数学建模典型例题

合集下载

数学建模例题题

数学建模例题题

数学建模试题一、传染病模型医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。

社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。

一般把传染病流行范围内的人群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。

要求:请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变?二、线性规划模型—销售计划问题某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。

要求:若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型,并用软件求解。

【注】线性规划在MATLAB的库函数为:linprog。

语法为:x = linprog(f,A,b)x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval,exitflag,output,lambda] = linprog(...)例如:线性规划目标函数的系数:f = [-5; -4; -6]约束方程的系数及右端项:A = [1 -1 13 2 43 2 0];b = [20; 42; 30];lb = zeros(3,1);调用线性规划程序linprog求解,得:[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);x= 0.000015.00003.0000三、一阶常微分方程模型—人口模型与预测 下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。

数学建模题目及答案

数学建模题目及答案

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。

试作合理的假设并建立数学模型说明这个现象。

(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。

当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。

由假设(1),()f θ,()g θ均为θ的连续函数。

又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。

不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。

证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。

作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。

全国数学建模例题

全国数学建模例题

全国数学建模例题
以下是一个全国数学建模竞赛的例题:
题目:某地区近年来发生了多起自然灾害,为了更好地预防和应对灾害,需要对该地区的边坡进行稳定性评估。

边坡的稳定性评估可通过计算其稳定性指数来衡量,稳定性指数高表示边坡稳定,稳定性指数低表示边坡存在倾覆的风险。

现有一座边坡,其高度为H,坡度为α,坡面上分布有多个点,每个点的坡面高度记为hi(i=1,2,3,...,n)。

已知边坡的重力稳定系数为K,稳定性指数计算公式如下:
SI = Σ(K⋅hi⋅cos(α))^2 - H^2
请你们设计一个数学模型,利用给定的数据计算该边坡的稳定性指数,并分析稳定性指数与边坡参数的关系。

要求:
1. 给出稳定性指数计算公式的推导过程;
2. 设计算法和程序,输入边坡的参数(H, α, hi)和重力稳定系数K,输出稳定性指数SI;
3. 分析稳定性指数与边坡参数的关系,并给出相应的结论和建议。

请根据以上要求给出你们的建模方案和解答步骤。

以上是一个示例的全国数学建模竞赛题目,实际的题目内容和难度会因年份和级别的不同而有所变化。

在数学建模竞赛中,参赛者需要运用数学知识和建模技巧,解决现实问题并给出合理的建议和结论。

(完整word版)数学建模型

(完整word版)数学建模型

(一题, 二题选一)1.某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过800箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每100箱甲饮料获利可增加1万元,问应否改变生产计划. 一、基本假设:1、饮料生产过程中, 所要到的饮料量不会发生变化。

2、饮料活力的多少是稳定不变的。

3、原料的价格不会发生变化。

二、符号说明: 某厂生产的甲饮料x 百箱, 生产的乙饮料y 百箱。

三、分析与建立模型 ⑵目标函数: 约束条件: ⑴原料的供应: ⑵劳动力的供应: ⑶附加约束项: ⑷非负约束: 所以模型为:6x 5y 6010201508,0x y x x y +≤⎧⎪+≤⎪⎨≤⎪⎪≥⎩ 四、模型求解 ㈠MTATLAB 方案: 编写M 文件如下: f=[-10 -9]; A=[6 5;10 20;1 0]; b=[60;150;8]; Aeq=[]; beq=[];vlb=zeros(2,0); vub=[];[x,fval]=linprog(f,A,b,Aeq,beq,vlb,vub)结果:x =6.4286 4.2857 fval =-102.8571所以当x1=6.4286,x2= 4.2857时有最优值max z=102.8571.㈡Lingo方案:结果:结论: 该工厂制定的一个生产计划, 生产的甲饮料 6.43百箱, 生产的乙饮料4.29百箱。

可使该厂获利最大值为102.8571万元。

问题的解答1)若投资0.8万元可增加原料1千克,问应否作这项投资.2)若每100箱甲饮料获利可增加1万元,问应否改变生产计划.做灵敏度分析:结果告诉我们: 这个线性规划的最优解为x=6.43,y=4.29,最优质为z=102.8571,即生产甲饮料6.43百箱, 生产乙饮料4.29百箱时, 可获最大利润102.8571万元。

简单数学建模100例

简单数学建模100例

“学”以致用-----简单数学建模应用问题100例数学教学过程中学习了一个数学公式后,需要做大量的应用题,通过训练来加深理解所学公式。

但是在生活中又有多少实际问题是可以直接套用公式的呢?理想状态下的公式直接运用,在生产及生活中的实例是少之又少。

为此学生总感到学了数学没有什么实际用处,所以对学习数学少有兴趣。

数学建模的引入对培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径,让中职学生从中体会到数学是来源于生活并应用于生活的.数学建模是一种思维方式,它是一个动态的过程,通过此过程可以将一个实际的问题,经过模型准备、模型假设、模型构成、模型解析、模型检验与应用等五个具体步骤,转变为可以用数学方法(公式)来解决的,在理想状态下的数学问题,上述的整个流程统称为数学建模如果想解决某个实际问题(也许它和数学没有直接的关系),可以按下面流程对问题进行数学建模。

一.模型准备先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪一类学科的问题,可能需要用到哪些知识,然后学习或复习有关的知识,为接下来的数学建模做准备.由于人们所掌握的专业知识是有限的,而实际问题往往是多样和复杂的,模型准备对做好数学建模问题是非常重要的.二.模型假设有了模型准备的基础,要想把实际问题变为数学问题还要对其进行必要合理的简化和假设.明确了建模目的又掌握了相关资料,再去除一些次要因素.以主要矛盾为主来对该实际问题进行适当的简化并提出一些合理的假设。

模型假设不太可能一蹴而就,可以在模型的不断修改中得到逐步完善.三.模型构成在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜集的信息来描述变量之间的关系或其他数学结构(如数学公式、定理、算法等).做模型构成时可以使用各种各样的数学理论和方法,但要注意的是在保证精度的条件下尽量用简单的数学方法是建模时要遵循的一个原则.四.模型解析在模型构成中建立的数学模型可以采用解方程、推理、图解、计算机模拟、定理证明等各种传统的和现代的数学方法对其进行求解,其中有些可以借助于计算机软件来做这些工作。

数学建模例题和答案

数学建模例题和答案

数学建模例题和答案
题目:
一个汽车公司拥有两个工厂,分别生产两种型号的汽车,A型和B型,每种型号的汽车都有一定的销售价格。

现在,该公司需要在两个工厂中生产A型和B型汽车,使得总收入最大。

答案:
1、建立数学模型
设A型汽车在第一个工厂生产的数量为x,在第二个工厂生产的数量为y,A型汽车的销售价格为a,B型汽车的销售价格为b,则该公司的总收入可以表示为:
总收入=ax+by
2、确定目标函数
由于题目要求使得总收入最大,因此可以将总收入作为目标函数,即:
最大化Z=ax+by
3、确定约束条件
由于两个工厂的生产能力有限,因此可以设置约束条件:
x+y≤M,其中M为两个工厂的总生产能力
4、求解
将上述模型转化为标准的数学规划模型:
最大化Z=ax+by
s.t. x+y≤M
x≥0,y≥0
由于该模型是一个线性规划模型,可以使用数学软件进行求解,得到最优解:
x=M,y=0
即在第一个工厂生产M件A型汽车,在第二个工厂不生产B型汽车,此时该公司的总收入最大,为Ma。

数学建模简单例题

数学建模简单例题

数学建模简单例题
近年来,数学建模迅速发展,成为数学教育的重要组成部分。

不仅如此,数学建模也在实际应用中扮演着重要角色。

以下是举出的一些简单例题,介绍如何应用数学建模解决实际问题。

例1:汽车路线优化
假设有A、B、C三个城市,从A到B需要经历200公里,从B到C需要经历300公里。

同时,存在有限路段,要求尽可能明确最短路径。

此时,可以建立一个图,将A、B、C三个城市看作三个顶点,再建立若干边,表示每条路径的距离,再使用迪杰斯特拉算法,计算出最短路径。

例2:工厂设备调配
假想一家公司有3台生产设备,每台设备有不同的生产能力和每日最大生产量,要求给出每天各台设备的最优配置,以达到每日最大生产量。

给定三台设备的生产能力和每日最大生产量,建立这个问题的数学模型,可以采用最短路径算法的思想,建立一张图,把每台设备看成一个顶点,再建立若干边,表示每台设备的最大生产能力,最后根据路径的长度,计算出各台设备的最优配置。

以上是两个简单的数学建模例题,为了解决具体实际问题,数学建模不仅仅可以使用上述算法,还可以使用线性规划、最优化、反问题等方法来解决实际问题。

本文就介绍了数学建模的一些基础原理,
并举出了几个例子,希望能对读者有所帮助。

数学建模题目及答案-数学建模100题

数学建模题目及答案-数学建模100题

数学建模题目及答案-数学建模100题假设每个宿舍的委员数与该宿舍的学生数成比例,即每个宿舍的委员数为该宿舍学生数除以总学生数的比例乘以10.则A宿舍应分配的委员数为235/1000×10=2.35,但委员数必须为整数,所以可以向上取整,即A宿舍分配3个委员。

同理,B宿舍应分配的委员数为333/1000×10=3.33,向上取整为4个委员;C宿舍应分配的委员数为432/1000×10=4.32,向下取整为4个委员。

因此,A宿舍分配3个委员,B宿舍分配4个委员,C宿舍分配3个委员,剩下的委员数(10-3-4-3=0)为0.按照各宿舍人数占总人数的比例分配各宿舍的委员数。

设A宿舍、B宿舍、C宿舍的委员数分别为x、y、z人。

根据题意,我们可以列出以下方程组:x + y + z = 10x/10 = 235/1000y/10 = 333/1000z/10 = 432/1000其中,小数部分最大的整数进1,其余取整数部分。

