的GTPase活性B. 效应物的激活C. 与受体结合D. 亚基解离7、胞内受体介导的信号转导途径对代谢调控的主要方式是下列哪种(A )?A. 特异基因的表达调节B. 核糖体翻译速度的调节C.蛋白降解的调节D. 共价修饰调节8、制备人类肝细胞匀浆液,然后通过离心技术分离细胞膜性成分和可溶性胞质。

如在可溶胞质组分中加入肾上腺素,会发生下何种情况(D )A. cAMP增加B. 肾上腺素与其胞内受体结合C. 腺苷环化酶的激活D. cAMP浓度不变9、1,4,5-三磷酸肌醇促进Ca2+从细胞那个部位释放进入细胞质(B )A. 线粒体B. 内质网C. 质膜(从胞外到胞内)D. Ca2+-CaM复合体细胞10、与视觉信号转导有关的第二信使分子是下列哪种成分(D )。

第9章 细胞通讯和信号转导1

第9章 细胞通讯和信号转导1

These signal molecules work in combinations to regulate the behavior of the cell. Cells respond to stimuli via cell signaling
(2) Different cells can respond differently to the same extracellular signal molecule
A. 肠道细菌与小肠上皮细胞通过细胞绒毛互相进行信息交流。 B. 小菌落酵母菌(交配型A)同正常的酵母菌(交配型a)通 过分泌的交配因子互相识别,并杂交形成二倍体合子Aa。
细胞通讯的方式
接触依赖型:缝隙连接型和受体介导 旁分泌型 突触型 自分泌型
短距离通讯
内分泌型
长距离通讯
细胞信号转导
一氧化氮/环鸟苷磷酸途径
Intracellular signaling pathway of nitric oxide
The mechanism by which acetylcholine stimulation of the endothelial cells leads to smooth muscle relaxation also explains the mechanism of action of the chemical nitroglycerin. The drug sildenafil, sold under the trade name Viagra, is an inhibitor of a cyclic GMP-specific phosphodiesterase that normally catalyzes the breakdown of cyclic GMP.

第九章-细胞信号转导(共53张PPT)

第九章-细胞信号转导(共53张PPT)
• NO的作用机制:
(1)激活靶细胞内具有鸟苷酸环化酶(GC)活性的NO受体。
(2)NO与GC活性中心的Fe2+结合,改变酶的构象,增强酶活性,cGMP水平升高 。
(3)cGMP激活依赖cGMP的蛋白激酶G(PKG),抑制肌动-肌球蛋白 复合物信号通路,导致血管平滑肌舒张。
NO在导致血管平滑肌舒张中的作用
G蛋白偶联受体 的结构图
1234 5
67
G蛋白偶联受体介导无数胞外信号的细胞应答:
包括多种对蛋白或肽类激素、局部介质、神经递质和氨基 酸或脂肪酸衍生物等配体识别与结合的受体,以及哺乳类嗅觉、 味觉受体和视觉的光激活受体(视紫红质)。
哺乳类三聚体G蛋白的主要种类及其效应器
二、G蛋白偶联受体所介导的细胞信号通路
第一节 细胞信号转导概述
一、细胞通讯 二、信号分子与受体 三、信号转导系统及其特性
一、细胞通讯
细胞通讯(cell communication):指信号细胞发出的信息(配 体/信号分子)传递到靶细胞并与其受体相互作用,通过细胞信号
转导引起靶细胞产生特异性生物学效应的过程。
(细胞)信号转导(signal transduction):指细胞将外部信
• IRS1:胰素受体底物
(二)细胞内信号蛋白复合物的装配
• 信号蛋白复合物的生物学意义:细胞内信号蛋白复合物 的形成在时空上增强细胞应答反应的速度、效率和反应的 特异性。
• 细胞内信号蛋白复合物的装配可能有3种不同类型。
细胞内信号蛋白复合物装配的3种类型
• A:基于支架蛋白 B:基于受体活化域 C:基于肌醇磷脂
⑤引发细胞代谢、功能或基因表达的改变;
细胞表面受体(cell-surface receptor): 位于细胞质膜上,主要识别和结合亲水性信号分子,包括分泌型信号分子(如多肽类激素、神经递质

