实验九积分与微分电路

实验九积分与微分电路
实验九积分与微分电路

实验九积分与微分电路

学院:信息科学与技术学院专业:电子信息工程

姓名:刘晓旭

学号:2011117147

一.实验目的

1.掌握集成运算放大器的特点、性能及使用方法。

2.掌握比例求和电路、微积分电路的测试和分析方法。

3.掌握各电路的工作原理和理论计算方法。

二.实验仪器

1.数字万用表2.直流稳压电源3.双踪示波器4.信号发生器5.交流毫伏表。三.预习要求

1.分析图7-8 实验电路,若输入正弦波,u o 与u i 的相位差是多少?当输入信号为100Hz、有效值为2V时,u o =?

2.图7-8 电路中,若输入方波,u o 与u i 的相位差?当输入信号为160Hz幅值为1V时,输出

u o =?

3.拟定实验步骤,做好记录表格。

四.实验原理

集成运放可以构成积分及微分运算电路,如下图所示:

微积分电路的运算关系为:

五.实验内容:

1.积分电路

按照上图连接积分电路,检查无误后接通+12,-12V直流电源。

(1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值。

(2)取U i=1V,测量运放的负向饱和电压值。

(3)将电路中的积分电容改为改为0.1uF,u i分别输入1KHz幅值为2v的方波和正弦信号,观察u i和u o的大小及相位关系,并记录波形,计算电路的有效积分时间。

(4)改变电路的输入信号的频率,观察u i和u o的相位,幅值关系。

2.微分电路

实验电路如上图所示。

(1)输入正弦波信号,f=500Hz,有效值为1v,用示波器观察u i和u o的波形并测量输出电压值。

(2)改变正弦波频率(20Hz-40Hz),观察u i和u o的相位,幅值变化情况并记录。

(3)输入方波,f=200Hz,U=5V,用示波器观察u0波形,并重复上述实验。

(4)输入三角波,f=200Hz,U=2V,用示波器观察u0波形,并重复上述实验

3.积分-微分电路

实验电路如图所示

(1)输入f=200Hz,u=6V的方波信号,用示波器观察u i和u o的波形并记录。

(2)将f改为500Hz,重复上述实验。

解答:

1.(1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值

电路仿真图如下图所示:

积分电路的运算关系:

可得运放输出电压的正向饱和电压值为11.108V。

(2)ui= 1V,测量运放的负向饱和电压值。

可得运放输出电压的正向饱和电压值为11.108V。

(3)将电路中的积分电容改为改为0.1uF,u i分别输入1KHz幅值为2v的方波和正弦信号,观察u i和u o的大小及相位关系,并记录波形,计算电路的有效积分时间。

当为输入信号为方波时,输出为三角波,波形如下图:

当输入为正弦波时,有积分电路的关系可知,其电路输出也为正弦波,波形如下图所示:

由示波器观察可知,其输出波形的幅值比输入波形要小,相位落后π/4个周期。

有示波器可求得电路的有效积分时间为:0.025s,如下图所示:

测量上升或者下降的时间即可求出有效积分时间。

(4)改变电路的输入信号的频率,观察u i和u o的相位,幅值关系。

随着频率的增加,Vi与Vo的幅值减小,相位几乎不变。

2(1)输入正弦波信号,f=500Hz,有效值为1v,用示波器观察u i和u o的波形并测量输出电压值。

电路仿真原理图如下图所示:

输入正弦波信号,用示波器观察输出电压波形,如下图所示:

测得输出电压值为: 2.22v

(2)改变正弦波频率(20Hz-40Hz),观察u i和u o的相位,幅值变化情况并记录。

随着频率的增加,Vi与Vo的幅值增大,相位差不变。

(3)输入方波,f=200Hz,U=5V,用示波器观察u0波形,并重复上述实验. 在电容前加一个电阻,可起到衰减信号的作用,之后测得的输出信号波形为:

测得的输出电压为14.156V。改变输入频率,可得:

随着输入频率增大,其输出幅值也在增大,相位差不变。

(4)输入三角波,f=200Hz,U=2V,用示波器观察u0波形,并重复上述实验。测得输出信号的波形为:

输出电压值为 1.6v。改变输入频率,可得:

