微机原理与接口技术(清华大学课件,全套)
合集下载
微机原理与接口技术PPT课件

(2)如果要对其他段寄存器所指出的存储区 进行直接寻址,则本条指令前必须用前缀指出 段寄存器名。
21018H 21019H
AA 数 BB 据
段
8
三、直接寻址
• 操作数的存储区是在DS段以外的段中,则应 在指令中指定段跨越前缀:
• MOV BX, ES:[2000H] 设ES=3000H,则指令执行后是将32000H
• 操作数的寻址方式有以下几种:
•
立即数寻址
寄存器寻址
直接寻址
寄存器间接寻址
寄存器相对寻址
基址加变址寻址
相对的基址加变址寻址
• 例:指令形式:
MOV AX, 0000H; AX← 0000H
助记符 目的操作数 源操作数
4
一、立即数寻址
• 操作数紧跟在操作码的后面,与操作码一起放在码段
区域,立即数可以为8位,也可以为16位。
设SS=3000H,BP=2000H, COUNT=1050H
有效地址为: EA=2000H+1050H=3050H
物理地址: 堆栈段=30000H+3050H=33050H
存储器
M
10000H 8B 代
10001H 86 码
10002H
段
AH AL BB AA
33050H 33051H
AA 堆 BB 栈
代码:8B 07
设 DS=2000H,BX=5000H CS=1000H,IP=0000H
物理地址: 代码段:CS000H 8B 代
10001H 07 码
10002H
段
数据段:DS ×16+BX=25000H
AH AL
BB AA
25000H 25001H
第2微机原理与接口技术清华大学-PPT精品

编写相应的程序段。
2020/5/17
18
源程序代码:
LEA SI,DATA
MOV DX,3F8H WATT:IN AL,DX
ATJAZENNSWDDTATAAATLLL,,,0222AHAHH CTJXZEMOSWPRTAAATALTLL,,,0282HAAHH JTJNENSZZT WAWLA,ATT2TT0H
更长字长数的移位。
2020/5/17
30
MOV SI,1000H
MOV DI,3000H MOV CX,4 BBB:MOV AL,[SI] MOV BL,AL AND AL,0FH OR AL,30H MOV [DI],AL INC DI MOV AL,BL
2020/5/17
程序例
PUSH CX MOV CL,4 SHR AL,CL OR AL,30H MOV [DI],AL INC DI INC SI POP CX DEC CX JNZ BBB HLT
2020/5/17
21
算术左移和逻辑左移
• 算术左移指令: SAL OPRD,1 SAL OPRD,CL
有符号数
• 逻辑左移指令: SHL OPRD,1
无符号数
SHL OPRD,CL
移动一位后,若CF与最高不相等,则OF=1;否则OF=0
2020/5/17
22
逻辑右移
• 格式: SHR OPRD,I
CF
0
CF
0
CF
0
24
算术右移
• 格式: SAR OPRD,I SAR OPRD,CL
有符号数 的右移
CF
2020/5/17
25
非循环移位指令的应用
• 左移可实现乘法运算 • 右移可实现除法运算
《微机原理与接口技术》教学课件 第6章

6.2 随机存取存储器
2 动态RAM 2164的工作过程
① 将要读出单元的行地 址送到地址线A0~A7上, RAS 信号有效时,在下 降沿将地址锁存在行地 址锁存器中。
② 将要读出单元的列地 址 送 到 地 址 线 A0 ~ A7 上 , CAS 信号有效时,在下降 沿将地址锁存在列地址 锁存器中。
目录 CONTENTS
存储器入门 随机存取存储器
只读存储器 高速缓冲存储器
外部存储器
3
引子
计算机之所以能自动、连续地工作,是因为采用了存储程序的原理。计算机中的所有程序和数 据都存放在存储器中,存储器是计算机必不可少的组成部件之一。存储器的性能对整个计算机 系统的性能起着至关重要的作用。本章主要介绍存储器的分类、结构和主要性能指标,并通过 典型的存储器芯片来介绍存储器的工作原理及与CPU的连接方法。