解方程组得到x=3,y=3,z=4.因此,A宿舍、B宿舍、C宿舍的委员数分别为3、3、4人。

一家饲养场每天投入5元资金用于饲料、设备、人力,预计每天可使一头80公斤重的生猪增加2公斤。

假设生猪出售的市场价格为每公斤8元,每天会降低0.1元。

我们设在第t天出售这样的生猪(初始重80公斤的猪)可以获得的利润为z元。

根据题意,我们可以列出以下方程:每头猪投入:5t元产出:(8-0.1t)(80+2t)元利润:Z = 5t +(8-0.1t)(80+2t)=-0.2 t^2 + 13t +640我们可以求得二次函数的顶点,即t=32.5时,Z取得最大值851.25元。

因此,该饲养场应该在第33天出售这样的生猪,以获得最大利润。

一家奶制品加工厂用牛奶生产A1、A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2.市场需求量与生产量相等,每公斤A1获利24元,每公斤A2获利16元。

简单数学建模应用例子

简单数学建模应用例子

5
建模实例
图中椅脚连线为正 方形ABCD,对角线 AC与x轴重合 椅子 绕中心点旋转角度 后,正方形ABCD转 至A`B`C`D`的位置, 所以对角线AC与x
2024/5/10
6
建模实例
轴的夹角 表示了椅子的位置。 其次要把椅子脚着地,用数学符号表示出 来,如果用某个变量表示椅脚与地面的竖 直距离,那么当这个距离为零时就是椅脚 着地了,椅子在不同的位置椅脚与地面的 距离不同,所以这个距离就是位置变量 的 函数。
2024/5/10
27
建模实例
阻滞增长模型(Logistic模型)
将增长率r表示为人口x(t)的函数r(x),按照前 面的分析,r(x)应是x的减函数。一个最简单的 假设是设 r(x)为x的线性函数, r(x)=r-sx, s>0, 这里r相当于x=0时的增长率,称为固有增长率, 它与指数模型中的增长率r不同,显然,对于 任意的x>0,增长率r(x)<r。为确定系数s的意 义,引入自然资源和环境条件所能容纳的最大 人口数量xm, 称为最大人口容量。
2024/5/10
15
建模实例
安全渡河条件下的状态集称为允许状态集合, 记作S,不难写出
S={(x,y)|x=0, y=0, 1, 2, 3; x=y=1,2} - (1)
记第k次渡船上的商人数为uk ,随从数为vk ,将 二维向量dk = (uk,vk)定义为决策,允许决集合 记作D,由小船的容量可知
2024/5/10
14
建模实例
用状态变量表示某一岸的人员状况,决策变量 表示船上的人员状况,可以找出状态随决策变 化的规律。问题转化为在状态的充许变化范围 内,确定每一步的决策,达到渡河的目标 模型的过成: 记第k次渡河前此岸的商人数为xk随从数为yk, k=1,2,……,xk , yk =0,1,2,3,将二维向量 sk=(xk,yk)定义为状态,