有图可知,随着输入频率的增加,输出波形的幅值也在随之增加,但相位差不变。

3积分——微分电路

电路仿真图如下所示:

(1)输入f=200Hz,u=6V的方波信号,用示波器观察u i和u o的波形并记录。

测得输出波形如下图所示:

(2)将f改为500Hz时,输出波形为:

由上图可知,该积分微分电路能大致恢复原始输入信号。

积分电路和微分电路

积分电路 这里介绍积分电路的一些常识。下面给出了积分电路的基本形式和波形图。 当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。而其充电电流则随着电压的上升而减小。电流通过电阻(R)、电容(C)的特性可有下面的公式表达: i = (V/R)e-(t/CR) ?i--充电电流(A); ?V--输入信号电压(V); ?C--电阻值(欧姆); ?e--自然对数常数(2.71828);

?t--信号电压作用时间(秒); ?CR--R、C常数(R*C) 由此我们可以找输出部分即电容上的电压为V-i*R,结合上面的计算,我们可以得出输出电压曲线计算公式为(其曲线见下图): Vc = V[1-e-(t/CR)]

微分电路 微分电路是电子线路中最常见的电路之一,弄清它的原理对我们看懂电路图、理解微分电路的作用很有帮助,这里我们将对微分电路做一个简单介绍。图1给出了一个标准的微分电路形式。为表达方便,这里我们使输入为频率为50Hz的方波,经过微分电路后,输出为变化很陡峭的曲线。图2是用示波器显示的输入和输出的波形。 当第一个方波电压加在微分电路的两端(输入端)时,电容C上的电压开始因充电而增加。而流过电容C的电流则随着充电电压的上升而下降。电流经过微分电路(R、C)的规律可用下面的公式来表达(可参考右图): i = (V/R)e-(t/CR)

?i-充电电流(A); ?v-输入信号电压(V); ?R-电路电阻值(欧姆); ?C-电路电容值(F); ?e-自然对数常数(2.71828); ?t-信号电压作用时间(秒); ?CR-R、C常数(R*C) 由此我们可以看出输出部分即电阻上的电压为i*R,结合上面的计算,我们可以得出输出电压曲线计算公式为(其曲线见下图): iR = V[e-(t/CR)]

积分电路和微分电路实验报告

竭诚为您提供优质文档/双击可除积分电路和微分电路实验报告 篇一:实验6积分与微分电路 实验6积分与微分电路 1.实验目的 学习使用运放组成积分和微分电路。 2.实验仪器 双踪示波器、信号发生器、交流毫伏表、数字万用表。 3.预习内容 1)阅读op07的“数据手册”,了解op07的性能。2)复习关于积分和微分电路的理论知识。3)阅读本次实验的教材。 4.实验内容 1)积分电路如图5.1。在理想条件下,为零时,则 dV(t)Vi(t) ??co,当c两端的初始电压Rdt Vo(t)?? 1t

Vi(t)dtRc?o 因此而得名为积分电路。 (1)取运放直流偏置为?12V,输入幅值Vi=-1V的阶跃电压,测量输出饱和电压和有效积分时间。 若输入为幅值Vi=-1V阶跃电压时,输出为 Vo(t)?? Vi1t Vdt??t,(1)i Rc?oRc 这时输出电压将随时间增长而线性上升。 通常运放存在输入直流失调电压,图6.1所示电路运放直流开路,运放以开环放大倍数放大输入直流失调电压,往往使运放输出限幅,即输出电压接近直流电源电压,输出饱和,运放不能正常工作。在op07的“数据手册”中,其输入直流失调电压的典型值为30μV;开环增益约为112db,即4×105。据此可以估算,当Vi=0V时,Vo=30μV×4×105=12V。电路实际输出接近直流偏置电压,已无法正常工作。 建议用以下方法。按图6.1接好电路后,将直流信号源输出端与此同时Vi相接,调整直流信号源,使其输出为-1V,将输出Vo接示波器输入,用示波器可观察到积分电路输出饱和。保持电路状态,关闭直流偏置电源,示波器x轴扫描

仿真实验一-RC微分积分电路

仿真实验一-RC微分积分电路

————————————————————————————————作者:————————————————————————————————日期:

一、RC 一阶微积分电路仿真实验 一、电路课程设计目的 1、测定RC 一阶电路的积分、微分电路; 2、掌握有关微分电路和积分电路的概念。 二、仿真电路设计原理 1.RC 电路的矩形脉冲响应 若将矩形脉冲序列信号加在电 压初值为零的RC 串联电路上, 电路的瞬变过程就周期性地发 生了。显然,RC 电路的脉冲响 应就是连续的电容充放电过程。 如图所示。 若矩形脉冲的幅度为U ,脉宽为 tp 。电容上的电压可表示为: 电阻上的电压可表示为: 21010 0)(0)1()(t t t e U t u t t e U t u t t ≤≤?=≤≤-=-- ττ 即当 0到t1时,电容被充电;当t1到t2 时,电容器经电阻R 放电。 2110 )(0)(t t t e U t u t t e U t u t R t R ≤≤?-=≤≤?=-- ττ (也可以这样解释:电容两端电压不能突变,电流可以,所以反映在图中就是电阻两端的电压发生了突变。) 2.RC 微分电路 取RC 串联电路中的电阻两端为输出端,并选择适当的电路参数使时间常数τ<

上式说明,输出电压uo(t)近似地与输入电压ui(t)成微分关系,所以这种电路称微分电路。 3.RC 积分电路 如果将RC 电路的电容两端作为输出端,电路参数满足τ>>tp 的条件,则成为积分电路。由于这种电路电容器充放电进行得很慢,因此电阻R 上的电压ur(t)近似等于输入电压ui(t),其输出电压uo(t)为: ????≈?=?==dt t u RC dt R t u C dt t i C t u t u R R C C )(1)(1)(1)()(0 上式表明,输出电压uo(t)与输入电压ui(t)近似地成积分关系。 4.时间常数 RC 电路中,时间常数τ=R*C ; RL 电路中,时间常数τ=L/R 。 三、仿真实验电路搭建与测试 1、一阶RC 微分电路: 1u c u

数值积分与数值微分实验报告

实验三 数值积分程序设计算法 1)实验目的 通过本次实验熟悉并掌握各种数值积分算法及如何在matlab 中通过设计程序实现这些算法,从而更好地解决实际中的问题。 2)实验题目 给出积分 dx x I ? -= 3 2 2 1 1 1.用Simpson 公式和N=8的复合Simpson 公式求积分的近似值. 2.用复合梯形公式、复合抛物线公式、龙贝格公式求定积分,要求绝对误差为 7 10*2 1-= ε,将计算结果与精确解做比较,并对计算结果进行分析。 3)实验原理与理论基础 Simpson 公式 )]()2 ( 4)([6 b f b a f a f a b S +++-= 复化梯形公式 将定积分? = b a dx x f I )(的积分区间],[b a 分隔为n 等分,各节点为 n j jh a x j ,,1,0, =+= n a b h -= 复合梯形(Trapz)公式为 ])()(2)([21 1 ∑-=++-= n j j n b f x f a f n a b T 如果将],[b a 分隔为2n 等分,而n a b h /)(-=不变, 则 )]()(2)(2)([41 2 111 2b f x f x f a f n a b T n j j n j j n +++-= ∑∑-=+-= 其中 h j a h x x j j )2 1(2 12 1+ +=+ =+ ,)]()(2)(2)([41 2 11 1 2b f x f x f a f n a b T n j j n j j n +++-= ∑∑-=+ -= ∑ -=-++-+ =1 )2) 12((22 1n j n n a b j a f n a b T n=1时,a b h -=,则)]()([2 1b f a f a b T +-= )0(0T = )2 1(2 2 112h a f a b T T + -+ =)1(0T = 若12-=k n ,记)1(0-=k T T n , ,2,1=k 1 2 --= k a b h jh a x j +=1 2 --+=k a b j a h x x j j 2 12 1+ =+ k a b j a 2 ) 12(-++=,则可得如下递推公式