第九章-细胞信号转导知识点总结

第九章-细胞信号转导知识点总结

第九章细胞信号转导细胞通讯:一个信号产生细胞发出的信息通过介质(又称配体)传递到另一个靶细胞并与其相应的受体相互作用,然后通过信号转导产生靶细胞内一系列的生理生化变化,最终表现为靶细胞整体的生物学效应。

信号传导:是指信号分子从合成的细胞中释放出来,然后进行传递。

信号传导强调信号的产生、分泌与传送。

信号转导:是指信号的识别、转移与转换,包括配体与受体的结合、第二信使的产生及其后的级联反应等。

信号转导强调信号的接收与接收后信号转换的方式与结果。

受体:是一类能够结合细胞外特异性信号分子并启动细胞反应的蛋白质。

第二信使:细胞外信号分子不能进入细胞,它作用于细胞表面受体,经信号转导,在细胞内产生非蛋白类小分子,这种细胞内信号分子称为第二信使。

分子开关:细胞信号传递级联中,具有关闭和开启信号传递功能的分子。

信号通路:细胞接受外界信号,通过一整套特定机制,将胞外信号转化为胞内信号,最终调节特定基因表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。

G蛋白偶联受体:指配体-受体复合物与靶细胞的作用是要通过与G蛋白的偶联,在细胞内产生第二信使,从而将细胞外信号跨膜传递到胞内影响细胞行为的受体。

cAMP信号通路:细胞外信号与细胞相应受体结合,导致细胞内第二信使cAMP水平的变化而引起细胞反应的信号通路。

(磷脂酰肌醇信号通路)双信使系统:胞外信号分子与细胞表面G蛋白偶联受体结合,激活膜上的磷脂激酶C,使质膜上的PIP2分解成IP3和DAG两个第二信使,将胞外信号转导为胞内信号,两个第二信使分别激活两种不同的信号通路,即IP3-Ca2+和DAG-PKC途径,实现对胞外信号的应答,因此将这种信号通路称为“双信使系统”。

钙调蛋白:真核细胞中普遍存在的Ca2+应答蛋白。

Ras蛋白:Ras基因的产物,分布于质膜胞质侧,结合GTP时为活化状态,结合GDP时失活状态,因此Ras蛋白属于GTP结合蛋白,具有GTP酶活性,具有分子开关的作用。

第九章 细胞的信号转导

第九章 细胞的信号转导

4. 甘油二酯、三磷酸肌醇和Ca2+的信号体系
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
第一信使(或第二信使)与信号的级联放大
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
Dr. Luo Daji<Cell Biology>
一般认为,以离子通道为效应蛋白的配体-受 体作用快速而短暂;而以酶分子为效应蛋白的配体受体作用缓慢而持久。
酶分子
离子通道
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
二、G蛋白 G蛋白(G protein)
Medical Genetics Department, WHU
ቤተ መጻሕፍቲ ባይዱ
Dr. Luo Daji<Cell Biology>
三种主要的受体类型
1. 离子通道受体 (Iro-channel-linked receptor); 2. G蛋白偶联受体 (G-protein-linked receptor) ; 3. 酶联受体(Enzyme-linked receptor) ;
G蛋白耦联受体(G-protein-linked receptor) :
G蛋白耦联受体是由七个跨膜螺旋组成的膜蛋白质,它 与细胞膜内侧面的G蛋白相耦联。与该受体结合的配体包括 大部分激素、多种神经递质以及嗅味分子等。
G蛋白耦联受体的作用过程 G蛋白耦联受体
Medical Genetics Department, WHU