数学建模例题及解析

数学建模例题及解析

.例1差分方程——资金(de)时间价值问题1:抵押贷款买房——从一则广告谈起每家人家都希望有一套(甚至一栋)属于自己(de)住房,但又没有足够(de)资金一次买下,这就产生了贷款买房(de)问题.先看一下下面(de)广告(这是1991年1月1日某大城市晚报上登(de)一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心(de)是:如果一次付款买这栋房要多少钱呢银行贷款(de)利息是多少呢为什么每个月要付1200元呢是怎样算出来(de)因为人们都知道,若知道了房价(一次付款买房(de)价格),如果自己只能支付一部分款,那就要把其余(de)款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说(de)房子作出决策了.现在我们来进行数学建模.由于本问题比较简单无需太多(de)抽象和简化.a.明确变量、参数,显然下面(de)量是要考虑(de):需要借多少钱,用记;月利率(贷款通常按复利计)用R记;每月还多少钱用x记;借期记为N个月.b.建立变量之间(de)明确(de)数学关系.若用记第k个月时尚欠(de) 款数,则一个月后(加上利息后)欠款 , 不过我们又还了x元所以总(de)欠款为k=0,1,2,3,而一开始(de)借款为.所以我们(de)数学模型可表述如下(1)c. (1)(de)求解.由(2)这就是之间(de)显式关系.d.针对广告中(de)情形我们来看(1)和(2)中哪些量是已知(de).N=5年=60个月,已知;每月还款x=1200元,已知 A.即一次性付款购买价减去70000元后剩下(de)要另外去借(de)款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策(de)困难.然而,由(2)可知60个月后还清,即,从而得(3)A和x之间(de)关系式,如果我们已经知(3)表示N=60,x=1200给定时0A.例如,若R =0.01,则由(3)可算得道银行(de)贷款利息R,就可以算出053946元.如果该房地产公司说一次性付款(de)房价大于70000十53946=123946元(de)话,你就应自己去银行借款.事实上,利用图形计算器或Mathematica这样(de)数学软件可把(3)(de)图形画出来,从而可以进行估算决策.以下我们进一步考虑下面两个问题.注1问题1标题中“抵押贷款”(de)意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子(de)产权)作抵押,即万一你还不出钱了,就没收你(de)不动产.例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清.假设这对夫妇每月可有节余900元,是否可以去买房呢解:现在(de)问题就是要求使 (de)x,由(2)式知现=60000,R=0.01,k=300,算得x=632元,这说明这对夫妇有能力买房.例题2 恰在此时这对夫妇看到某借贷公司(de)一则广告:“若借款60000元,22年还清,只要;(i)每半个月还316元;(ii)由于文书工作多了(de)关系要你预付三个月(de)款,即316×6=1896元.这对夫妇想:提前三年还清当然是好事,每半个月还316元,那一个月不正好是还632元,只不过多跑一趟去交款罢了;要预付18%元,当然使人不高兴,但提前三年还清省下来(de)钱可是22752元哟,是1896元(de)十几倍哪这家公司是慈善机构呢还是仍然要赚我们(de)钱呢这对夫妇请教你给他们一个满意(de)回答.具体解法略.问题2:养老基金今后,当年青人参加工作后就要从其每月工资中扣除一部分作为个人 (de)养老基金,所在单位(若经济效益好(de)话)每月再投入一定数量(de)钱,再存入某种利息较高而又安全(de)“银行”(也可称为货币市场)到60岁退休时可以动用.也就是说,若退休金不足以维持一定(de)生活水平时,就可以动用自己(de)养老基金,每月取出一定(de)款项来补贴不足部分.假设月利率及=0.01不变,还允许在建立养老基金时自己可以一次性地存入A(不论多少),每月存入y元(个人和单位投入(de)总和);通常从一笔钱0三十一岁开始到六十岁就可以动用.这当然是一种简化(de)假设,但作为估算仍可作为一种考虑(de)出发点.本问题实际上有两个阶段,即退休前和退休后,其数学模型为其中x为每月要从养老基金中提出(de)款项.习题1 某大学年青教师小李从31岁开始建立自己(de)养老基金,他把已有(de)积蓄1万元也一次性地存入,已知月利率为0.01 (以复利计),每月存入300元,试问当小李60岁退休时,他(de)退休基金有多少又若,他退休后每月要从银行提取l000元,试问多少年后他(de)退休基金将用完你能否根据你了解(de)实际情况建立一个较好(de)养老基金(de)数学模型及相应(de)算法和程取软件).习题2 渔业(林业)管理问题设某养鱼池(或某海域)一开始有某种鱼条,鱼(de)平均年净繁殖率为R,每年捕捞x条,记第N年有鱼条,则池内鱼数按年(de)变化规律为注意,在实际渔业经营中并不按条数计算而是以吨记数(de).若对某海域(de)渔业作业中=100000吨,R=0.02,x=1000吨,试问会不会使得若干年后就没有鱼可捕捞了(资源枯竭了)例2比例分析法——席位分配问题:某学校有三个系联合成立学生会,(1)试确定学生会席位分配方案.(2)若甲系有100名,乙系60名,丙系40名.学生会设20个席位,分配方案如何(3)若丙系有3名学生转入甲系,3名学生转入乙系,分配方案有何变化(4)因为有20个席位(de)代表会议在表决提案时有可能出现10: 10(de)平局,会议决定下一届增加1席,若在第(3)问中将学生会席位增加一席呢(5)试确定一数量指标衡量席位分配(de)公平性,并以此检查(1)—(4).公平而又简单(de)席位分配办法是按人数(de)比例分配,若甲系有100名,乙系60名,丙系40名.学生会设20个席位,三个系分别应有10,6,4个席位.如果丙系有6名学生转入其他两系学习,各系人数如表所示系别学生人数所占比例(%)按比例分配(de)席位按惯例分配(de)席位甲10310乙636第二列所示,按比例分配席位时,出现了小数(见表中第四列).在将取得整数(de)19席分配完毕后,剩下(de)1席按照惯例分给余数最大(de)丙系,于是三个系仍分别占有10、6、4个席位.因为有20个席位(de)代表会议在表决提案时有可能出现10:10(de)平局,会议决定下一届增加1席,于是他们按照上述惯例重新分配席位,计算(de)结果令人吃惊:总席位增加1席,丙系反而减少1席,见下表.看来,要解决这个矛盾,必须重新研究所谓惯例分配方法,提出更加“公平”(de)办法.下面就介绍这样一个席位分配模型.设A、B两方人数分别是p1 和p2,分别占有n1 和n2 个席位,则两方每个席位所代表(de)人数分别是p1 /n12和p2/n2.很明显,仅当这两个数值相等时,席位(de)分配才是公平(de).但是,通常它们不会相等,这时席位分配得不公平.不公平(de)程度可以用数值来表示,它衡量(de)是“绝对不公平”.从下表所举(de)例子来看,A、B之间(de)“绝对不公平”与C、D之间是一样(de).但是从常识(de)角度看,A、B之间显然比C、D之间存在着更加严重(de)不公平.所以“绝对不公平”不是一个好(de)衡量标准.p n p/n p1/n1-p2/n2 A120101212-10=2B1001010C102010102102-100=2D100010100为了改进绝对标准,我们自然想到用相对标准.因为p/n越大,每个席位代表(de)人数越多,或者说,总人数一定时分配(de)席位越少.所以,如果p1/n13>p2/n2,则A方是吃亏(de),或者说,对A是不公平(de),由此,我们这样定义“相对不公平”:若p1/n1>p2/n2,则称为对A(de)相对不公平值,记做若p1/n1<p2/n2,则称为对B(de)相对不公平值,记做假设A、B两方已分别占有n1和n2个席位,我们利用相对不公平(de)城念来讨论,当总席位再增加1席时,应该给且A方还是B方不失一般性,可设p1/n1>p2/n2,即此时对A方不公平, ,有定义.当再分配1个席位时,关于p/n(de)不等式有以下三种可能:1)p1/(n1十1)>p2/n2,这说明即使A方增加1席,仍然对A不公平,所以这1席当然应给A方;2)p1/(n1十1)<p2/n2,说明当A方增加1席位,将对B不公平,此时应参照式,计算对B(de)相对不公平值3)说明当B方增加1席时,将对A方不公平,此时计算得对A (de)相对不公平值是(注意:在p1/n1p2/n2(de)假设下,不可能出现p1/n1<p2/(n2+1)(de)情况因为公平(de)席位分配方法应该使得相对不公平(de)数值尽量地小,所以如果则这1席应给A方;反之应给B方.根据(3)、(4)两式,(5)式等价于并且不难证明1从上述第1)种情况(de)p1/(n1十1)>p2/p2也可推出. 于是我们(de)结论是:当(6)式成立时,增加(de)1席应分配A方;反之,应分配给B方.若记,则增加(de)1席位应分配给Q值较大(de)一方.将上述方法可以推广到有m方分配席位(de)情况.下面用这个方法,重新讨论本节开始时提出(de),三个系分配21个席位(de)问题.首先每系分配1席,然后计算:甲系n1=1,乙系, n2=1,丙系,n3=1,因为最大,所以第4席应分配给甲系,继续计算:甲系n1=2,将与上面(de)相比,最大,第5席应分给乙系,继续计算.如此继续,直到第21席分配给某个系为止(详见列表).n甲系乙系丙系1(4)(5)578(9)2(6)(8)(15)3(7)(12)(21)4(10)(14)5(11)(18)6(13)7(16)8(17)9(19)10(20)11可以看出,用Q值法,丙系保住了它险些丧失(de)1席.你觉得这个方法公平吗习题:学校共1000名学生,235入住在A宿合,333人住在B宿合,432人住在C宿合.学生们要组织一个10人(de)委员会,试用下列办法分配各宿舍(de)委员数.1)惯例(de)方法,印按比例分配完整数名额后,剩下名额给余数最大者. 2)Q值方法.如果委员会从10人增至15人,分配名额将发生什么变化 ,例3 状态转移问题——常染色体遗传模型随着人类(de)进化,人们为了揭示生命(de)奥秘,越来越注重遗传学(de)研究,特别是遗传特征(de)逐代传播,引起人们(de)注意.无论是人,还是动植物都会将本身(de)特征遗传给下一代,这主要是因为后代继承了双亲(de)基因,形成自己(de)基因对,基因对将确定后代所表现(de)特征.下面,我们来研究两种类型(de)遗传:常染色体遗传和x—链遗传.根据亲体基因遗传给后代(de)方式,建立模型,利用这些模型可以逐代研究一个总体基因型(de)分布.在常染色体遗传中,后代从每个亲体(de)基因对中各继承一个基因,形成自己(de)基因对,基因对也称基因型.如果我们所考虑(de)遗传特征是有两个基因A和控制(de),那么就有三种基因对,记为AA,A,.例如,金草鱼由两个遗传基因决定花(de)颜色,基因型是AA(de)金鱼草开红花,型(de)开粉红色花,而型(de)开白花.又如人类(de)眼睛(de)颜色也是提高通过常染色体遗传控制(de).基因型是(de)人,眼睛是棕色,基因型是(de)人,眼睛是兰色.这里因为都表示了同一外部特征,我们认为基因A 支配基因,也可以认为基因对于A 来说是隐性(de)农场(de)植物园中某种植物(de)基因型为AA,A 和.农场计划采用AA 型(de)植物与每种基因型植物相结合(de)方案培育植物后代.那么经过若干年后,这种植物(de)任一代(de)三种基因型分布如何 第一步:假设:令 ,2,1,0=n .(1) 设n n b a ,和n c 分别表示第n 代植物中,基因型为AA,Aa 和aa(de)植物占植物总数(de)百分率.令)(n x 为第n 代植物(de)基因型分布:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(当n=0时⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000)0(c b a x表示植物基因型(de)初始分布(即培育开始时(de)分布),显然有1000=++c b a(2) 第n 代(de)分布与第n-1代(de)分布之间(de)关系是通过上表确定(de).第二步:建模根据假设(2),先考虑第n 代中(de)AA 型.由于第n-1代(de)AA 型与AA 型结合,后代全部是AA 型;第n-1代(de)Aa 型与AA 型结合,后代是AA 型(de)可能性为1/2,第n-1代(de)aa 型与AA 型结合,后代不可能是AA 型.因此,当 ,2,1,0=n 时11102/1---•++•=n n n n c b a a即2/11--+=n n n b a a 类似可推出2/11--+=n n n b c a 0=n c将式相加,得111---++=++n n n n n n c b a c b a根据假设(1),有1000=++=++c b a c b a n n n对于式、式和式,我们采用矩阵形式简记为,2,1,)1()(==-n Mx x n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00012/1002/11M ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(式递推,得)0()2(2)1()(x M x M Mx x n n n n ====--式给出第代基因型(de)分布与初始分布(de)关系.为了计算出n M ,我们将M 对角化,即求出可逆矩阵P 和对角阵D,使1-=PDP M因而有,2,1,1==-n P PD M n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n nnn D 321321000000000λλλλλλ这里321,,λλλ是矩阵M(de)三个特征值.对于式中(de)M,易求得它(de)特征值和特征向量:0,2/1,1321===λλλ因此⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00002/10001D ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0112 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 所以[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==100210111321P通过计算1-=P P ,因此有)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=0001002101110000)21(0010100210111c b a n 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--00011)(000)2/1()2/1(0)2/1(1)2/1(11c b a c b a x n n n n n n n n ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++=--0)2/1()2/1()2/1()2/1(010010000c b c b c b a n n n n所以有⎪⎩⎪⎨⎧=+=--=--0)2/1()2/1()2/1()2/1(1010010n n n n n n n c c b b c b a当∞→n 时0)2/1(→n,所以从式得到0,1→→n n b a 和n c =0即在极限(de)情况下,培育(de)植物都是AA 型. 第三步:模型讨论若在上述问题中,不选用基因AA 型(de)植物与每一植物结合,而是将具有相同基因型植物相结合,那么后代具有三代基因型(de)概率如下表:并且)0()(x M xn n =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=14/1002/1004/11M M(de)特征值为2/1,1,1321===λλλ通过计算,可以解出与21,λλ相对应(de)两个线性无关(de)特征向量1 和2 ,及与3λ相对应(de)特征向量3 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1002 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 因此[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==111200101321P⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-02/1011102/111P)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=00002/1011102/11)2/1(0001001111200101c b a n n所以有⎪⎩⎪⎨⎧-+==++=++010000100)2/1()2/1()2/1()2/1()2/1(bb c c b b b b a a n nn n n n当∞→n 时0)2/1(→n,所以从式得到0,)2/1(00→+→n n b b a a 和00)2/1(b c c n +→因此,如果用基因型相同(de)植物培育后代,在极限情况下,后代仅具有基因AA 和aa. 