实验九 积分与微分电路

实验九积分与微分电路 学院:信息科学与技术学院专业:电子信息工程 姓名:刘晓旭 学号:2011117147

一.实验目的 1.掌握集成运算放大器的特点、性能及使用方法。 2.掌握比例求和电路、微积分电路的测试和分析方法。 3.掌握各电路的工作原理和理论计算方法。 二.实验仪器 1.数字万用表2.直流稳压电源3.双踪示波器4.信号发生器5.交流毫伏表。三.预习要求 1.分析图7-8 实验电路,若输入正弦波,u o 与u i 的相位差是多少?当输入信号为100Hz、有 效值为2V时,u o =? 2.图7-8 电路中,若输入方波,u o 与u i 的相位差?当输入信号为160Hz幅值为1V时,输出 u o =? 3.拟定实验步骤,做好记录表格。 四.实验原理 集成运放可以构成积分及微分运算电路,如下图所示: 微积分电路的运算关系为: 五.实验内容: 1.积分电路 按照上图连接积分电路,检查无误后接通+12,-12V直流电源。 (1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值。

(2)取U i=1V,测量运放的负向饱和电压值。 (3)将电路中的积分电容改为改为0.1uF,u i分别输入1KHz幅值为2v的方波和正弦信号,观察u i和u o的大小及相位关系,并记录波形,计算电路的有效积分时间。 (4)改变电路的输入信号的频率,观察u i和u o的相位,幅值关系。 2.微分电路 实验电路如上图所示。 (1)输入正弦波信号,f=500Hz,有效值为1v,用示波器观察u i和u o的波形并测量输出电压值。 (2)改变正弦波频率(20Hz-40Hz),观察u i和u o的相位,幅值变化情况并记录。 (3)输入方波,f=200Hz,U=5V,用示波器观察u0波形,并重复上述实验。 (4)输入三角波,f=200Hz,U=2V,用示波器观察u0波形,并重复上述实验 3.积分-微分电路 实验电路如图所示 (1)输入f=200Hz,u=6V的方波信号,用示波器观察u i和u o的波形并记录。 (2)将f改为500Hz,重复上述实验。 解答: 1.(1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值 电路仿真图如下图所示:

实验4_数值积分与数值微分

数值分析实验报告四 数值积分与数值微分实验(2学时) 一 实验目的 1.掌握复化的梯形公式、Simpson 公式等牛顿-柯特斯公式计算积分。 2. 掌握数值微分的计算方法。 二 实验内容 1. 用复化梯形公式计算积分。 ?9 0dx x M=8 2. 用复化Simpson 公式计算积分。 ? 90dx x M=8 3. 给定下列表格值 利用四点式(n=3)求)50()50('''f f 和的值。 三 实验步骤(算法)与结果 1复化梯形公式 用C 语言编程如下: #include #include /*被积函数的定义*/ float f(float x) {

float y; y=sqrt(x); return y; } void main() { int i,m; float a,b,h,r; printf("输入等分数m:" ); scanf("%d",&m); printf("输入区间左端点a的值:"); scanf("%f",&a); printf("输入区间右端点b的值:"); scanf("%f",&b); float x[m+1]; h=(b-a)/m; for(i=0;i<=m;i++) x[i]=a+i*h; r=0; for(i=0;i<=m;i++) {if(i==0) r=r+h*0.5*f(x[i]); if(i>0&&i

if(i==m) r=r+0.5*h*f(x[i]); } printf("输出区间[%3.1f %3.1f]的积分值:%f\n",a,b,r); } 求解结果如下: 输入等分数m:8 输入区间左端点a的值:0 输入区间右端点b的值:9 输出区间[0.0 9.0]的积分值:17.769514 2复化Simpson公式 用C语言编程如下: #include #include /*被积函数的定义*/ float f(float x) { float y; y=sqrt(x); return y; } void main()