6.1 存储器入门
连续两次读写操作之间所需的最短时间间隔称为存储周期。存储器每秒钟可读写的 数据量称为存储器带宽或数据传输速率,单位为bps(或bit/s)。存取周期和存储器带宽 也常作为存储器的性能指标。
提示
6.2 随机存取存储器
随机存取存储器(Random Access Memory,RAM)也称随机读/写存储器或随机存储器,它既可以直接 从任何一个指定的存储单元中读出数据,也可以将数据写入任何一个指定的存储单元中。
6.1.2 存储器的性能指标
存储器容量:存储器中所包含存储单元的总数,单位是字节(B)。存储 器容量越大,存储的信息越多,计算机的性能也就越强。
01
02
存取时间:存储器完成一次读写操作所需的时间,单位为ns(纳秒,
1 ns=10-9 sБайду номын сангаас。
微机原理及接口技术参考PPT

IN AL,DX
;读数据
MOV [SI],AL
MOV DX,8002H
MOV AL,00H
OUT DX,AL
INC SI ;存放数据的内存地址加1
INC BL ;通道地址加1
MOV AL,BL OUT DX,AL ;送通道地址 MOV DX,8002H
DEC BH JNZ GOON POP AX
MOV AL,01H
•14
9.3 A/D转换器ADC0809及应用
➢ 采样:对连续变化的模拟量要按一定的规律和周期取出其 中的某一瞬时值。
➢ 采样频率:一般要高于或至少等于输入信号最高频率的2 倍,实际应用中采样频率一般是信号频率的4~8倍。
➢ 采样周期:相邻两次采样的间隔时间。一次A/D转换所需 要的时间必须小于采样周期。
•10
➢ 应用举例:利用D/A 转换器来构造波形发生器,如图所 示。假设地址译码输出端口为360H。
图9.8 采用DAC0832 构造的波形发生器
•11
(1) 矩形波。给DAC0832 持续256 次送数据0,然后256 次送 数据FFH,依次重复处理。输出矩形波的程序段如下:
MOV DX,360H ;设定地址译码输出端口 DD0: MOV CX,0FFH
2
多2
N位
路
电
二进制数
… …
模
阻
拟
网
开
络
N
关N
运算 放大器
图9.2 D/A转换器框图
模拟电压输出
•3
1. 加权电阻网络D/A转换器的工作原理
VREF
K1
R1
K2
R2
K3
R3
Kn
Rn
微机原理与接口技术

精品课程微机原理多媒体课件
例:
234.98D或(234.98)D 1101.11B或(1101.11)B ABCD . BFH或(ABCD . BF) H
精品课程微机原理多媒体课件
二、各种进制数间的转换
1. 非十进制数到十进制数的转换:
按相应的权表达式展开
精品课程微机原理多媒体课件
即:商=00000010B 余数=11B
精品课程微机原理多媒体课件
无符号数的表示范围:
0 ≤ X ≤ 2n-1 若运算结果超出这个范围,则产生溢出。
对无符号数:运算时,当最高位向更高位 有进位(或借位)时则产生 溢出。
精品课程微机原理多媒体课件
[例]:
最高位向前有进位,产生溢出
精品课程微机原理多媒体课件
2. 十进制到非十进制数的转换
对二进制的转换:
对整数:除2取余;
对小数:乘2取整。
对十六进制的转换:
对整数:除16取余;
对小数:乘16取整。
精品课程微机原理多媒体课件
3. 二进制与十六进制间的转换
用4位二进制数表示1位十六进制
数
精品课程微机原理多媒体课件
§1.3 二进制数的运算
无符号数
有符号数 算术运算 逻辑运算
精品课程微机原理多媒体课件
2. 符号二进制数与十进制的转换
对用补码表示的二进制数: 1)求出真值 2)进行转换
精品课程微机原理多媒体课件
二、有符号数
计算机中的符号数可表示为: 符号位+真值 机器数 表示正, 表示负。
“0” “1”
精品课程微机原理多媒体课件
[例]:
+52 = +0110100 = 0 0110100 符号位 真值
第微机原理与接口技术清华大学ppt课件

