聚合物改性-界面ppt

合集下载

接枝共聚改性课件

接枝共聚改性课件
1.最早的实例 硝酸铈盐
淀粉+丙烯腈 接枝共聚物 特点:① 共聚物吸水性能不好
② 必须在碱性条件下加压水解,-CN转变成亲水基团才具 有较好的吸水能力,此过程因物料粘度大而操作控制困难
③ 合成工艺过程长而且复杂
接枝共聚改性课件
2. 含亲水性基团(羧基、羧酸盐基、酰胺基)的乙烯基单体
水-甲醇混合物作溶剂
3)改变3种组分之间或的比例,按其配料组成的不同, ABS树脂可分为通用型,中抗冲型,高抗冲型,耐低温抗冲 型,耐热型,阻燃型,透明型,耐候型等品种。
接枝共聚改性课件
2.3.2 发展
1947年,美国橡胶公司 ,共混法工艺实现了工业化生产 1948年,美国橡胶公司 ,第一项ABS树脂专利 1954年,美国Borg-Warner公司的Marbon分公司,接
基,再用乙烯型单体继续对已辐照过的聚合物进行
处理,得到接枝共聚物。
辐射源:高能量ν射线
作用:① 聚合物无规地失去侧基或氢原子,产生自由基
ν辐射
~~~~~CH2CH2CH2~~~~ ~~~CH2CH·CH2~~~~ ② 主链断裂,产生自由基
CH3
|
ν辐射
CH3 |
~~~~CH2—C—CH2~~~~ ~~~~ CH — C· + ·CH2~~~~~
接枝共聚改性课件
2.2.2 高分子吸水树脂的特点及性能 高分子吸水树脂是一类高分子电解质 另外,高分子吸水树脂还具有 缓释作用 吸附作用 吸湿放湿作用 成膜、稳定性好
接枝共聚改性课件
2.2.3 合成机理 淀粉与单体制造吸水树脂合成机理是一种
自由基型接枝共聚。接枝共聚法、交联法
接枝共聚改性课件
一、接枝共聚 天然的多羟基物质(淀粉、纤维素)+乙烯基单体

PP与PE共混改性PPT优秀课件

PP与PE共混改性PPT优秀课件
16
试验流程:
称取试样 调温 机器预热 投料
称量
计算
出料
MFR计算公式 : 600W/t
单位:g/min
m——切取样条质量的算术平均值 t——切取时间间隔
17
实验数据统计:
试样 数量
(个 )
总量 (g )
单量 (g )
MFR
(g/10 min)
PP 7
1.2 0.171 3.4 4
PP/LD 6
断裂力值 (N) 893.7



75
75
50
1500 1200 1500
1090.9 1116.4 未
14.2 15.4


1090.5 1116.1
973.4 953.0
22
燃烧试验
• 仪器:铁架台,酒精喷灯,秒表 • 试样规格:长8.76㎝ • 试验过程:
各取PP,PP/LDPE试样五个,分别放在铁架台上 作水平燃烧试验,记录其在1min内所燃烧的长度。
• ④夹具夹持试样时,试样纵轴与上,下夹具中心线重合, 并防止试样滑脱,或断在夹具内。
• ⑤试样断裂在中间平行部分之外时,应另取试样补做。
21
实验数据统计:
PP
实验一
拉伸速度
100
(mm/min)
拉伸力值 (N) 1500
最大力值 (N) 1121.0
最大位移( 19.5 mm) 应服力值 (N) 1120.8
前言
1951 年制成了结晶聚丙烯,此后发展了PP/ PE 共混物,通过对聚丙烯进行共混改性,克服其纸 温脆性、易老化、耐候性差等缺点,使其综合性 能大大提高,进入了工程塑料领域,并成为通用工 程塑料及合金的强用力的对手。