微分和积分电路的异同

电子知识 微分电路(13)积分电路(20) 输出电压与输入电压成微分关系的电路为微分电路,通常由电容和电阻组成;输出电压与输入电压成积分关系的电路为积分电路,通常由电阻和电容组成。微分电路、积分电路可以分别产生尖脉冲和三角波形的响应。积分运算和微分运算互为逆运算,在自控系统中,常用积分电路和微分电路作为调节环节;此外,他们还广泛应用于波形的产生和变换以及仪器仪表之中。以集成运放作为放大电路,利用电阻和电容作为反馈网络,可以实现这两种运算电路。 (一)积分电路和微分电路的特点 1:积分电路可以使输入方波转换成三角波或者斜波 微分电路可以使使输入方波转换成尖脉冲波 2:积分电路电阻串联在主电路中,电容在干路中 微分则相反 3:积分电路的时间常数t要大于或者等于10倍输入脉冲宽度 微分电路的时间常数t要小于或者等于1/10倍的输入脉冲宽度 (二)他们被广泛的用于自控系统中的调节环节中,此外还广泛应用于波形的产生和变换以及仪表之中。 (三)验证:你比如说产生三角波的方法,有这样两个简单的办法,第一就是在方波发生电路中,当滞回比较器的阈值电压数值比较小时,咱们就可以把电容两端的电压看成三角波,第二呢直接把方波电压作为积分运算电路的发生电路的输出电压uo1=+Uz,时积分电路的输出电压uo将线性下降;而当

uo1=-Uz时,uo将线性上升;从而产生三角波,这时你就会发现两种方法产生的三角波的效果还是第二种的好,因为第一种方法产生的三角波线性度太差,而且如果带负载后将会使电路的性能发生变化。你可以用我说的这两种方法分别试试就知道差别优势了。 积分电路和微分电路当然是对信号求积分与求微分的电路了,它最简单的构成是一个运算放大器,一个电阻R和一个电容C,运放的负极接地,正极接电容,输出端Uo再与正极接接一个电阻就是微分电路,设正极输入Ui,则Uo=-RC(dUi/dt)。 当电容位置和电阻互换一下就是积分电路,Uo=-1/RC*(Ui 对时间t的积分),这两种电路就是用来求积分与微分的。方波输入积分电路积分出来就是三角波,而输入微分电路出来就是尖脉冲。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准

实验六(选) 积分与微分电路

实验六(选)积分与微分电路 一、实验目的 1、学会用运算放大器组成积分微分电路。 2、学会积分微分电路的特点及性能。 二、实验仪器 1、数字万用表 2、信号发生器 3、双踪示波器 三、预习要求 l、分析图6-1电路,若输入正弦波,V0与V i 相位差是多少当输入信号为100Hz 有效值为2V时,V0= 2、分析图6-2电路,若输入方波,V0与V i 相位差多少当输入信号为160Hz幅值为l V时,输出V0= 3、拟定实验步骤、做好记录表格。 四、实验内容 l、积分电路 实验电路如图6-1所示

图6-1积分电路 (1)取Vi= - lV,断开开关K(开关K用一连线代替,拔出连线一端作为断开。用示波器观察Vo变化。 (2)测量饱和输出电压及有效积分时间。 (3)使图6-1中积分电容改为μ,断开K,Vi分别输入100Hz幅值为2V的方波和正弦波信号,观察Vi和Vo大小及相位关系,并记录波形。 (4)改变图6-1电路的频率,观察Vi与Vo的相位,幅值关系。 2、微分电路 实验电路如图6-2所示。 图6-2微分电路 (1) 输入正弦波信号,f =160Hz有效值为lV,用示波器观察Vi与Vo波形并测量输出电压。 (2) 改变正弦波频率(20HZ ~ 400HZ),观察Vi与Vo的相位、幅值变化情况并记录。

(3) 输入方波,f =200Hz,V=士5V,用示波器观察V0波形,按上述步骤重复实验步骤重复实验。 3、积分微分电路 实验电路如图6-3所示 图6-3积分微分电路 (1)在Vi输入f =200Hz,V=士6V的方波信号,用示波器观察Vi和V0的波形并记录。 (2)将f改为500Hz重复上述实验。 五、实验报告 1、整理实验中的数据及波形,总结积分、微分电路特点。 2、分析实验结果与理论计算的误差原因。