内蒙古大学细胞生物学讲义09细胞信号转导

内蒙古大学细胞生物学讲义09细胞信号转导

第九章细胞信号转导第一节细胞信号转导概述细胞信号发放(cell signaling):细胞释放信号分子,将信息传递给其它细胞。

细胞通讯(cell commnication):细胞发出的信息通过介质传递到另一个细胞产生相应反应的过程。

细胞识别(cell recognition):细胞之间通过细胞表面的信息分子相互作用,引起细胞反应的现象。

信号转导(signal transdction):指外界信号(如光、电、化学分子)作用于细胞表面受体,引起胞内信使的浓度变化,进而导致细胞应答反应的一系列过程。

一、细胞通讯与细胞识别(一)细胞通讯(Cell commnication):一个细胞发出的信息通过介质传递到另一个细胞产生相应的反应。

细胞间的通讯对于多细胞生物体的发生和组织的构建,协调细胞的功能,控制细胞的生长和分裂是必须的。

1、胞间通信的主要类型三种主要方式:细胞间隙连接、膜表面分子接触通讯、化学通讯。

①细胞间隙连接两个相邻的细胞以连接子(connexon)相联系。

连接子中央为直径1.5nm的亲水性孔道。

允许小分子物质如Ca2+、cAMP通过,有助于相邻同型细胞对外界信号的协同反应,如可兴奋细胞的电耦联现象(电紧张突触)。

②膜表面分子接触通讯:即细胞识别(cell recognition)。

如:精子和卵子之间的识别,T与B淋巴细胞间的识别。

③化学通讯:细胞分泌一些化学物质(如激素)至细胞外,作为信号分子作用于靶细胞,调节其功能,可分为4类。

•内分泌(endocrine):内分泌激素随血液循环输至全身,作用于靶细胞。

特点:低浓度10-8-10-12M;全身性;长时效。

•旁分泌:信号分子通过扩散作用于邻近的细胞。

包括:各类细胞因子如表皮生长因子和气体信号分子如NO。

•突触信号发放:神经递质经突触作用于特定的靶细胞。

•自分泌:信号发放细胞和靶细胞为同类或同一细胞,常见于癌变细胞。

(二)细胞识别(cell recognition)●概念:细胞通过其表面的受体与胞外信号物质分子(配体)选择性地相互作用,而导致胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主要过程:刺激性激素(配体)→刺激性激素受体→G蛋白 上Gα亚基→受体配体复合物解离→Gα结合并激活腺苷酸 环化酶→cAMP含量增加→激活蛋白激酶A(PKA)的两 个调节亚基→释放催化亚基→酶的迅速活化→调节各种生 命代谢。
在细胞内还有另一种酶即环线甘酸磷酸二酯酶(PDE),可 降解 cAMP,导致细胞内cAMP水平下降,从而终止信号反应。
细胞通讯3种方式: 一、分泌化学信号 分泌化学信号作用方式4种: • 内分泌 • 旁分泌 • 自分泌 • 化学突出传递神经信号
二、细胞间接触性依赖通讯:
①细胞-细胞黏着
②细胞-基质黏着
三、间隙连接或胞间连丝:
• 动物细胞间的间隙连接或植物细胞间的胞 间连丝同属于通讯连接。
• 通讯连接:详见第十七章
信号转导系统及其特性: (一)基本组成及信号蛋白的相互作用 • 细胞表面受体介导的信号通路5个步骤: 受体激活→活化信号蛋白→级联反应→反 应回答→受体脱敏
信号转导系统: • 是由细胞内多种行驶不同功能的信号蛋白 所组成的信号传递连。
• 细胞内信号蛋白的相互作用是靠蛋白质模 式结合域所特异性介导的。