聚合物共混改性原理与应用

聚合物共混改性原理与应用

❖ 填充剂对填充体系性能的影响 ①力学性能 ②结晶性能 ③热学性能 ④熔体流变性能
聚合物共混改性原理与应用
8.3 填充剂的表面改性
❖ 在填充改性聚合物中所使用的填料大部分是天然的或 人工合成的无机填料。这些无机填料无论是盐、氧化 物,还是金属粉体,都属于极性的、亲水性物质,当 它们分散于极性极小的有机高分子树脂中时,因极性 的差别,造成二者相容性不好,从而对填充塑料的加 工性能和制品的使用性能带来不良影响。因此对无机 填料表面进行适当处理,通过化学反应或物理方法使 其表面极性接近所填充的高分子树脂,改善其相容性 是十分必要的。
❖ 应用: 塑料
橡胶
④云母
❖ 成分:硅酸钾铝
❖ 形状:鳞片状
❖ 性能:有玻璃般光泽,良好的电绝缘性,加工
性能好。 ❖ 应用: 塑料
橡胶
聚合物共混改性原理与应用
⑤二氧化硅(白炭黑) ❖ 应用:塑料
橡胶 ⑥硅灰石 ❖ 成分:CaSiO3 ❖ 形状:针状 ❖ 性能:化学稳定性、电绝缘性好,吸油率低,
价格低廉。 ❖ 应用:
聚合物共混改性原理与应用
表面处理剂及作用机理
❖ 填料表面处理的作用机理基本上有两种类型:一是表面物理作用,包括表面涂覆(或称 为包覆)和表面吸附;二是表面化学作用,包括表面取代、水解、聚合和接枝等。
填料聚表合面物处共混理改物性理原作理用与示应意用 图
填料表聚合面物处共理混化改学性作原用理示与应意用图
中空玻璃微珠 ⑿金属粉末 ❖ 性能:提高导热性、降低膨胀系数、降低摩擦
力、防辐射。
聚合物共混改性原理与应用
⒀天然材料填充剂 木粉、竹纤维、麻纤维、秸秆纤维、果壳粉、淀 粉
聚合物共混改性原理与应用
❖ 增强纤维 ①玻璃纤维 性能:拉伸强度高而弹性模量低;热导率比较

第三章聚合物的表面改性 材料表界面课件

第三章聚合物的表面改性 材料表界面课件

interface will influence its properties.
-C-C-
Woven carbon fiber composite
-C-O -C=O
XPS limitations:
1. Inability to detect hydrogen (H) and Helium (He) 2. X-Ray beam diameter is wider (limit is about 150

3.3.2 火焰处理和热处理
● 火焰处理是用可燃性气体的热氧化焰对聚合物表面进行 瞬间高温燃烧,使其表面发生氧化反应而达到处理的⻋ 的。
可燃性气体通常采用焦炉煤气、甲烷、丙烷、丁烷、天然气和 一定比例的空气或氧气;
瞬间:0.01~0.1s内;高温:1000~2700 ℃; 氧化过程按自由基机理进行,表面可被氧化引入含氧基团,并 随着发生断链反应。
或单体在等离子体的作用下发生反应。
聚合物表面与氧等离子体发生的反应:
□ CO2,CO,H2O及其它含氧的气体在等离子状态下也 可分解为原子氧,也具有氧等离子作用。
□ 等离子体表面氧化反应是自由基连锁反应,反应不仅引 入了大量的含氧基团,如羰基,羧基及羟基,而且对材 料表面有刻蚀作用。
□ 氮等离子体中有N,N+,N-,N*等活性粒子,与聚合 物 表面自由基反应,引入含氮的活性基团。
Electromagnetic spectrum
Various processes (b, c) can take place after hole generation (a)
Why UHV for Surface Analysis?

Degree of Vacuum

聚合物共混与改性第五章 共混物的相容热力学和相界面

聚合物共混与改性第五章 共混物的相容热力学和相界面
在Spinodal曲线外侧, △Gm对x曲线是凹面向 上的,共混体系在这样的温度和组成条件下,其 均相结构是稳定的,或者至少是亚稳的。 反之,在Spinodal曲线内侧,△Gm对x关系曲线 是凹面向下的,在这样的温度和组成条件下,共 混体系会发生相分离。
2 G m x
2