积分与微分电路实验

积分与微分电路实验 实验目的 1.掌握使用集成运算放大器构成积分微分电路的方法; 2.了解积分微分电路的特点及性能。 实验仪器 1.模拟电子实验箱; 2.双踪示波器; 3.数字式万用表。 预习要求 1.分析图 2.1 电路,若输入正弦波,Vo 与Vi 相位差是多少? 当输入信号为100Hz 有 效值为2V; 2.分析图2.2 电路,若输入正弦波,Vo 与Vi 相位差多少? 当输入信号为160Hz 幅值 为1V 时,列出计算公式,画好记录表格。 实验内容 1.积分电路 实验电路如图3.1所示。 图3.1 积分电路 (1)取Vi=01V,断开开关K(开关K用一连线代替,拔出连线一端作为断开。)用示波器观察Vo变化。 (2)测量饱和输出电压及有效积分时间。 (3)将图3.1 中积分电容改为0.1u,在积分电容两端并接100K 电阻,Vi 分别输入频率为lOOHz幅值为±1V(Vp-p=2V)的正弦波信号,观察和比较Vi 和Vo 的幅值大小及相位关系,并记录波形。 (4)改变信号频率为1KHz,观察Vi 与Vo 的相位、幅值关系。 2.微分电路 实验电路如图3.2 所示。

图3.2 微分电路 (1)输入正弦波信号,f=160Hz 有效值为1V,用示波器观察Vi 与Vo 波形并测量输出电压。 (2)改变正弦波频率为20~400Hz,观察Vi 与Vo 的相位、幅值变化情况并记录。 (3)输入方波,f=200Hz,V=±5V,用示波器观察Vo波形,按上述步骤重复实验步骤重复实验。 3.积分——微分电路: 实验电路如图3.3 所示。 图3.3 积分——微分电路 (1)在Vi 输入f=200Hz,V=±6V 的正弦波信号,用示波器观察Vi 和Vo 的波形并记录。 (2)将f 改为500Hz,重复上述实验。 实验报告 1.整理实验中的数据及波形。 2.分析实验结果与理论计算的误差原因。 思考题 1.总结积分、微分电路的特点。 2.若增大积分时间常数,应如何调整电路?

积分电路和微分电路

什么是积分电路 输出信号与输入信号的积分成正比的电路,称为积分电路。 基本积分电路: 积分电路如下图所示,积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。 原理:从图得,Uo=Uc=(1/C)/icdt,因Ui=UR+Uo当t=to 时,Uc=Oo随后C 充电,由于ROTk,充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故 Uo=(1/c) / icdt=(1/RC) / Uidt 这就是输出Uo正比于输入Ui的积分(/ Uidt ) RC电路的积分条件:RO Tk 积分电路的作用: 积分电路能将方波转换成三角波,积分电路具有延迟作用,积分电路还有移相作用。积分电路的应用很广,它是模拟电子计算机的基本组成单元,在控制和测量系统中也常常用到积分电路。此外,积分电路还可用于延时和定时。在各种波形(矩形波、锯齿波等)发生电路中,积分电路也是重要的组成部分。 微分电路 可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换

的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10 就可以了。 积分电路 这里介绍积分电路的一些常识。下面给出了积分电路的基本形式和波形图 R=10K o輸出 匚=0-3 F=5OHZ o ---- 当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。而其充电电流则随着电压的上升而减小。电流通过电阻(R)、电容(C)的特性可有下面的公式表达:

实验六 比例求和运算及其微积分电路

实验六 比例求和运算及微积分电路 实验内容及步骤 1 .搭接电压跟随器并验证其跟随特性。 仿真图如上 输出输入波形重合,其跟随特性得以验证. 实测数据显示Uo=Ui,验证运放性能良好。 2 .测量反相比例电路的比例系数。

由图:为反相比例放大,输入电压为10mv,输出电压为100mv,且输出波形与输入波形反相,放大倍数10。 理论值:Uo=-Rf/Ri*Ui=-10Ui,反相比例系数为-10. 实测数据如下: 分析,Uo与Ui反相,反相比例电路的比例系数为-10. 3 .测量同相比例放大器的比例系数及上限截止频率。 仿真图如下:

输入输出波形如下 由图:Ui=10mv,Uo=100mv,且输入输出同相,放大系数约为10倍。 实测数据如下: 所以实际放大倍数约为11,与理论值接近。 测量截止频率:首先将函数发生器的输入电压幅值调为20mv,此时观察示波器输出约为0.22v,然后调节函数发生器的调频旋钮,随着频率增大,当Uo=0.22*0.707=0.15554v时,对应电压即为上限截止频率,fh=94.78khz. 4 .测量反相求和电路的求和特性。