例4 合作对策模型在经济或社会活动中,几个社会实体(个人、公司、党派、国家)相互合作或结成联盟,常能获得比他们单独行动更多(de)经济或社会效益.这样合理地分配这些效益是合作对策要研究(de)问题.请看下面(de)例子.问题一:经商问题甲、乙、丙三人经商,若单干,每人仅能获利1元;甲乙合作可获利7元;甲丙合作可获利5元;乙丙合作可获利4元;三人合作可获利10元,问三人合作时如何分配10元(de)收入.甲(de)收入应按照甲对各种形式(de)合作(de)贡献来确定.对于某一合作(de)贡献定义为:有甲参加时这个合作(de)收入与无甲参加时这个合作(de)收入之差.例如甲对甲乙二人合作(de)贡献是7—1=6 (因为甲乙合作获利7元,而乙单干仅获利1元).甲可以参加(de),合作有四个:甲自己(单干视为合作(de)特例)、甲乙、甲丙、甲乙丙.甲对这些合作(de)贡献分别是甲:1一0=1元;甲乙:7—1=6元;甲内:5—1=4元;甲乙丙:10—4=6元,甲应分得(de)收入是这四个贡献(de)加权平均值,加权因子将由下面(de)一般模型给出.这个问题叫做3人合作对策,是对策论(de)一部分,这里介绍它(de)一种解法.一般(de)n人合作对策模型可以叙述如下:记n人集合为I=,如果对于I中 (de)任一子集,都对应一个实值函数v(s),满足则称为定义在I上(de)特征函数.所谓合作对策是指定义了特征函数(de)I中n个人(de)合作结果,用向量值函数来表示.在实际问题中.常可把I中各种组合(de)合作获得(de)利益定义为特征函数,上式表示合作规模扩大时,获利不会减少.不难看出,如将三人经商问题中合作(de)获利定义为特征函数v,v是满足(1)、(2)(de).为了确定,Shapley在1953年首先制定了一组应该满足(de)公理,然后证明了满足这组公理(de)(de)唯一解是其中是I中包含{i}(de)所有子集,是集合s中(de)人数,是加权因子,由确定.(3)式中可看作成员{i}对合作s(de)贡献;表示对所有包含{i}(de)集合求和.称为由v定义(de)合作(de)Shapley值.我们用(3)、(4)计算三人经商问题中各个人应得到(de)收入.甲、乙、丙分别记作{1},{2},{3},包含{1}(de)集合有{1}、{1,2}、{1,3}、{1,2,3},计算结果列入下表.S{1}{1,2}{1,3}{1,2,3}V(s)17510V(s-{1})0114V(s)- V(s-{1})1 6 4 612 23 W()1/31/61/61/3W()[V(s)-V(s-{1})]1/31 2/3 2.同样可以算出乙、丙应得收入为=3.5元,=元.问题二:三城镇(de)污水处理方案沿河有三城镇1、2和3,地理位置如图4;6所示.污水需处理后才能排入河中.三城镇或者单独建立污水处理厂,或者联合建厂,用管道将污水集中处理(污水应于河流(de)上游城镇向下游城镇输送).以Q 表示污水量(吨/秒),工表示管道长度(公里).按照经验公式,建立处理厂(de)费用为712.0173Q P =,铺设管道(de)费用为LQ P 51.0266.0=.今已知三城镇(de)污水量分别为5,3,5321===Q Q Q .L(de)数值38,202312==L L .试从节约总投资(de)角度为三城镇制定污水处理方案;包括是单独还是联合建厂;如果联合,如何分担投资额等.三城镇或单干或不同形式(de)联合,共有五种方案.下面一一计算所需(de)投资.方案一 三城镇都单干.投资分别为总投资:方案二城1、2合作.这时城1、2将从节约投资(de)角度对联合还是分别建厂作出决策,所以城1、2(de)投资为:=3500C(3)=2300总投资:方案三城2、3合作.C(1)=2300总投资:方案四城1、3合作.C(2)=1600总投资:方案五三城镇合作=5560总投资:比较五个方案可知,应该选择三城合作,联合建厂(de)方案. 下面(de)问题是如何分担总额为5560(de)费用.城3(de)负责人提出,联合建厂(de)费用按三城(de)污水量之比5:3:5分担,铺设管道费应由城1、2担负.城2(de)负责人同意,并提出从城2到城3(de)管道费由城1、2按污水量之比5:3分担;从城1到城2(de)管道费理应由城1自己担负.城1(de)负责人觉得他们(de)提议似乎是合理(de),但因事关重大,他没有马上表示同意;而是先算了一笔账.联合建厂(de)费用是4530)535(73712.0=++,城2到城3(de)管道费是730,城1到城2(de)管道费是300,按上述办法分配时,城3负担(de)费用为1740,城2(de)费用为1320,域1(de)费用为2500.结果出乎意料之外,城3和城2(de)费用都比单独建厂时少,而城1(de)费用却比单独建厂时(de)C(1)还要多.城1(de)负责人当然不能同意这个方法,但是一时他又找不出公平合理(de)解决办法.为了促成联合(de)实现,你能为他们提供一个满意(de)分担费用(de)方案吗首先,应当指出,城3和城2负责人提出(de)办法是不合理(de):从前面(de)计算我们知道,三城联合,才能使总投资节约了640(de)效益应该分配给三城,使三城分配(de)费用都比他们单干时要少,这是为促成联合所必须制定(de)一条原则.至于如何分配,则是下面要进一步研究(de)问题. 把分担费用转化为分配效益,就不会出现城1联合建厂分担(de)费用反比单独建厂费用高(de)情况.将三城镇记为I={1,2,3},联合建厂比单独建厂节约(de)投资定义为特征函数.于是有v(φ)=0,v({1})=v({2})=v({3})=0,v({1,2})=c(1)+c(2)-c(1,2)=2300+1600-3500=400,v({2,3})=c(2)+c(3)-c(2,3)=1600+2300-3650=250,v({1,3})=0,v(I)=c(1)+c(2)+c(3)-c(1,2,3)=640.S {1} {1,2} {1,3} {1,2,3} V(s) 0 400 0 640 V(s-{1}) 0 0 0 250 V(s)- V(s-{1})0 400 0 39012 23 W()1/31/61/61/3W()[V(s)-V(s-{1})] 0 67 0 130即197)(1=v ϕ同理得321)(2=v ϕ,122)(3=v ϕ那么, 城1分担(de)费用为2300-197=2103, 城2分担(de)费用为1600-321=1279, 城3分担(de)费用为2300-122=2178,合计5560. 习题:某甲(农民)有一块土地.如果从事农业生产可年收入100元;如果将土地租给某企业家用于工业生产,可年收入200元;如果租给某旅店老板开发旅游业,可年收入300元;当旅店老板请企业家参与经营时,年收入可达400元.为实现最高收入,试问如何分配各人(de)所得才能达成协议例5动态规划模型有不少动态过程可抽象成状态转移问题,特别是多阶段决策过程(de)最优化如最短路径问题,最优分配,设备更新问题,排序、生产计划和存储等问题.动态规划是一种将复杂问题转化为一种比较简单问题(de)最优化方法,它(de)基本特征是包含多个阶段(de)决策.1951年,美国数学家贝尔曼(R.Bellman)等人,提出了解决多阶段决策问题(de)“最优化原理”,并研究了许多实际问题,从而创建了动态规划·动态规划方法(de)基本思想是:将一个复杂问题分解成若干个阶段,每一个阶段作为一个小问题进行处理,从而决定整个过程(de)决策,阶段往往可以用时间划分这就具有“动态”(de)含义,然而,一些与时间无关(de)静态规划中(de)最优化问题,也可人为地把问题分成若干阶段,作为一个多阶段决策问题来处理,计算过程单一化,便于应用计算机.求解过程分为两大步骤,①先按整体最优化思想递序地求出各个可能状态(de)最优化决策;②再顺序地求出整个题(de)最优策略和最优路线.下面,结合一个求最短路径(de)例子,来说明动态规划(de)一些基本概念.最短路径问题如图所示(de)交通网络,节点连接线路上(de)数字表示两地距离,计算从A 到E(de)最短路径及长度.1.阶段.把所要处理(de)问题,合理地划分成若干个相互联系(de)阶段,通常用k 表示阶段变量.如例中,可将问题分为4个阶段,k=1,2,3,4. 2.状态和状态变量.每一个阶段(de)起点,称为该阶段(de)状态,描述过程状态(de)变量,称为状态变量,它可以用一个数、一组数或一个向量来描述,常用k x 来表示第k 阶段(de)某一状态.如果状态为非数量表示,则可以给各个阶段(de)可能状态编号,i x i k =)(()(i k x 表示第k 个阶段(de)第i 状态).第k 阶段状态(de)集合为},,,,,{)()()2()1(T k i k k k k x x x x X =如例6中,第3阶段集合可记为}3,2,1{},,{},,{321)3(3)2(3)1(33===C C C x x x X3.决策和决策变量.决策就是在某一阶段给定初始状态(de)情况下,从该状态演变到下一阶段某状态(de)选择.即确定系统过程发展(de)方案.用一个变量来描述决策,称这个变量为决策变量.设)(k k x u 表示第k 个阶段初始状态为k x (de)决策变量.)(k k x D 表示初始状态为k x (de)允许决 策集合,有)(k k x u ∈)(k k x D ={k u }如例6中},,{)(3211B B B A D =,若先取2B ,则21)(B A u =. 4.策略和子策略.由每段(de)决策)(k k x u 组成(de)整个过程(de)决策变量序列称为策略,记为n P ,1,即n P ,1=)}(,),(),({2211n n x u x u x u从阶段k 到阶段n 依次进行(de)阶段决策构成(de)决策序列称为k 子策略,记为n k P ,即)(1,x P n k =)}(,),(),({11n n k k k k x u x u x u ++显然,k=1时(de)k 子策略就是策略.如例6,选取路径E D C B A →→→→221就是一个子策略.从允许策略集中选出(de)具有最佳效果(de)策略称为最优策略. 5.状态转移方程.系统在阶段k 处于状态k x ,执行决策)(k k x u (de)结果是系统状态(de)转移,即由阶段K(de)状态k x 转移到阶段K 十1(de)状态1+k x 适用于动态规划方法求解(de)是一类具有无后效性(de)多阶段决策过程.无后效性又称马尔科夫性,指系统从某个阶段往后(de)发展,完全由本阶段所处(de)状态以及其往后(de)决策决定,与系统以前(de)状态及决策无关,对于具有无后效性(de)多阶段过程,系统由阶段k 向阶段k+1(de)状态转移方程为))(,(1k k k k k x u x T x =+意即1+k x 只与k x ,)(k k x u 有关,而与前面状态无关.))(,(k k k k x u x T 称为变换函数或算子.分确定型和随机型,由此形成确定型动态规划和随机型动态规划. 6.指标函数和最优指标函数.在多阶段决策中,可用一个数量指标来衡量每一个阶段决策(de)效果,这个数量指标就是指标函数,为该阶段状态变量及其以后各阶段(de)决策变量(de)函数,设为n k V ,即n k x x u x V V n k k k n k n k ,,2,1),,,,(1,, ==+指标(de)含义在不同(de)问题中各不相同,可以是距离、成本、产品产 量、资源消耗等.例6中,指标(de)含义就是距离,指标函数为A 到E(de)距离,为各阶段路程(de)和.最常见(de)指标函数取各阶段效果之和(de)形式,即∑==nk j j j j n k u x V V ),(,指标函数nk V ,(de)最优值,称为相应(de)最优指标函数,记为)(k k x fnk k k optV x f ,)(=式中opt 是最优化之意,根据问题要求取max 或min . 7.动态规划最优化原理.贝尔曼指出“作为整个过程(de)最优策略具有这样(de)性质:即无论过去(de)状态和决策如何,对前面(de)决策所形成(de)状态而言,余下(de)诸决策必须构成最优策略”基于这个原理,可有如下定理:定理 若策略*,1n P 是最优策略,则对于任意(de)k(1<k<n),它(de)子策略*,n k P 对于以),(*1*11*---=k k k k u x T x 为起点(de)k 到n 子过程来说,必是最优策略. 实质上,动态规划(de)方法是从终点逐段向始点方向寻找最短路径(de)一种方法.8.动态规划(de)数学模型.利用最优化原理,可以得到动态规划(de)数学模型)}(),({)(11+++=k k k k k k k x f u x V opt x f ))(1,,1,(k k k x D u n n k ∈-=0)(11=++n n x f这是一个由后向前(de)递推方程.下面以例6(de)最短路径问题说明这种递序解法.指标函数为两点之间(de)距离,记为),(k k u x d ,例中共分4个阶段. (倒推) 第4阶段2)(),()(5114=+=E f E D d D f 3)(),()(5224=+=E f E D d D f 5)(),()(5334=+=E f E D d D f 0)(5=E f第3阶段6835)(),(624)(),(min )(2421141113=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{11*4,3E D C P =4431)(),(826)(),(min )(2422141223=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{22*4,3E D C P =6651)(),(1239)(),(min )(3433243333=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{33*4,3E D C P =第2阶段7734)(),(1367)(),(min )(2321131112=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{221*4,2E D C B P =7734)(),(826)(),(min )(2322131222=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{222*4,2E D C B P =91468)(),(945)(),(min )(3333232332=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{223*4,2E D C B P =第1阶段10111192)(),(74)(),(1073)(),(min )(323221211=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+=+=+=+=+=+=B f B A d B f B A d B f B A d A f},,,,{221*4,1E D C B A P =故最短路径为E D C B A →→→→221,从A 到E(de)最短距离为10. 上述步骤可归纳为下述递推公式)}(),(m in{)(11+++=k k k k k k x f u x d x f 1,2,3,4(=k )0)(55=x f此递推关系叫做动态方程,即最短路径问题(de)动态规划模型,应用动态规划方法解决问题(de)关键是根据所给问题建立具体(de)动态规划模型,建立动态规划模型时(de)主要困难在于:如何将所遇到(de)最优化解释为合适(de)多段决策过程问题.从例6看出,划分I 阶段、定义状态、确定指标函数,是动态规划模型化时(de)主要工作,其合适性决定应用动态规划(de)成败.建模时,除将实际问题根据时间和空间恰当地划分若干阶段外,还须明确下列几点: (1)正确选择状态变量,使它既能描述过程(de)状态,又。