0

2 G m x
12
聚合物共混改性原理

在相图5-6上的1号线,为热力学稳定区、亚稳区 2 G m 0 与不稳定区的界线,即Spinodal曲线(旋节线), 2 x 或称为不稳分相线。

图5-6下半部分,Spinodal曲线外侧的2号线,为 热力学稳定区与亚稳区的界线,称为Binodal曲线 (双节线)。
另外: 其中: ——相互作用参数; Vr——参比体积,即体系中一个重复单元的摩尔体积。
21
聚合物共混改性原理
5.1.4.2 二元相互作用能密度B与相互作用参数

由于△Hm=BAB,△Hm主要决定于B参数,所以,△Gm<0能否成立,
主要决定于B参数。

如果混合过程是放热的,即△Hm为负值(B为负值),由于△Sm恒为正 值,则 △Hm <T△Sm的条件必能得到满足。共混中放热的体系(B为负
同时存在UCST和LCST行为。
28
聚合物共混改性原理
(5)聚集态结构 聚集态结构对相容性也有影响。大多数含结晶聚合物的共混体系, 即使在熔融状态是热力学相容的,也会因结晶聚合物的结晶而发生相 分离。关于结晶聚合物共混体系的形态,见第4.6节。
29
聚合物共混改性原理
5.1.5 状态方程理论

状态方程理论研究多元体系的压力一体积一温度
2
x 2

聚合物的表面改性

聚合物的表面改性

使用等离子技术处理后的各种塑料材料粘接 强度数据对比
强度(Mpa)
12 10
8 6 4 2 0
未经处理直接粘接
处理后直接粘接
7.5.4 等离子体改性方法及其应用
1. 利用非聚合性气体(无机气体),如Ar、H2、O2、 N2、空气等的等离子体进行表面反应。
2. 利用有机气体单体进行等离子体反应。 3. 等离子体引发聚合和表面接枝。 应用:表面亲、疏水性改性、增加粘结性、改善印染
先用等离子体处理,使聚合物表面产生活性种, 然后引发乙烯基单体进行接枝聚合。
3、光、紫外线法 用光或紫外线可在高聚物表面进行接枝聚合。
7.6.2 偶合接枝法
偶合接枝法是利用高聚物表面的官能团与接枝 聚合物反应,而实现聚合物的表面改性。欲接枝的聚 合物表面必须存在活性官能团,如胺基、羧基等,偶 合接枝法常用于酶的固定。
7.5 等离子体表面改性
等离子体可定义为一种气体状态物质,其中含 有原子、分子、离子亚稳态和它们的激发态,还有 电子。而正电荷类物质与负电荷类物质的含量大致 相等。等离子态被称为“物质的第四态”。
7.5.1 等离子体的种类
有热等离子体、冷等离子体、混合等离子体 等,在聚合物表面改性中使用的一般是冷等离子 体或低温等离子体。
聚合物表面接枝原理
紫外光源
UV
光引发剂
RR
O
UV
R
RS
O
溶剂 单体
聚合物 基材
CH2=CHR
H
C
R
RT
O
H
1
.2
C
C
.
CHR CH2 3
C
4
C
7.6.1 接枝聚合法
1、放射线法 同时照射法和前照射法,是先对高聚物进行放射