分析:输入Ui1=20mv,Ui2=10mv,输出Uo=2.5v,且输出与输入反相。理论值:Uo=-(R3/R2*Ui1+R3/R1*Ui2)=-(10*Ui1+10*Ui2) 5 .验证双端输入求和电路的运算关系。

输入输出波形: 输入电压Ui2为20mv,Ui1为10mv,输出Uo为100mv。 理论值:Uo=Rf/R1(Ui2-Ui1)=10(Ui2-Ui1) ∵实验值Uo与理论值Uo接近,∴双端输入求和电路的运算关系为Uo=Rf/R1(Ui2-Ui1) 6 .积分电路 按照图7-8(a )连接积分电路,检查无误后接通±12V 直流电源。

积分电路与微分电路

积分电路与微分电路 积分电路和微分电路实验的目的和要求 1: (1)进一步掌握微分电路和积分电路的相关知识(2)学会使用运算放大器形成积分微分电路 (3)设计了一个RC差分电路,将方波转换成锐脉冲波(4)设计了一个RC积分电路,将方波转换成三角波(5)进一步学习和熟悉Multisim软件的使用(6)得出分析结论,写出模拟经验 工作原理: 积分电路: 积分是一种常见的数学运算,同时积分电路是一种常见的波形转换电路,它是一种将矩形脉冲(或方波)转换成三角波的电路最简单的集成电路(一阶RC电路)在 实验中,增加了一个运算放大器。原理图如下: 使用虚拟接地和虚拟断路的概念:n?0,i1?i2?I,电流为i1的电容器c?充电V1/电阻假设电容器c的初始电压为vc(o)?0,输出电压为 1 V0=?钢筋混凝土?vdt 1的上述公式表明,输出电压V0是输入电压Vi随时间的积分,负号表示它们相位相反。

当输入信号Vi为阶跃电压(方波)时,电容将在其作用下以近似恒定的电流模式充电,输出电压V0与时间t近似线性,因此 viviv??t。?到 RC?其中τ=R C是 中的时间常数由此可以推断,运算放大器的输出电压的最大V om受到DC调节电源的限制,这导致运算放大器进入饱和状态,V o保持不变,并且积分停止 差分电路: 替换积分电路中的电阻和电容元件,并选择较小的时间常数RC,以获得如图4所示的差分电路该电路还具有虚拟接地和虚拟断路 图4差分电路与运算放大器 设置t=0,电容的初始电压Vc(0)=0,当信号卡电压Vi连接时,dvii??c有1个dtdv??RC odt 的公式显示,输出电压V o与输入电压Vi相对于时间的微分成比例,负号表示它们的相位相反。当输入信号是方波时,电路可以将方波转换成尖峰脉冲波。 实验内容 我们先画出差分和积分电路图,然后进行实验,观察输出波形 差分电路图:

积分电路和微分电路 实验报告书

积分电路和微分电路实验报告书学号:姓名:学习中心:

(1)按如图连接电路 (2)设置信号发生器的输出频率为1HZ,幅值为5V的方波,如图 (3)激活仿真电路 双击示波器图标弹出示波器面板,观察并分析示波器波形

(4)按表1给出的电路参数依次设置R和C的取值,分别激活仿真运行,双击示波器图标,弹出示波器面板,给出输入/输出信号的波形图,并说明R和C的取值对输出信号的影响表1 实验电路参数 序号输入为方波信号电路参数 频率/HZ幅值/V R/KO C/uF 1 1 5 100 1 2 1 5 100 2 3 1 5 100 4.7 2.微分电路实验 (1)按图连接电路 (2)设置R和C (3)激活电路仿真运行, (4)双击示波器的面板,给出输入/输出信号的波形图 (5)说明R和C的取值对输出信号的影响

表2 实验电路参数 序号输入为方波信号电路参数 频率/HZ幅值/V R/KO C/uF 1 1 5 100 1 2 1 5 100 2 3 1 5 100 4.7

三、实验过程原始数据(数据、图表、计算等) 1.积分电路实验 R=100KO,C=1uF R=100 KO C=2UF R=100KO C=4.7uF 2.微分电路实验 R=100KO,C=1uF

R=100 KO C=2UF R=100KO C=4.7uF 四、实验结果及分析 积分电路实验 由积分电路的特点:时间常数t远大于输入信号的周期T,在此条件下Uc(t)<