初中数学建模题目

初中数学建模题目

初中数学建模题目一、代数方程建模1. 小明每天早上7点上学,他以每分钟70米的速度走到学校,需要30分钟。

请问小明家离学校的距离是多少?2. 一个化肥厂生产化肥,每生产一吨需要耗电40度。

如果电费每度为0.6元,那么生产100吨化肥需要多少电费?二、几何图形建模1. 一个矩形花园的长是15米,宽是8米。

要在花园四周种上花边,花边的总长度是多少?2. 一个三角形ABC的三边长分别为3、4、5厘米,求三角形的面积?三、概率统计建模1. 一盒子里有红球和白球共10个,其中红球有6个。

如果随机从盒子里摸出一个球,那么摸到红球的概率是多少?2. 小华在数学考试中得了85分,全班平均分是90分。

求小华的分数高于全班平均分的概率?四、函数关系建模1. 小明从家里出发去公园,走了1小时后,他走了3公里。

如果他的速度保持不变,请问他还需要多少时间才能到达公园?2. 一个水库的水位高度与降雨量有关,当降雨量为50毫米时,水位会上升5米。

求水库的水位高度与降雨量的函数关系。

五、三角函数建模1. 一个摩天轮的高度为40米,直径为50米。

当摩天轮转过一圈时,求最顶端点到地面的高度?2. 一个登山队要从山脚爬到山顶,已知山的斜度为60度,登山队爬了300米后,他们还有多远才能到达山顶?六、数列建模1. 一个自然数列的前两项分别为1和2,以后各项都是其前面各项的和。

求这个数列的第10项是多少?2. 一个商场销售某商品,每件商品的进价为8元,售价为10元。

每天售出50件,求一个月(30天)后,商场能赚多少钱?七、线性规划建模1. 某地计划建设一个生态公园,需要种上一些树木。

已知种一棵树需要花费100元,而生态公园的总预算是5000元。

问在满足预算限制的条件下,最多能种多少棵树?2. 某公司生产两种产品:产品A的单价为20元,利润率为20%;产品B的单价为15元,利润率为15%。

公司现有资金20万元,问应如何安排两种产品的生产量,才能使公司获得最大利润?。

数学建模简单13个例子

数学建模简单13个例子
如果所考虑的遗传特征是由两个基因A和B控制的, 那么就有三种可能的基因型:AA,AB和BB.
例如,金鱼草是由两个遗传基因决定它开花的颜
色,AA型开红花,AB型的开粉花,而BB型的开白花. 这里的AA型和AB型表示了同一外部特征(红色),
则人们认为基因A支配基因B,也说成基因B对于A是隐
性的.
2021/10/10
O B(0,-b)
θ2 护卫舰
可化为:
X
x2ya a2 2 1 1b2
4a2b2 (a21)2
令: ha21b,r 2ab a21 a21
则上式可简记成 :
x2(y-h)2r2
汇合点即可p必求位出于P点此的圆坐上标。和
θ2 的值。
y(ta1)nxb(护卫舰的路线本方模程型)虽简单,但分析
2y 021 /10/1(0 ta2n )xb(航母的路线方极程清)晰且易于实际应用2返3 回
v 也是交管部门早已定好的,目的是使交通流量最大,可
另建模型研究,从而L1=v*t1。刹车距离 L2既可用曲线
拟合方法得出,也可利用牛顿第二定律计算出来
黄灯究竟应当亮多久现在已经变得清楚多了。
第一步,先计算出L应多大才能使看见黄灯的司机停
得住车。
第二步,黄灯亮的时间应当让已过线
的车顺利穿过马路,
D
即T 至少应当达到 (L+D)/v。 2021/10/10
某航空母舰派其护卫舰去搜寻其跳伞的飞 行员, 护卫舰找到飞行员后,航母通知它尽快返回与其汇 合并通报了航母当前的航速与方向,问护卫舰应怎 样航行,才能与航母汇合。
2021/10/10
22
Y
P(x,y)
记v2/ v1=a通常a>1

数学建模试题(带答案)大全

数学建模试题(带答案)大全

(14 分)
得分
四、(满分 10 分) 雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度 g 有关,其中粘
滞系数的量纲[ ]= L1MT 1 1,用量纲分析方法给出速度 v 的表达式.
解:设 v , , , g 的关系为 f ( v , , , g ) =0.其量纲表达式为
[ v ]=LM0T-1,
学分 5 4 4
4
数据结构
3
5
应用统计
4
6
计算机模拟 3
7
计算机编程 2
8
预测理论
2
9
数学实验
3
所属类别 数学 数学 数学;运筹学
数学;计算机 数学;运筹学
计算机;运筹学 计算机 运筹学 运筹学;计算机
先修课要求
微积分;线性代 数 计算机编程 微积分;线性代 数 计算机编程
应用统计 微积分;线性代 数
由 U 0, U 0 可得到最优价格:
p1
p2
1
T
1
3T
p1 2b [a b(q0
)] 4
P2 2b [a b(q0 4 )]
前期销售量
T、(2 a
0

bp1
)dt
后期销售量
T
T /2 (a p2 )dt
总销售量
Q0
=
aT
bT 2
(
p1
p2 )
在销售量约束条件下 U 的最大值点为
~p1
a b
Q0 bT
T 8
,
P~2
a b
Q0 bT
T 8
7. (1)雨水淋遍全身, s 2(ab bc ac) 2*(1.5*0.5 0.5*0.2 1.5*0.2) 2.2m2

小学数学建模试题及答案

小学数学建模试题及答案

小学数学建模试题及答案
一、选择题
1. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是多少平方厘米?
A. 50
B. 100
C. 150
D. 200
答案:B
2. 一个班级有40名学生,其中男生人数是女生人数的两倍,那么这个班级有多少名男生?
A. 16
B. 20
C. 24
D. 28
答案:C
二、填空题
3. 如果一个数乘以3后再加上5等于22,那么这个数是______。