第2章 聚合物的填充改性

第2章 聚合物的填充改性
填料的形状对填充改性的影响较大。填料形状大致可 分为圆球状、粒状、柱状、片状、纤维状等。一般来说, 纤维状、片状填料对复合材料的机械强度有利,但对于成 型加工性能不利;圆球状填料可提高材料的成型加工性能, 但降低材料的机械强度。 2. 填料的表面 (1)物理结构 :即粒子表面本身的形状和结构。
(2)化学结构:即粒子表面的化学性质,如氧化铝、二氧 化硅、二氧化钛的表面存在多种形式的羟基;碳黑具有很强 的反应性能,能与空气中氧,水反应形成羟基、羰基、羧基 等官能团。
二.填料-聚合物界面
1.填充聚合物组成
(1)聚合物 良好的综合性能;对填料有较强粘结力;良好的工艺性能。 (2)填料 填料颗粒的几何形状和颗粒粒径对填充量的影响 (3)偶联剂及表面处理剂 (4)其它助剂 增塑剂、增韧剂、稳定剂、润滑剂、分散剂、改性剂、着色剂
2.填充聚合物的形态
(1)宏观结构形 态
(3)硬度
硬度高提高耐磨性;损耗加工设备。
例如目前流行的铺地材料半硬质聚氯乙烯塑料地 板块,用石英做填料的制品非常耐磨和耐刻画,售 价尽管比碳酸钙填充的高1/3,聚氯乙烯仍然为人 们所欢迎。
(4)颜色及光学特性
基本要求:为对所填充的塑料基体的色泽不带来明显的变 化或避免对基体的着色带来不利影响通常都希望填料本身 是无色的,当然这对大多数填料是不可能的,但至少应当 是白色的,而且白度越高越好。
电子显微镜获得的界面信息主要有以下两种。
1)填料在聚合物基体中的分散情况。 2)填料与聚合物基体界面的粘附情况。
第二节 填料的种类和特性
一.填料的种类和作用 按化学组成可分为有机和无机填料; 按来源可分为合成和天然填料; 按外观形状可分为粒状、片状、纤维状及中空徽珠填
料; 按功能可分为增强剂和填充剂。

聚合物改性-界面

聚合物改性-界面
或反应基团; 在某聚合物上引入特殊作用基团; 加入第三组分进行增容; 两相之间产生部分交联,形成物理或化学缠结; 形成互穿网络结构(IPN); 改变加工工艺,施加强烈的力剪切作用等。
增容剂
当两种相容性较差的聚合物进行共混时,由于分 散相和连续相界面的张力过大,使两组分间缺乏 亲和性,故界面粘合力低,力学性能大幅度降低, 导致在加工或产品使用过程中会出现分层或断裂 现象。
研究高聚物多相体系的界面结构、界面的相容性与粘接作 用、界面上的残余应力、环境对界面的作用以及这些因素 对整体力学性能的影响,目的在于弄清关系以便找到提高 这种材料性能的有效措施。
聚合物共混物的界面
两种聚合物的共混物中存在三种区域结构:两种 聚合物各自独立的相和两相之间的界面层。界面 层也称为过渡区,在此区域发生两相的粘合和两 种聚合物链段之间的相互扩散。界面层的结构, 特别是两种聚合物之间的粘合强度,对共混物的 性质,特别是力学性能有决定性的影响。
transfer from one phase to the other is enhanced.
增容剂的作用
提高共混的分散度,使分散相颗粒细微化和均匀分布; 加强共混物两相间的粘合力,使不同相区间能更好地传递
所受的应力,使呈热力学不相容的共混物成为工艺相容的 共混物。
增容剂的基本考虑
能降低表面自由能,在混合过程中具有良 好的分散能力;
增容剂就是以界面活性剂的形式分布于共混物两 相界面处,使界面张力降低,增加共混组分之间 的相容性和强化聚合物之间的界面粘结。
Schematic sketch of the interfacial region of an immiscible blend composed of phase A, phase B, and an interfacial layer C.