ALE
8088 CPU
地址 锁存
数据 收发
地址总线 数据总线
总线 控制器
控制总线
两种任务方式的选择方式
8088是任务在最小还是最大方式由MN/MX端形 状决议。MN/MX=0任务于最大方式,反之任务 于最小方式
二、8088CPU的引线及功能
引脚定义的方法可大致分为: 每个引脚只传送一种信息〔RD等〕; 引脚电平的高低不同的信号〔IO/M等〕; CPU任务于不同方式有不同的称号和定义
保管运算结果特征
总线接口单元
功能:
从内存中取指令到指令预取队列
担任与内存或输入/输出接口之间的数据 传送
在执行转移程序时,BIU使指令预取队列 复位,从指定的新地址取指令EU和BIU两个 部分可同时进展任务,从而
提高了CPU的效率; 降低了对存储器存取速度的要求
AX BX CX DX
AH,AL BH,BL CH,CL DH,DL
数据存放器特有的习惯用法
AX:累加器。一切I/O指令都经过AX与接口传送
信息,中间运算结果也多放于AX中;
BX:基址存放器。在间接寻址中用于存放基地址;
CX:计数存放器。用于在循环或串操作指令
中存放计数值;
DX:数据存放器。在间接寻址的I/O指令中存放
串行任务方式
8088以前的CPU采用串行任务方式:
CPU 取指令1
分析 指令1
BUS 忙碌
执行 指令1
取指令2
分析 指令2
忙碌
执行 指令2
并行任务方式
8088CPU采用并行任务方式
EUCPU
取指令1
分析 指令1
取指令2
执行 指令1
分析 指令2
微机原理与接口技术课件PPT

1 统一编址方式
从存储器空间划出一部分地址空间给I/O设备,把I/O 接口中的端口当作存储器单元一样进行访问,不设置 专门的I/O指令 优点: 访问I/O端口可实现输入/输出操作,还可以对端口内 容进行算术逻辑运算、移位等等; 能给端口有较大的编址空间,这对大型控制系统和 数据通信系统是很有意义的;
2.状态信息
CPU 在传送数据信息之前,经常需要先了解外 设当前的状态。如输入设备的数据是否准备好 、输出设备是否忙等。
用于表征外设工作状态的信息就叫做状态信息, 它总是由外设通过接口输入给CPU的。 状态信息的长度不定,可以是1个二进制位或 多个,含义也随外1 为什么要设置接口电路
CPU与外设两者的信号线不兼容,在信号线功能定义、逻 辑定义和时序关系上都不一致 两者的工作速度不兼容,CPU速度高,外设速度低
若不通过接口,而由CPU直接对外设的操作实施控制,就 会使CPU处于穷于应付与外设打交道之中,大大降低CPU的 效率 若外部设备直接由CPU控制,也会使外设的硬件结构依赖 于CPU,对外设本身的发展不利。
用来发布控制命令、控制外设工作的 信息,例如A/D转换器的启停信号。
控制信息总是CPU通过接口发出的。
返 回
5.1.3 接口的基本功能
1 . 2. 3. 4. 5. 6 . 7. 8. 数据缓冲功能 端口选择功能 信号转换功能 接收和执行CPU命令的功能 中断管理功能 可编程功能 返回外设状态的功能 数据宽度与数据格式转换的功能
I/O端口地址选用的原则
凡是被系统配置所占用了的地址一律不能使用 原则上讲,未被占用的地址,用户可以选用,但 对计算机厂家申明保留的地址,不要使用,否则 会发生I/O地址重叠和冲突,造成用户开发的产品 与系统不兼容而失去使用价值 一般,用户可使用300~31FH地址
微机原理与接口技术清华大学版第4章 ppt课件

定义字符串必须用DB伪指令
例:
DATA1 DB ‘ABCD’,66H
41H ‘ 42H A‘’ 43H B‘’ 44H C‘’
66H D’
2020/12/27
4
1. 汇编语言源程序与汇编程序
汇编语言源程序
用助记符编写
汇编程序
源程序的编译程序
汇编语言 源程序
汇编程序
机器语言 目标程序
2020/12/27
5
2. 汇编语言程序设计与执行过程
输入汇编语言源程序(EDIT) 汇编(MASM) 链接(LINK) 调试(TD)
源文件 . ASM 目标文件 .OBJ 可执行文件.EXE 最终程序
20
取值运算符