细胞因子与质膜受体特异性结合→细胞因子受体二聚化→JAK活化→ 磷酸化受体胞内段酪氨酸残基→与具有SH2结构域的STAT蛋白结合 →STAT被JAK磷酸化,STAT分子从受体上解离→两个磷酸化的STAT形 成同源二聚体→转位到细胞核内,与 特异基因的调控序列结合,调节相
关基因的表达
第五节 其他细胞表面受体介导的信号通路
二、G蛋白偶联受体所介导的细胞信号通路 按效应器蛋白不同可分为:
①激活离子通道的G蛋白偶联受体。 ②激活或抑制Ac,以CAMP为第二信使的G蛋白偶 联受体。 ③激活PLC,以IP3和DAG作为双信使的G蛋白偶联 受体。
(一)激活离子通道的G蛋白偶联受体所介导的信
号通路
主要过程: 信号分子→GPCR(受体)→与GP(配体) 结合→调控离子通道关闭→膜电位改变→ 产生相关活动。
(三)激活PLC,以IP3和DAG作为双信使的G蛋 白偶联受体。
信号分子→GPCR→GP→PLC→PIP2被水解为DAG和IP3;
IP3→激活Ca2+通道→使得Ca2+与CaM特异结合→多种生理功能改变
DAG→激活PKC→作用于靶蛋白→改变代谢活动
在G蛋白偶联受体介导的信号通路时, 为什么不同的信号(配体)通过类似的机 制会引发不同的细胞反映? 对某一特定配体,其受体可以几种不同 的异构体形式存在,并对配体和特异G蛋白 有不同亲和性。
一、 核受体及其对基因表达的调节
主要过程:
信号分子(激素类)进入靶细胞→跨越质膜→通过 与特异性核
受体结合为复合物→复合物入核→调节基因表达→
产生初级产物→激活其他基因转录→产生次级产物
• 二、NO作为气体信号分子进入靶细胞直接 与酶结合 • NO是一种具有自由基性质的脂溶性气体分 子,可透过细胞膜快速扩散,作用邻近靶 细胞发挥作用。
• 研究蛋白互作的模式结构域——SH2结构域 确定蛋白家族成员: 酶、癌蛋白、锚定蛋白接头蛋白、调节蛋 白、转录因子
(二)信号蛋白复合物的装配3种策略:
①.表面受体和胞内信号蛋白通过支架蛋白结
合预先形成细胞内信号复合物,当受体被激 活后,便激活细胞内信号蛋白并向下游传递。
②.表面受体被激活后胞内段氨基酸残基位点
第九章
细胞信号转导
聂银铃 陈俊洁 钱红飞
第一节 细胞信号转导概述
细胞信号转导是实现细胞间通讯的关键 过程,它是协调细胞间功能,控制细 胞的生长和分裂,组织发生与形态建 成所必需的。
细胞通讯:
指一个信号产生细胞发出的信息通 过介质(配体)传递到另一个靶细胞 并与其相应的受体相互作用,然后通 过细胞信号转导产生靶细胞内一系列 生理变化,最终表现为靶细胞整体的 生物学效应的过程。
TGF-β -Smad 信号通路
TGF-β→ RIII → RII → RI → 磷酸化Smad3并暴露其NLS
(核定位信号) → 与Smad4和Imp-β(I-Smad)结合形成细胞质 复合物并进入细胞核 → Imp-β与NLS解离再与TFE3(核内转录因
子)结合→调控基因转录
JAK-STAT 信号通路
• 主要过程:
• 血管神经末梢释放Ach→作用于GPCR(G蛋白偶联受体)→
• 活化G蛋白→激活PLC(磷脂酶C)→通过对第二信使PIP2
• 水解生成IP3和DAG两个第二信使→IP3开启Ca2+通道
• →Ca2+从内质网进入细胞质基质+CaM→NO合酶→催化
• 精氨酸氧化为瓜氨酸→释放NO→激活GC(鸟苷酸环化酶)→cGMP
三.酶联受体: 一类具有酶活性; 另一类受体胞内段与酶联系。
至少两个功能域:结合配体、产生效应
受体被激活-信号转导-引发两种主要反应: 改变预存蛋白活性 影响特殊蛋白的表达量