聚合物共混改性原理第二章课件

聚合物共混改性原理第二章课件
.
第2章 聚合物共混物相容性
2.2.3.1.3 Flory—Huggins理论的缺陷
实验证明F-H 模型过分简化,不能解释大多数聚合物溶液和聚合物共混物的普遍特点:相容的聚合物共混物随着温度升高发生相分离;甚至不能定性解释,对浓度依赖的物理意义因为 F-H 理论在推导过程中作了如下假设:
.
第2章 聚合物共混物相容性
2、共聚物的组成
对于均聚物/共聚物体系,相容性与共聚物的组成有关。NBR的 与AN含量有关。用气体作探针表明,AN含量20一40% 时NBR/PVC的相容性不断增加。由电镜和Tg表明,NBR-18和AN含量26%的NBR-26与PVC只是有限相容,两相界面模糊,仅AN含量40%的NBR一40与PVC溶液共混时才是均相,只有一个Tg。在PVC/EVA中相容性随醋酸乙烯(VAC)含量的增加而增加,VAC含量为65-70%时共混物为单相,45%时为两相。对氯苯乙烯—邻氯苯乙烯共聚物与PPO共混时,在对氯苯乙烯含量23—64%范围内,用量热法观察到单一的Tg。苯乙烯(St)与AN的无规共聚物(SAN)与PMMA共混时,AN含量在9—27%范围内时,电镜和力学性能表明二者相容。
.
第2章 聚合物共混物相容性
2.2.3 聚合物—聚合物共混体系相容性的热力学理论
2.2.3.1 Flory—Huggins理论
2.2.3.1.1 基本理论
式中 为混合的吉布斯(Gibbs)自由能; 为混合焓; 为混合熵; T 为热力学温度。
但是,也有例外,极性高分子共混时也会不相容,如PVC/CR,PVC/CPE;非(弱)极性高分子共混时也会相容,如 PS/PPO。
.
第2章 聚合物共混物相容性
熔融共混物,与乳状液相似,其稳定性及分散度由界面两相的表面张力决定。对于高分子,当两相的接触角为零时,其界面张力 可用下式表示:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-
界面层示意图
聚乳酸的共混改性-界面
-
两相之间的粘合
就两相之间粘合力性质而言,界面层有两种基本类型
两相之间存在化学键,例如接枝和嵌段共聚物的情 况;
两相之间仅靠次价力作用而粘合,如一般机械法共 混物的情况。
-
共混物界面上的扩散现象
PP/PE片叠合起来制成层叠试样,用偏光显微镜和红外吸收光谱仪 来观察合拢后的高聚物界面上的输运现象。随热处理时间的延续, 界面上发生两相的高聚物相互输运,即1h左右即可达到100μm的 异种分子的相互扩散层。
③ 界面层内往往易聚集更多的表面活性剂及其他添加剂等杂 质,分子量较低的聚合物分子也易向界面层迁移。这种表 面活性剂等低分子量物越多,界面层越稳定,但对界面粘 结强度不利。
-
嵌段共聚物产生相分离结构,两 相之间同样存在界面层,和一般 共混体系不同的是在界面层内两 种嵌段是化学键联接,其结点都 存在于界面层中。
-
共混物相界面形态的两个基本模型
(a) 不相容体系、或相容性很小的体系,I组分与Ⅱ组分之间没 有过渡层。
(b) 两相组分之间具有一定相容性,I组分与Ⅱ组分之间存在一 个过渡层。-
界面层厚度
界面层的厚度主要取决于两种聚合物 的界面相容性,此外还与大分子链段 的尺寸、组成以及相分离条件有关。 不相容的聚合物,链段之间只有轻微 的相互扩散,界面层厚度很小,而且 聚合物之间的相界面很明显。随着聚 合物的相容性增加,扩散程度增大, 相界面越来越模糊,界面层厚度越来 越大,两相的黏合力增大。完全相容 的聚合物最终形成均相,相界面消失
PE相与PP相在180℃时的相互运输现象(曲线上 的数字是PE支化度的表示,数字越小则支化度越大)
-
界面上的扩散交叉现象示意图
在热处理中由 于热运动产生的 相互扩散对流, 使接触面形成凹 凸交叉的结果。
-
Price等用装有X射线光电子能量谱装置的扫描电镜来追踪
聚己内酰胺与聚氯乙稀的相互溶解过程,并由此来研究两
-
PA66/ABS/PTW blends
-
两种分子链段在界 面层充分接触,相 互渗透,以次价力 相互作用,形成较 强的界面粘结力。