用于分析存储器操作数的属性
OFFSET SEG
取得其后变量或标号的偏移地址 取得其后变量或标号的段地址
TYPE LENGTH SIZE
取变量的类型 取所定义存储区的长度 取所定义存储区的字节数
2020/12/27
21
取值运算符例
MOV AX,SEG DATA MOV DS,AX MOV BX,OFFSET DATA
[变量名] 伪指令助记符 操作数,… ;[注释]
表示符号地址
定义变量类型
定义变量值 及区域大小
2020/12/27
29
1. 数据定义伪指令助记符
DB DW DD DQ DT
定义的变量为字节型 定义的变量为字类型(双字节) 定义的变量为双字型(4字节)
定义的变量为4字型(8字节)
定义的变量为10字节型
例:
MOV AL,8 AND 4 MOV AL,8+4-1
2020/12/27
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
‚非‛运算
按位求反
‚异或‛运算
相同则为0,相异则为1
46
4.
译码器
各引脚功能
输入端与输出端关系(真值表)
掌握74LS138译码器
47
74LS138译码器
主要引脚及功能 G1 G2A G2B C B Y0
• • • •
A
Y7
48
三、机器数(有符号数)的运算
49
计算机中符号数的表示
写:
CPU将信息放入内存单元,单元中原来的内容被覆盖。
19
内存储器的分类
随机存取存储器(RAM)
按工作方 式可分为
只读存储器(ROM)
20
输入/输出接口
接口是CPU与外部设备间的桥梁
CPU
I/O
接口
外 设
21
接口的分类
串行接口 并行接口 数字接口 输入接口
输出接口
模拟接口
22
接口的功能
原码: -127 ~ +127
反码: -127 ~ +127 补码: -128 ~ +127
62
2. 符号二进制数与十进制的转换
对用补码表示的二进制数:
1)求出真值
2)进行转换
63
[例]:补码数转换为十进制数
[X]补=0 0101110B
正数
所以:真值=0101110B X=+46
[X]补=1 1010010B
73
2. 程序和指令
程序:
具有一定功能的指令的有序集合
指令:
由人向计算机发出的、能够为计算机所识别的命令。
74
3. 指令执行的一般过程
最高位为符号位(用‚0‛表示正,用‚1‛表 示负),其余为真值部分。
优点:
真值和其原码表示之间的对应关系简单,容易理解;
缺点:
计算机中用原码进行加减运算比较困难 0的表示不唯一。
53
数0的原码
8位数0的原码:+0=0 0000000
-0=1 0000000 即:数0的原码不唯一。
54
[-0]补= [-0]反+1=11111111+1
=1 00000000
对8位字长,进位被舍掉
60
特殊数10000000
对无符号数:(10000000)B=128
在原码中定义为: -0
在反码中定义为: -127
在补码中定义为: -128
61
符号数的表示范围
对8位二进制数:
机器数
计算机中的数据
构成:
符号位 + 真值
“ 0” “ 1”
表示正 表示负
50
[例]
+52 = +0110100 = 0 0110100
符号位 真值
-52 = -0110100 = 1 0110100
符号位
真值
51
1. 符号数的表示
机器数的表示方法:
原码
反码
补码
52
原码
66
符号数运算中的溢出问题
两个带符号二进制数相加或相减时,若运算结
果超出可表达范围,则产生溢出
溢出的判断方法:
最高位进位状态次高位进位状态=1,则结果溢出
67
[例]:
若:X=01111000, Y=01101001
则:X+Y=
01111000 01101001 11100001
次高位向最高位有进位,而最高位向前无进位,产生 溢出。 (事实上,两正数相加得出负数,结果出错)
5B.8H=5×161+11×160+8×16-1 =80+11+0.5 =91.5
ቤተ መጻሕፍቲ ባይዱ30
十进制到非十进制数的转换
到二进制的转换: 对整数:除2取余;