答案:5
4. 一个数的一半加上3等于9,那么这个数是______。

答案:12
三、解答题
5. 一个水池,每天注入水量是前一天的两倍,第一天注入了1升水。

请问第五天注入了多少升水?
答案:第五天注入了32升水。

6. 小明有若干个苹果,他给小华一半,然后又给小华两个,最后自己剩下3个。

问小明最初有多少个苹果?
答案:小明最初有10个苹果。

四、应用题
7. 一个农场有鸡和兔子共35只,脚的总数是94只。

问农场上有多少只鸡和多少只兔子?
答案:农场上有23只鸡和12只兔子。

8. 一个水果店早上卖出了苹果和橘子共100个,其中苹果的数量是橘子的两倍。

问水果店早上卖出了多少个苹果和橘子?
答案:水果店早上卖出了66个苹果和34个橘子。

数学建模典型例题

数学建模典型例题

一、人体重变化某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天.每天的体育运动消耗热量大约是69焦/千克天乘以他的体重千克.假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦.试研究此人体重随时间变化的规律.一、问题分析人体重Wt随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程.二、模型假设1、以脂肪形式贮存的热量100%有效2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存3、假设体重的变化是一个连续函数4、初始体重为W0三、模型建立假设在△t时间内:体重的变化量为Wt+△t-Wt;身体一天内的热量的剩余为10467-5038-69Wt将其乘以△t即为一小段时间内剩下的热量;转换成微分方程为:dWt+△t-Wt=10467-5038-69Wtdt;四、模型求解d5429-69W/5429-69W=-69dt/41686W0=W解得:5429-69W=5429-69We-69t/41686即:Wt=5429/69-5429-69W/5429e-69t/41686当t趋于无穷时,w=81;二、投资策略模型一、问题重述一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案.5年后,它将卖出所有剩余汽车并让一家外围公司提供运输.在策划下一个5年计划时,这家公司评估在年i的开始买进汽车并在年j的开始卖出汽车,将有净成本aij 购入价减去折旧加上运营和维修成本.以千元计数aij的由下面的表给出:请寻找什么时间买进和卖出汽车的最便宜的策略.二、问题分析本问题是寻找成本最低的投资策略,可视为寻找最短路径问题.因此可利用图论法分析,用Dijkstra算法找出最短路径,即为最低成本的投资策略.三、条件假设除购入价折旧以及运营和维护成本外无其他费用;四、模型建立二511 7 三 64166 13 8四一 9128 1120五10六运用Dijikstra算法1 2 3 45 60 4 6 912 206 912 20912 2012 2020可发现,在第二次运算后,数据再无变化,可见最小路径已经出现即在第一年买进200辆,在第三年全部卖出,第三年再买进200第六年全部卖出.三、飞机与防空炮的最优策略一、问题重述:红方攻击蓝方一目标,红方有2架飞机,蓝方有四门防空炮,红方只要有一架飞机突破蓝方的防卫则红方胜.其中共有四个区域,红方可以其中任意一个接近目标,蓝方可以任意布置防空炮,但一门炮只能防守一个区域,其射中概率为1.那么双方各采取什么策略二、问题分析该问题显然是红方与蓝方的博弈问题,因此可以用博弈论模型来分析本问题.1、对策参与者为两方红蓝两方2、红军有两种行动方案,即两架飞机一起行动、两架飞机分开行动.蓝军有三种防御方案,即四个区域非别布置防空炮记为1-1-1-1、一个区域布置两架一个没有另外两个分别布置一个记为2-1-1-0、两个区域分别布置两架飞机另外两个没有记为2-2-0-0.显然是不需要在某个区域布置3个防空炮的.三、问题假设:(1)红蓝双方均不知道对方的策略.(2)蓝方可以在一个区域内布置3,4门大炮,但是大炮数量大于飞机的数量,而一门大炮已经可以击落一架飞机,因而这种方案不可取.(3)红方有两种方案,一是让两架飞机分别通过两个区域去攻击目标,另一种是让两架飞机通过同一区域去攻击目标.(4)假设蓝方四门大炮以及红方的两架飞机均派上用场,且双方必须同时作出决策.四、模型建立行动及其产生的结果由此可得赢得矩阵蓝方为A,红方为BA= 1 00.75 0.50 0.50 0.83B= 0 0.25 0.5 1 0.5 0.17没有鞍点,故用混合策略模型解决本问题设蓝方采取行动i的概率为 xii=1,2,3,红方采取行动j的概率为yjj=1,2,则蓝方与红方策略集分别为:S1={x=x1,x2,x30< xi<1,∑xi=1},S2={y=y1,y20< yi<1,∑yi=1}.五、模型求解下列线性规划问题的解就是蓝军的最优混合策略xMax v10x1+0.25x2+0.5x3 >v1x1+0.5x2+0.17x3 >v1x1+x2+x3 =1xi<=1下列线性规划问题的解就是红军的最优混合策略yMin v2y2<v20.25y1+0.5y2 <v20.5y1+0.17 y2 <v2y 1+y2=1yi<=1四、雷达计量保障人员分配开展雷达装备计量保障工作中,合理分配计量保障人员是提高计量保障效能的关键.所谓合理分配是指将计量保障人员根据其专业特长、技术能力分配到不同的工作岗位上,并且使得所有人员能够发挥出最大的军事效益.现某雷达团共部署12种型号共16部雷达,部署情况及计量保障任务说明:1.保障任务分区域进行保障;2.B、H、L型雷达分为两个保障任务,分别为B1、B2、H1、H2、L1、L2,其它雷达为一个保障任务;3.同一区域多部相同雷达等同于一部雷达的保障任务;4.不同区域的相同雷达看作不同保障任务;5.每个保障人员只能保障一个任务;6.每个保障任务只由一个保障人员完成.雷达的重要性由其性能和所担负的作战任务共同决定,即使同一型号的雷达在不同区域其重要性也可能不同.各雷达的重要性如下表所示表中该雷达团修理所现在有10名待分配计量保障人员,他们针对不同保障问题:如何给该团三个营分配计量保障人员,使他们发挥最大军事效益一、问题分析:该问题是人员指派问题,目的是得到最大效益.根据保障能力测试与雷达重要性定义出效益矩阵,用0—1整数规划方法来求解,得到最大效益矩阵.二、模型假设1.保障任务分区域进行保障;2.B 、H 、L 型雷达分为两个保障任务,分别为B 1、B 2、H 1、H 2、L 1、L 2,其它雷达为一个保障任务;3.同一区域多部相同雷达等同于一部雷达的保障任务; 4.不同区域的相同雷达看作不同保障任务; 5.每个保障人员只能保障一个任务; 6.每个保障任务只由一个保障人员完成. 三、模型建立根据题目列出保障人员能力量化指标矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=007.09.03.08.04.002.05.03.06.08.08.06.08.03.07.02.06.07.03.07.03.04.06.07.08.07.05.06.03.05.05.07.04.02.02.01.02.02.0001.02.02.02.06.01.006.04.02.08.05.03.03.06.03.0003.03.04.03.002.0004.09.05.02.01.08.08.08.08.06.08.08.008.06.07.08.06.08.005.07.03.03.03.03.07.07.05.03.003.06.03.07.06.07.08.05.02.02.07.02.02.05.08.06.02.002.05.005.05.0007.05.04.03.04.04.004.07.04.06.04.0000009.005.05.05.05.05.005.05.05.05.05.05.0005.005.09.08.07.0006.04.04.03.09.07.06.07.08.04.07.003.08.0A 根据题目,设保障任务的重要性向量),...,,(21i b b b B =,bi 表示第i 个任务的重要性.列出保障任务重要性向量:[]7.07.06.08.09.07.06.09.09.07.08.07.07.07.08.09.09.08.0=B我们用二者的乘积表示效益矩阵:T*=BAR.我们设元素rij表示第i个人完成j件事的效益,Xij表示第i个人去保障第j件任务,如果是,其值为1,否则为0.利用这一个矩阵和0-1规划,我们就可以列出方程:∑=<=niijx11,m<=nmodel:sets:M/1..10/;N/1..18/:a;allowedM,N:b,r,x;endsetsdata:a=0.8 0.9 0.9 0.8 0.7 0.7 0.7 0.8 0.7 0.9 0.9 0.6 0.7 0.9 0.8 0.6 0.7 0.7;b=0.8 0.3 0 0.7 0.4 0.8 0.7 0.6 0.7 0.9 0.3 0.4 0.4 0.6 0 0 0.7 0.8 0.9 0.5 0 0.5 0 0 0.5 0.5 0.9 0.5 0.5 0.5 0 0.5 0.5 0.5 0.5 0.5 0 0.9 0 0 0 0 0 0.4 0.6 0.4 0.7 0.4 0 0.4 0.4 0.3 0.4 0.50.4 0 0 0.5 0.5 0 0.5 0.2 0 0.2 0.6 0.8 0.5 0.2 0.2 0.7 0.2 0.2 0.7 0.8 0.7 0.6 0.7 0.3 0.6 0.3 0 0.3 0.5 0.7 0.7 0.3 0.3 0.3 0.3 0.70.5 0 0.8 0.6 0.8 0.7 0.6 0.8 0 0.8 0.8 0.6 0.8 0.8 0.8 0.8 0.1 0.20.5 0.9 0.4 0 0 0.2 0 0.3 0.4 0.3 0.3 0 0 0.3 0.6 0.3 0.3 0.5 0.8 0.2 0.4 0.6 0 0.1 0.6 0.2 0.2 0.2 0.1 0 0 0.2 0.2 0.1 0.2 0.2 0.4 0.7 0.5 0.5 0.3 0.6 0.5 0.7 0.8 0.7 0.6 0.4 0.3 0.7 0.3 0.7 0.6 0.20.7 0.3 0.8 0.6 0.8 0.8 0.6 0.3 0.5 0.2 0 0.4 0.8 0.3 0.9 0.7 0 0;enddatamax=sumallowedi,j:xi,jri,j;forMi:forNj:ri,j=ajbi,j;forMi:sumNj:xi,j=1;forNj:sumMi:xi,j<=1;forMi:forNj:binxi,j;End解得最大效益为6.63,分配方案为:第5、7、8号保障人员分配到区域1,其中8号承担A 型,5、7号承担B1,B2型;第1、2、3、4、9号保障人员分配到区域2,其中第9号保障人员承担F型2号G型,1、3号承担H1,H2型,4号I型;第6、10号保障人员分配到区域3,6号F型、10号J型.。

