统计学原理第三版课后习题答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1:各章练习题答案

2.1 (1)属于顺序数据。

(2)频数分布表如下:

服务质量等级评价的频数分布

服务质量等级家庭数(频率)频率%

A1414

B2121

C3232

D1818

E1515

合计100100

(3)条形图(略)

2.2 (1)频数分布表如下:

40个企业按产品销售收入分组表

按销售收入分组(万元)企业数

(个)

频率

(%)

向上累积向下累积

企业数频率企业数频率

100以下100~110 110~120 120~130 130~140 140以上

5

9

12

7

4

3

12.5

22.5

30.0

17.5

10.0

7.5

5

14

26

33

37

40

12.5

35.0

65.0

82.5

92.5

100.0

40

35

26

14

7

3

100.0

87.5

65.0

35.0

17.5

7.5

合计40 100.0 ————(2)某管理局下属40个企分组表

按销售收入分组(万元)企业数(个)频率(%)

先进企业良好企业一般企业落后企业11

11

9

9

27.5

27.5

22.5

22.5

合计40 100.0 2.3 频数分布表如下:

某百货公司日商品销售额分组表

按销售额分组(万元)频数(天)频率(%)

25~30 30~35 35~40 40~45 45~50

4

6

15

9

6

10.0

15.0

37.5

22.5

15.0

合计40 100.0 直方图(略)。

2.4 (1)排序略。

(2)频数分布表如下:

100只灯泡使用寿命非频数分布

按使用寿命分组(小时)灯泡个数(只)频率(%)650~660 2 2

660~670 5 5

670~680 6 6

680~690 14 14

690~700 26 26

700~710 18 18

710~720 13 13

720~730 10 10

730~740 3 3

740~750 3 3

合计100 100 直方图(略)。

(3)茎叶图如下:

65 1 8

66 1 4 5 6 8

67 1 3 4 6 7 9

68 1 1 2 3 3 3 4 5 5 5 8 8 9 9

69 0 0 1 1 1 1 2 2 2 3 3 4 4 5 5 6 6 6 7 7 8 8 8 8 9 9

70 0 0 1 1 2 2 3 4 5 6 6 6 7 7 8 8 8 9

71 0 0 2 2 3 3 5 6 7 7 8 8 9

72 0 1 2 2 5 6 7 8 9 9

73 3 5 6

74 1 4 7

2.5 (1)属于数值型数据。

(2)分组结果如下:

分组天数(天)

-25~-20 6

-20~-15 8

-15~-10 10

-10~-5 13

-5~0 12

0~5 4

5~10 7

合计60

(3)直方图(略)。

2.6 (1)直方图(略)。

(2)自学考试人员年龄的分布为右偏。

2.7 (1)茎叶图如下:

A班

树茎B班

数据个数树叶树叶数据个数

0 3 59 2

1 4 4 0448 4

2 97 5 122456677789 12

11 97665332110 6 011234688 9

23 98877766555554443332100 7 00113449 8

7 6655200 8 123345 6

6 632220 9 011456 6

0 10 000 3

(2)A班考试成绩的分布比较集中,且平均分数较高;B班考试成绩的分布比A班分散,且平均成绩较A班低。

2.8 箱线图如下:(特征请读者自己分析)

Min-Max

25%-75%

Median value

各城市相对湿度箱线图

35

45

5565758595北京长春南京郑州武汉广州成都昆明兰州西安

2.9 (1)x =274.1(万元);Me=272.5 ;Q L =260.25;Q U =291.25。

(2)17.21=s (万元)。

2.10 (1)甲企业平均成本=19.41(元),乙企业平均成本=18.29(元);原因:尽管两个企业的单位成本相同,但

单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。 2.11 x =426.67(万元);48.116=s (万元)。 2.12 (1)(2)两位调查人员所得到的平均身高和标准差应该差不多相同,因为均值和标准差的大小基本上不受样本

大小的影响。

(3)具有较大样本的调查人员有更大的机会取到最高或最低者,因为样本越大,变化的范围就可能越大。 2.13 (1)女生的体重差异大,因为女生其中的离散系数为0.1大于男生体重的离散系数0.08。 (2) 男生:x =27.27(磅),27.2=s (磅); 女生:x =22.73(磅),27.2=s (磅); (3)68%;

(4)95%。

2.14 (1)离散系数,因为它消除了不同组数据水平高地的影响。

(2)成年组身高的离散系数:024.01.1722

.4==

s v ; 幼儿组身高的离散系数:032.03

.713

.2==

s v ; 由于幼儿组身高的离散系数大于成年组身高的离散系数,说明幼儿组身高的离散程度相对较大。 2.15 下表给出了一些主要描述统计量,请读者自己分析。

方法A 方法B 方法C 平均 165.6 平均 128.73 平均 125.53 中位数 165 中位数 129 中位数 126 众数 164 众数 128 众数 126 标准偏差 2.13 标准偏差 1.75 标准偏差 2.77 极差 8 极差 7 极差 12 最小值 162 最小值 125 最小值 116 最大值

170

最大值

132

最大值

128

2.16 (1)方差或标准差;(2)商业类股票;(3)(略)。 2.17 (略)。

第3章 概率与概率分布

3.1设A =女性,B =工程师,AB =女工程师,A+B =女性或工程师 (1)P(A)=4/12=1/3 (2)P(B)=4/12=1/3 (3)P(AB)=2/12=1/6

(4)P(A+B)=P(A)+P(B)-P(AB)=1/3+1/3-1/6=1/2

相关文档
最新文档