对小数:乘2取整。
到十六进制的转换:
对整数:除16取余;
对小数:乘16取整。
31
二进制与十六进制间的转换
用4位二进制数表示1位十六进制数 例:
25.5 = 11001.1B = 19.8H 11001010.0110101B =CA.6AH
32
3. 计算机中的编码
BCD码
用二进制编码表示的十进制数
ASCII码
西文字符编码
33
BCD码
压缩BCD码
用4位二进制码表示一位十进制数 每4位之间有一个空格
扩展BCD码
用8位二进制码表示一位十进制数,每4位之间有一 个空格。
68
结束语:
第1章难点:
补码的概念及其运算
69
第2章
微处理器与总线
70
主要内容:
微处理器的功能和结构
8088/8086微处理器
特点
主要引线功能和内部结构
内部寄存器 实地址模式下的存储器寻址 总线时序
71
总线
一、微处理器及8088/8086CPU
72
1. 微处理器
运算器 微处理器 控制器 内部寄存器
57
补码
定义:
若X>0, 则[X]补= [X]反= [X]原
若X<0, 则[X]补= [X]反+1
58
[例]
X= – 52= – 0110100
[X]原=10110100 [X]反=11001011 [X]补= [X]反+1=11001100
59
0的补码:
[+0]补= [+0]原=00000000
65
[例]
X=-0110100,Y=+1110100,求X+Y=?
[X]原=10110100
[X]补= [X]反+1=11001100 [Y]补= [Y]原=01110100 [X+Y]补= [X]补+ [Y]补 =11001100+01110100
=01000000
X+Y=+1000000
37
三、无符号二进制数的运算
算术运算
无符号数 二进 制数的运算 有符号数
38
逻辑运算
主要内容
无符号二进 制数的算术运算
无符号数的表达范围 运算中的溢出问题 无符号数的逻辑运算 基本逻辑门和译码器
39
1. 无符号数的算术运算
加法运算
1+1=0(有进位)
减法运算
0-1=1(有借位)
机器数的表示及运算 基本逻辑门及译码器
4
一、微型计算机系统
微型机的工作原理 微机系统的基本组成
5
1. 计算机的工作原理
冯
•
诺依曼计算机的工作原理
存储程序工作原理
6
存储程序原理
将计算过程描述为由许多条指令按一定顺序组 成的程序,并放入存储器保存
指令按其在存储器中存放的顺序执行;
H
28
2. 各种进制数间的转换
非十进制数到十进制数的转换
十进制到非十进制数的转换
二进制与十六进制数之间的转换
29
非十进制数到十进制数的转换
按相应的权值表达式展开
例:
1011.11B=1×23+0×22+1×21+1×20+1×2-1+ 1×2-2
=8+2+1+0.5+0.25 =11.75
系统软件
软件
应用软件
25
二、计算机中的数制和编码
数制和编码的表示 各种计数制之间的相互转换
26
1. 常用计数法
十进制(D) 二进制(B) 十六进制(H)
27
例:
234.98D或(234.98)D
1101.11B或(1101.11)B ABCD . BFH或(ABCD . BF)
乘法运算
除法运算
40
乘除运算例
00001011×0100
=00101100B
00001011÷0100=00000010B 即:商=00000010B
余数=11B
41
2. 无符号数的表示范围:
0 ≤ X ≤ 2n-1
若运算结果超出这个范围,则产生溢出。
对无符号数:运算时,当最高位向更高位 有进位(或借位)时则产生 溢出。
理解校验位的作用 熟悉0---F的ASCII码
36
ASCII码的奇偶校验
奇校验
加上校验位后编码中‚1‛的个数为奇数。 例:A的ASCII码是41H(1000001B)
以奇校验传送则为 C1H(11000001B)
偶校验
加上校验位后 编码中‚1‛的个数为偶数。
上例若以偶校验传送,则为 41H。
外设
微机系统
系统软件
软件系统 应用软件
13
微处理器
微处理器简称CPU,是计算机的核心。