数学建模13道题

数学建模13道题

数学建模13道题数学建模是数学中的一个分支,它是指将现实世界中的问题抽象成数学模型,并用数学方法来解决这些问题。

数学建模题一般包含数学模型的建立,问题的分析和求解等几个方面。

下面介绍13道数学建模题,希望读者可以从中得到启发。

题目一:如何预测股票价格?这是一个经典的数学建模题。

股票价格是由多种因素决定的,如市场供求关系、经济政策等。

数学建模者需要考虑这些因素,并根据历史数据建立合适的模型来预测未来的股票价格。

题目二:如何优化物流配送?对于物流配送问题,数学建模者需要考虑到多种因素,如配送距离、时间、运输工具等。

通过建立运输成本函数,制定合适的配送策略,可以实现物流配送的优化。

题目三:如何求解最优化问题?在最优化问题中,数学建模者需要考虑多种因素,如成本、效率、质量等。

通过建立目标函数、限制条件等方程,可以求得最优解。

题目四:如何优化网络布局?网络布局优化是一个复杂的问题。

数学建模者需要考虑到多种因素,如节点距离、带宽、延迟等。

通过建立合适的模型,可以制定出最优的网络布局方案。

题目五:如何预测自然灾害?自然灾害是不能预测的,但数学建模可以通过历史数据、气象预报等多种信息来建立模型,以预测未来可能发生的自然灾害,提前做好应对措施。

题目六:如何优化生产流程?生产流程优化需要考虑多种因素,如成本、效率、质量等。

数学建模者可以通过建立合适的模型,分析生产流程的瓶颈和优化空间,从而实现生产流程的优化。

题目七:如何优化城市规划?城市规划优化需要考虑多种因素,如人口密度、交通拥堵、环境保护等。

数学建模者可以通过建立合适的模型,预测城市未来的发展趋势,制定出最优的城市规划方案。

题目八:如何提高学生的学习成绩?学生的学习成绩受多种因素影响,如个人能力、学习环境、教学质量等。

数学建模者可以建立合适的模型,帮助学生发现自己的学习问题,并制定出最优的学习策略。

题目九:如何优化教学质量?教学质量优化需要考虑多种因素,如教师水平、教材质量等。

数学建模例题

数学建模例题

例1 怎样使饮料罐制造用材最省的问题.首先,把饮料罐假设为正圆柱体(实际上由于制造工艺等要求,它不可能正好是数学上的正圆柱体,但这样简化确实是近似的、合理的).在这种简化下,我们就可以来明确变量和参数了,例如可以假设:V 一罐装饮料的体积,r 一半径,h 一圆柱高,b 一制罐铝材的厚度,l 一制造中工艺上必须要求的折边长度。

上面的诸多因素中,我们先不考虑l 这个因素.于是:hr V 2π=由于易拉罐上底的强度必须要大一点,因而在制造上其厚度为罐的其他部分厚度的3倍.因而制罐用材的总面积A =rhb b r b r πππ2322++,每罐饮料的体积V 是一样的,因而V 可以看成是一个常数(参数),解出A :2r V h π=代入A 得:)2(22r V r b A ππ+=从而知道,用材最省的问题就是求半径r 使A(r)达到最小。

A(r)的表达式就是一个数学模型。

可以用多种精确的或近似的方法求A(r)最小时相应的r 。

0)4(22=-=r Vr b dr dA ππ从而求得34πVr =例3 数据拟合模型在数学建模过程中,常常需要确定一个变量依存于另一个或更多的变量的关系,即函数。

但实际上确定函数的形式(线性形式、乘法形式、幂指形式或其它形式)时往往没有先验的依据。

只能在收集的实际数据的基础上对若干合乎理论的形式进行试验,从中选择一个最能拟合有关数据,即最有可能反映实际问题的函数形式,这就是统计学中的拟合回归方程问题。

“人口问题”是我国最大社会问题之一,估计人口数量和发展趋势是我们制定一系列相关政策的基础。

有人口统计年鉴,可查的我国从1949年至1994年人口数(1) 在直角坐标系上作出人口数的图象。

(2) 估计出这图象近似地可看做一条直线。

(3) 用以下几种方法(之一)确定直线方程,并算出1999年人口数。

方法一:先选择能反映直线变化的两个点,如(1949,541.67),(1984,1034.75)二点确定一条直线,方程为 N = 14.088 t – 26915.842 代入t =1999,得N ≈12.46亿方法二:可以多取几组点对,确定几条直线方程,将t = 1999代入,分别求出人口数,在取其算数平值。

数学建模典型例题

数学建模典型例题

典型例题1.报童每天订购的报纸,每卖出一份赢利a 元,如果卖不出去并将报纸退回发行单位,将赔本b 元.每天买报人数不定,报童订报份数如超过实际需要,就要受到供过于求的损失;反之,要受到供不应求的损失.设P (m )是售出m 份报纸的概率,试确定合理的订报份数,使报童的期望损失最小.解:设报童每天订购Q 份报纸,则其收益函数为⎩⎨⎧>≤--=Q m am Qm b m Q am m y ,,)()( 利润的期望为∑∑∞+==+-+=1)()(])[()]([Q m Qm m aQP m P bQ m b a m y E比较各个m 的)]([m y E 值,使其最大者即为所求.若m 的取值过多,可将)]([m y E 当成m 的连续函数或借鉴连续函数求极值的方法令0d )]([d =mm y E .2.血友病也是一种遗传疾病,得这种病的人由于体内没有能力生产血凝块因子而不能使出血停止.很有意思的是,虽然男人及女人都会得这种病,但只有女人才有通过遗传传递这种缺损的能力.若已知某时刻的男人和女人的比例为1:1.2,试建立一个预测这种遗传疾病逐代扩散的数学模型. 解:假设有α%的人患有血友病,并假设下一代与上一代虽人数可能不等,但所生男女比例一样.基于这样一个假设,不妨设下一代男女与上一代相同,设初始第一代男女分别占总人数的比例占总人数的比例为 a 0,b 0,由题设,a 0:b 0=1:1.2.注意到只有女人遗传血友病,由此,第一代将有%210αb 个女人及%210αb 个男人有血友病,血友病占总人数的百分比为 %2.22.1%0001αα=+=b a b c同理,第二代将有%21210αb ⋅个女人及%21210αb ⋅个男人有血友病,血友病占总人数的百分比为 %2.22.121%210002αα⋅=+=b a b c依次类推,第n 代将有%)21(0αb n个女人及%)21(0αb n个男人有血友病,血友病占总人数的百分比为%2.22.1)21(%)21(10001αα⋅=+=--n n n b a b c令∞→n ,则0→n c .3.某石油公司必须就下一个打井位置作出决定.如果打出来的井什么也没有(既无油也无天然气),则投资费用(打井费用)全部赔掉.如果打出来的是气井,则可以说是部分成功,如果打出来的是油井,则是完全成功.由于结果的不确定性,更由于做某种测试(取样)只能得到不完全的信息,因而作出决定是困难的.试建立一个数学模型,使公司的预期收益最大 解:设 B 1——预测是油井,B 2——预测是气井,B 3——预测是无油气井. 由于做取样只能得到不完全的信息,因此根据取样结果,计算出在B 1,B 2,B 3分别发生的条件下,B 1,B 2,B 3发生的概率.然后利用贝叶斯公式,计算出实际是油井、气井和废井情况下,而预测是B 1,B 2,B 3之一的概率值,若给出各种情况下的费用,计算出各个期望值即可.下面画出决策树(如图3).图34 假设有一笔1000万元的资金于依次三年年初分别用于工程A 和B 的投资.每年初如果投资工程A ,则年末以0.4的概率回收本利2000万元或以0.6的概率分文不收;如果投资工程B ,则年末以0.1的概率回收2000万元或以0.9的概率回收1000万元.假定每年只允许投资一次,每次只投1000万元;试确定第3年末期望资金总数为最大的投资策略.解: 建立决策树(如图4).0 2000 0 2000 10002000 4000 4000 3000图4在投资A 的决策树中,第一年投资A ,第二年投资B ,第三年投资B 的期望值最大. 在投资B 的决策树中(只在A 的决策树中②节点中的0.4,0.6分别换成0.1,0.9即可),可算得第一年投资B ,第二年投资B ,第三年投资B 的期望值是两个决策树中的最大者.5.某工程队承担一座桥梁的施工任务.由于施工地区夏季多雨,需停工三个月.在停工期间该工程队可将施工机械搬走或留在原处.如搬走,需搬运费1800元.如留原处,一种方案是花500元筑一护堤,防止河水上涨发生高水位的侵袭.若不筑护堤,发生高水位侵袭时将损失10000元.如下暴雨发生洪水时,则不管是否筑护堤,施工机械留在原处都将受到60000元的损失.据历史资料,该地区夏季高水位的发生率是25%,洪水的发生率是2%.试用决策树法分析该施工队要不要把施工机械搬走及要不要筑护堤?解:建立决策树模型如图5.图5 使用期望值法计算过程见图6.-1800 -500-60500-10000 -60000-1800 -500 -60500-10000-60000图6最优决策为:不必搬走机械,但要筑一个护堤,期望损失1335元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、人体重变化某人的食量是10467焦/天,最基本新代要自动消耗其中的5038焦/天。