细胞信号转导过程中的蛋白:
表面受体 第二信使 分子开关
第二信使与分子开关
第二信使:指胞内产生的一类非蛋白分子,通过其 浓度的改变来应答胞外信号与细胞表面受体的结 合,从而调节胞内酶和非酶蛋白活性,从而在细 胞信号转导途径中行驶携带和放大信号的功能。
细胞内受体超家族本质是依赖激素激活的基因调控 蛋白,在细胞内,受体与抑制剂(如Hsp90)结 合为复合物,当信号分子与受体结合后,抑制剂 脱落,使得受体暴露其DNA结合位点而被激活。 这类受体含有3个功能域: C端结构域(激素结合位点) 中部结构域(DNA或HSP90结合位点) N端结构域 (转录激活)
1.缺乏Hh信号时
受体ptc蛋白抑制胞内膜泡上的Smo蛋白,而胞质调节蛋白形成复合
物并与微观结合,在复合物中转录因子Ci被各种激酶磷酸化,磷酸化的 Ci在Slimb的作用下水解形成Ci75片段,进入核内,抑制靶基因表达
2.有Hh信号时
Hh信号与Ptc结合,抑制Ptc的活性并诱发其内吞被溶酶体消化,从而解 除对Smo的抑制,通过膜泡融合移位到质膜,并被CK1和PKA两种激酶 磷酸化,与Smo结合的Cos2和Fu蛋白超磷酸化,致使Fu/Cos2/Ci复合物 从微管上解离下来,从而形成稳定形式的Ci,Ci入核并与CREB结合蛋 白结合,作为靶基因的转录激活子而发挥作用
第四节 酶联受体介导的信号转导
5类催化性受体 • 受体酪氨酸激酶受体 • 丝氨酸/ 苏氨酸激酶受体 • 酪氨酸磷酸酯酶 • 受体鸟苷酸环化酶 • 性很低,当接收信号,受体二聚化后,激 活受体的蛋白酪氨酸激酶结构域,进而在二聚体内彼此交叉 磷酸化
胞外信号所介导的细胞通讯6步骤
1.信号细胞合成并释放信号分子 2.转运信号分子至靶细胞 3.信号分子与靶细胞表面受体特异性结合并导致受 体激活 4.活化受体启动靶细胞内一种或多种信号转导途径 5.引发细胞代谢、功能或基因表达的改变 6.信号的解除并导致细胞反应终止
信号分子与受体
信号分子:化学信号、局部介质、神经递质 以及物理信号。 按化学性质分3类: • 气体性信号分子 • 疏水性信号分子 • 亲水性信号分子
PI3K-PKB 信号通路
存活信号分子→RTK→PI3K→PIP2 →PIP3→与含PH结构域的信号蛋白 (AKT/PKB)结合 → PKB转位到质膜上,同时催化位点得以释放 (PKB部分活化) →完全活化PKB(PDK1与PDK2分别磷酸化PKB上苏 氨酸与丝氨酸残基)→ PKB从质膜解离下来,进入细胞质基质和细胞核 →磷酸化多种靶蛋白→抑制细胞凋亡,促进糖原合成和细胞存活
• 上升→抑制肌动肌球蛋白复合物的形成→平滑肌
舒张,降压
第三节:G蛋白偶联受体介导的信号转导
一、G蛋白偶联受体的结构与激活
G蛋白:二聚体GTP结合调节蛋白,由Gα和Gβγ锚定在质膜上。 过程:配体与受体结合→活化受体与Gα亚基结合→活化受体使Gα亚基 改变,致使GDP与G蛋白解离→GTP与Gα亚基结合,引发Gα亚基与Gβγ 和受体解离→配体-受体复合物解离,Gα亚基结合并激活效应蛋白 →GTP水解成GDP引发Gα亚基与效应蛋白分离并重新结合Gβγ亚基,恢 复到三聚体G蛋白静息状态
Went信号与受体FZ结合,引发LRP被GSK3和其它激酶磷酸化,从而 使Axin与LRP结合,致使Axin/APC/GSK3/β -catenin复合物解离,避免 β -catenin被GSK3磷酸化而免于降解并在细胞中富集,转位到核内与 TCF结合,激活靶基因转录
(二)Hedgehog 信号通路
分子开关:在细胞内一系列信号转导过程中,有正 负反馈作用的蛋白,一类是GTPase分子开关调 控蛋白构成的GTPase超家族;另一类是通过蛋 白激酶使靶蛋白磷酸化,通过蛋白磷酸水解酶使 靶蛋白去磷酸化,从而调节靶蛋白活性;还有一 类是CaM通过与Ca2+结合或解离而分别处于活化 或失活的开启或关闭状态。
2.Camp-PKA信号通路对真核细胞基因的表达
这类反应属于慢反应
主要过程:激素→G蛋白偶联受体→G蛋白→腺苷酸环化酶→cAMP →cAMP依赖的蛋白激酶A(PKA) →PKA上催化亚基释放进入细胞核 →使得基因调控蛋白(CREB)磷酸化→磷酸化的基因调控蛋白与核 内结合蛋白特异结合形成复合物→复合物与靶基因调控序列结合→激 活靶基因的表达
(一) Wnt-β -catenin 信号通路
1 .缺乏Wnt信号时
β -catenin与Axin介导的胞质蛋白复合物结合,利于β -catenin被
GSK3磷酸化,磷酸化的β -catenin泛素化后被蛋白酶体识别和降解,转 录因子TCF与抑制因子结合在核内作为阻遏物抑制靶基因转录
2.有Wnt信号时
1.cAMP—PKA信号通路对肝细胞和肌细胞糖原代谢的调节
PKA磷酸化糖原磷酸化酶激酶(GPK) →GP被激活→刺激糖原降解
PKA使糖原合酶(GS)磷酸化→抑制糖原合成 • cAMP →PKA
相关文档
最新文档