共混物中两种聚合物之间相互扩散的示意图
-
界面层的结构组成和独立相区的差别
① 两种分子链的分布是不均匀的,从相区内到界面形成一浓 度梯度;
② 分子链比各自相区内排列松散,因而密度稍低于两相聚合 物的平均密度;
-
界面层的形成
聚合物共混物界面层的形成可分为两个步骤: 第一步是两相之间的相互接触; 第二步是两种聚合物大分子链段之间的相互扩散。
-
聚合物大分子链段的相互扩散有两种情况: 若两种聚合物大分子具有相近的活动性,则两大
分子链段以相近的速度相互扩散; 若两大分子的活动性相差很大,则两相之间扩散
速度差别很大,甚至发生单向扩散。
研究高聚物多相体系的界面结构、界面的相容性与粘接作 用、界面上的残余应力、环境对界面的作用以及这些因素 对整体力学性能的影响,目的在于弄清关系以便找到提高 这种材料性能的有效措施。
-
聚合物共混物的界面
两种聚合物的共混物中存在三种区域结构:两种 聚合物各自独立的相和两相之间的界面层。界面 层也称为过渡区,在此区域发生两相的粘合和两 种聚合物链段之间的相互扩散。界面层的结构, 特别是两种聚合物之间的粘合强度,对共混物的 性质,特别是力学性能有决定性的影响。
聚合物共混物界面设计
-
主要内容
聚合物共混物的界面 共混物界面上的扩散与界面层结构 改善界面层的方法 不相容聚合物共混物的增容
-
概述
界面对高聚物共混体系和高聚物基复合材料的力学性能起 到非常关键的作用;
界面能提供应力的传递,又能阻断裂纹的扩展以及在一定 的情况下将以脱粘和滑动摩擦等形式来吸收在承受外力时 所产生的破坏能。
-
两聚合物大分子链段相
互扩散的结果是两相均会
产生明显的浓度梯度,如
图所示,聚合物1向聚合物
2扩散时,其浓度逐渐诚小,
同样聚合物2在向聚合物1
扩散时,共浓度逐渐减小,
最终形成聚合物共存区,
界面层中两种聚合物链段的浓度梯度 1、聚合物1链段浓度
这个区域即为界面层
2、聚合物2链段浓度
-
两种聚合物共混时,相互接触的界 面层可能出现三种情况
由于具有热力学混溶性的两种聚合物是完全互溶的,两种大分 子链段强烈相互扩散,在强大的机械剪切力作用下,彼此结合 成为一种物质,这时已无相的界面存在,形成单相匀一状态。
聚合物的大分子链段相互扩散能力差,仅仅进行接触表面的扩 散,此时界面比较明显。
在界面上形成过渡层,大分子链段相互扩散,彼此可以进入对 方内部一定范围,形成在两者界面上一定厚度范围内同时存在 两种大分子链段,通常把这一定的厚度范围称为过渡层。
t=1min,x=77.5nm;t=1h,x=600nm。由此可见,界面上
发生的输运速度是足够快的。如果从共混物界面厚度理论
值的数量级来看,几个纳米的界面扩散应发生在1s之内,
说明界面达到平衡的时间是很短的。
-
嵌段共聚物微区消失与 生成过程的示意
Hashimoto等人把苯乙烯与异 戊二烯的嵌段共混物在高温下 用X射线小角散射来测定分相 微区的消失速度 。这种在室温 下的微区分相到高温时的链段 彼此均匀溶解状态,在200℃时 只须1min。这是因为微区的尺 寸在几十纳米时能够在短时间 内实现分子重排所致。
-
界面层结构
机械共混物中两种大分子链段在界面互相扩散的 程度主要取决于两种聚合物的溶解度参数、界面 张力和分子量等因素。
溶解度参数相近,两种分子容易相互扩散,界面 层较宽;完全不相容的共混体系,不会形成界面 层。
两种聚合物的表面张力接近,界面张力小,有利 于两相聚合物分子相互湿润和扩散。
-
相界面
嵌段共聚物界面层的形态随微区 的形态而改变,当微区是球状分 布,界面层是球壳状;当微区是 柱状分布,界面层是柱壳状;当 两相为层状交错结构,界面层也 是层状。
个分子态高聚物的相容性。除了对这种体系的共混物在实
验中观察界面接触层图像外,还追踪在界面上浓度分配的
ቤተ መጻሕፍቲ ባይዱ
时间变化,由此求出这两种高聚物之间的相互扩散系数D。
D大约处在10-12cm2·s-1的范围内。
根据E-instein公式:
x
(Dt)
1 2
可以算出t秒钟时的平均扩
散距离。结果t=1s时,x=10nm;t=5s,x=24.5nm;
相关文档
最新文档