每天的体育运动消耗热量大约是69焦/(千克•天)乘以他的体重(千克)。

假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。

试研究此人体重随时间变化的规律。

一、问题分析人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间体重W的变化值列出微分方程。

二、模型假设1、以脂肪形式贮存的热量100%有效2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存3、假设体重的变化是一个连续函数4、初始体重为W0三、模型建立假设在△t时间:体重的变化量为W(t+△t)-W(t);身体一天的热量的剩余为(10467-5038-69*W(t))将其乘以△t即为一小段时间剩下的热量;转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt;四、模型求解d(5429-69W)/(5429-69W)=-69dt/41686W(0)=W0解得:5429-69W=(5429-69W0)e(-69t/41686)即:W(t)=5429/69-(5429-69W0)/5429e(-69t/41686)当t趋于无穷时,w=81;二、投资策略模型一、问题重述一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。

5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。

在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)。

以千元计数a ij的由下面的表给出:请寻找什么时间买进和卖出汽车的最便宜的策略。

二、问题分析本问题是寻找成本最低的投资策略,可视为寻找最短路径问题。

因此可利用图论法分析,用Dijkstra算法找出最短路径,即为最低成本的投资策略。

三、条件假设除购入价折旧以及运营和维护成本外无其他费用;四、模型建立二511 7 三 64166 13 8 四一 912 8 1120五10六运用Dijikstra算法1 2 3 4 5 6 0 4 6 9 12 206 9 12 20 9 12 20 12 2020 可发现,在第二次运算后,数据再无变化,可见最小路径已经出现即在第一年买进200辆,在第三年全部卖出,第三年再买进200第六年全部卖出。

三、飞机与防空炮的最优策略一、问题重述:红方攻击蓝方一目标,红方有2架飞机,蓝方有四门防空炮,红方只要有一架飞机突破蓝方的防卫则红方胜。

其中共有四个区域,红方可以其中任意一个接近目标,蓝方可以任意布置防空炮,但一门炮只能防守一个区域,其射中概率为1。

那么双方各采取什么策略?二、问题分析该问题显然是红方与蓝方的博弈问题,因此可以用博弈论模型来分析本问题。

1、对策参与者为两方(红蓝两方)2、红军有两种行动方案,即两架飞机一起行动、两架飞机分开行动。

蓝军有三种防御方案,即四个区域非别布置防空炮(记为1-1-1-1)、一个区域布置两架一个没有另外两个分别布置一个(记为2-1-1-0)、两个区域分别布置两架飞机另外两个没有(记为2-2-0-0)。

显然是不需要在某个区域布置3个防空炮的。

三、问题假设:(1)红蓝双方均不知道对方的策略。

(2)蓝方可以在一个区域布置3,4门大炮,但是大炮数量大于飞机的数量,而一门大炮已经可以击落一架飞机,因而这种方案不可取。

(3)红方有两种方案,一是让两架飞机分别通过两个区域去攻击目标,另一种是让两架飞机通过同一区域去攻击目标。

(4)假设蓝方四门大炮以及红方的两架飞机均派上用场,且双方必须同时作出决策。

四、模型建立行动及其产生的结果由此可得赢得矩阵蓝方为A,红方为BA= 1 00.75 0.500.50 0.83B= 0 0.25 0.51 0.5 0.17没有鞍点,故用混合策略模型解决本问题设蓝方采取行动i的概率为 xi(i=1,2,3),红方采取行动j的概率为yj(j=1,2),则蓝方与红方策略集分别为:S1={x=(x1,x2,x3)0< xi<1,∑xi=1},S2={y=(y1,y2)0< yi<1,∑yi=1}。

五、模型求解下列线性规划问题的解就是蓝军的最优混合策略x*Max v10*x1+0.25*x2+0.5*x3 >v1x1+0.5*x2+0.17*x3 >v1x1+x2+x3 =1xi<=1下列线性规划问题的解就是红军的最优混合策略y*Min v2y2 <v20.25*y1+0.5*y2 <v20.5*y1+0.17* y2 <v2y1+y2= 1yi<=1四、雷达计量保障人员分配开展雷达装备计量保障工作中,合理分配计量保障人员是提高计量保障效能的关键。

所谓合理分配是指将计量保障人员根据其专业特长、技术能力分配到不同的工作岗位上,并且使得所有人员能够发挥出最大的军事效益。

现某雷达团共部署12种型号共16部雷达,部署情况及计量保障任务分区情况如表所示:说明:1.保障任务分区域进行保障;2.B、H、L型雷达分为两个保障任务,分别为B1、B2、H1、H2、L1、L2,其它雷达为一个保障任务;3.同一区域多部相同雷达等同于一部雷达的保障任务;4.不同区域的相同雷达看作不同保障任务;5.每个保障人员只能保障一个任务;6.每个保障任务只由一个保障人员完成。

雷达的重要性由其性能和所担负的作战任务共同决定,即使同一型号的雷达在不同区域其重要性也可能不同。

各雷达的重要性如下表所示(表中下标表示雷达所在保障区域):该雷达团修理所现在有10名待分配计量保障人员,他们针对不同保障任务的计量保障能力量化指标如下表所示:问题:如何给该团三个营分配计量保障人员,使他们发挥最大军事效益?一、问题分析:该问题是人员指派问题,目的是得到最大效益。

根据保障能力测试与雷达重要性定义出效益矩阵,用0—1整数规划方法来求解,得到最大效益矩阵。

二、模型假设1.保障任务分区域进行保障;2.B 、H 、L 型雷达分为两个保障任务,分别为B 1、B 2、H 1、H 2、L 1、L 2,其它雷达为一个保障任务;3.同一区域多部相同雷达等同于一部雷达的保障任务; 4.不同区域的相同雷达看作不同保障任务; 5.每个保障人员只能保障一个任务; 6.每个保障任务只由一个保障人员完成。

三、模型建立根据题目列出保障人员能力量化指标矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=007.09.03.08.04.002.05.03.06.08.08.06.08.03.07.02.06.07.03.07.03.04.06.07.08.07.05.06.03.05.05.07.04.02.02.01.02.02.0001.02.02.02.06.01.006.04.02.08.05.03.03.06.03.0003.03.04.03.002.0004.09.05.02.01.08.08.08.08.06.08.08.008.06.07.08.06.08.005.07.03.03.03.03.07.07.05.03.003.06.03.07.06.07.08.05.02.02.07.02.02.05.08.06.02.002.05.005.05.0007.05.04.03.04.04.004.07.04.06.04.0000009.005.05.05.05.05.005.05.05.05.05.05.0005.005.09.08.07.0006.04.04.03.09.07.06.07.08.04.07.003.08.0A 根据题目,设保障任务的重要性向量),...,,(21i b b b B =,bi 表示第i 个任务的重要性。

列出保障任务重要性向量:[]7.07.06.08.09.07.06.09.09.07.08.07.07.07.08.09.09.08.0=B 我们用二者的乘积表示效益矩阵: T *=B A R 。

我们设元素rij 表示第i 个人完成j 件事的效益,Xij 表示第i 个人去保障第j 件任务,如果是,其值为1,否则为0。

利用这一个矩阵和0-1规划,我们就可以列出方程:∑∑===m j ni ij ij x r Z 11*max∑==mij ij x 1∑=<=ni ij x 11,m<=nmodel: sets: M/1..10/; N/1..18/:a;allowed(M,N):b,r,x; endsets data:a=0.8 0.9 0.9 0.8 0.7 0.7 0.7 0.8 0.7 0.9 0.9 0.6 0.7 0.9 0.8 0.6 0.7 0.7; b=0.8 0.3 0 0.7 0.4 0.8 0.7 0.6 0.7 0.9 0.3 0.4 0.4 0.6 0 0 0.7 0.8 0.9 0.5 0 0.5 0 0 0.5 0.5 0.9 0.5 0.5 0.5 0 0.5 0.5 0.5 0.5 0.5 0 0.9 0 0 0 0 0 0.4 0.6 0.4 0.7 0.4 0 0.4 0.4 0.3 0.4 0.5 0.4 0 0 0.5 0.5 0 0.5 0.2 0 0.2 0.6 0.8 0.5 0.2 0.2 0.7 0.2 0.20.7 0.8 0.7 0.6 0.7 0.3 0.6 0.3 0 0.3 0.5 0.7 0.7 0.3 0.3 0.3 0.3 0.7 0.5 0 0.8 0.6 0.8 0.7 0.6 0.8 0 0.8 0.8 0.6 0.8 0.8 0.8 0.8 0.1 0.20.5 0.9 0.4 0 0 0.2 0 0.3 0.4 0.3 0.3 0 0 0.3 0.6 0.3 0.3 0.50.8 0.2 0.4 0.6 0 0.1 0.6 0.2 0.2 0.2 0.1 0 0 0.2 0.2 0.1 0.2 0.20.4 0.7 0.5 0.5 0.3 0.6 0.5 0.7 0.8 0.7 0.6 0.4 0.3 0.7 0.3 0.7 0.6 0.2 0.7 0.3 0.8 0.6 0.8 0.8 0.6 0.3 0.5 0.2 0 0.4 0.8 0.3 0.9 0.7 0 0; enddatamax=sum(allowed(i,j):x(i,j)*r(i,j));for(M(i):for(N(j):r(i,j)=a(j)*b(i,j)));for(M(i):sum(N(j):x(i,j))=1);for(N(j):sum(M(i):x(i,j))<=1);for(M(i):for(N(j):bin(x(i,j))));End解得最大效益为6.63,分配方案为:第5、7、8号保障人员分配到区域1,其中8号承担A型,5、7号承担B1,B2型;第1、2、3、4、9号保障人员分配到区域2,其中第9号保障人员承担F型2号G型,1、3号承担H1,H2型,4号I型;第6、10号保障人员分配到区域3,6号F型、10号J型。

相关文档
最新文档