仿真实验一 RC微分积分电路

一、RC 一阶微积分电路仿真实验 一、电路课程设计目的 1、测定RC 一阶电路的积分、微分电路; 2、掌握有关微分电路和积分电路的概念。 二、仿真电路设计原理 1.RC 电路的矩形脉冲响应 若将矩形脉冲序列信号加 在电压初值为零的RC 串联电路 上,电路的瞬变过程就周期性地 发生了。显然,RC 电路的脉冲 响应就是连续的电容充放电过 程。如图所示。 若矩形脉冲的幅度为U ,脉 宽为tp 。电容上的电压可表示为: 电阻上的电压可表示为: 21010 0)(0)1()(t t t e U t u t t e U t u t t ≤≤?=≤≤-=--K Λττ 即当 0到t1时,电容被充电;当t1到t2 时,电容器经电阻R 放电。 2110 )(0)(t t t e U t u t t e U t u t R t R ≤≤?-=≤≤?=--K Λττ (也可以这样解释:电容两端电压不能突变,电流可以,所以反映在图中就是电阻两端的电压发生了突变。) 2.RC 微分电路 取RC 串联电路中的电阻两端为输出端,并选择适当的电路参数使时间常数τ<

dt t du RC dt du RC i R t u i C C )()(0?≈?=?= 上式说明,输出电压uo(t)近似地与输入电压ui(t)成微分关系,所以这种电路称微分电路。 3.RC 积分电路 如果将RC 电路的电容两端作为输出端,电路参数满足τ>>tp 的条件,则成为积分电路。由于这种电路电容器充放电进行得很慢,因此电阻R 上的电压ur(t)近似等于输入电压ui(t),其输出电压uo(t)为: ? ???≈?=?==dt t u RC dt R t u C dt t i C t u t u R R C C )(1)(1)(1)()(0 上式表明,输出电压uo(t)与输入电压ui(t)近似地成积分关系。 4.时间常数 RC 电路中,时间常数τ=R*C ; RL 电路中,时间常数τ=L/R 。 三、仿真实验电路搭建与测试 1、一阶RC 微分电路: 1u c u

积分电路和微分电路实验报告

积分电路和微分电路实验报告 篇一:积分电路与微分电路实验报告 四、积分电路与微分电路 目的及要求:(1)进一步掌握微分电路和积分电路的相关知识。 (2)学会用运算放大器组成积分微分电路。 (3)设计一个RC微分电路,将方波变换成尖脉冲波。(4)设计一个RC积分电路,将方波变换成三角波。(5)进一步学习和熟悉Multisim软件的使用。(6)得出结论进行分析并写出仿真体会。 一.积分电路与微分电路 1. 积分电路及其产生波形 1.1运算放大器组成的积分电路及其波形 设计电路图如图所示: 图 1.1积分电路 其工作原理为:积分电路主要用于产生三角波,输出电压对时间的变化率与输入阶跃电压的负值成正比,与积分时间常数成反比,即 ?U0?t ?? UinR1C 式中,R1C积分时间常数,Uin为输入阶跃电压。

反馈电阻Rf的主要作用是防止运算放大器LM741饱和。 C为加速电容,当输入电压为方波时,输入端U01的高电平等于正电源?Vcc,低电平等于负电源电压?Vdd,比较器的U??U??0时,比较器翻转,输入U01从高电平跳到低电平?Vdd。输出的是一个上升速度与下降速度相等的三角波形。 图1.2积分电路产生的波形 1.2微分电路及其产生波形 2. 运算放大器组成的微分电路及其波形 设计的微分电路图: 图2.1微分电路 其工作原理为:将积分电路中的电阻与电容对换位子,并选用比较小的 时间常数RC,便得到了微分电路。微分电路中,输出电压与输入电压对时间的变化率的负值成正比,与微分时间常数成反比,所以 Rin U0??RfC ?U?t in 的主要作用是防止运放LM741产生自激振荡。v0??RCdV/dt,输出 电压正比与输入电压对时间的微商,符号表示相位相反,

实验七 积分与微分电路

实验七积分与微分电路 一、实验目的 1.学会用运算放大器组成积分微分电路。 2.学会积分微分电路的特点及性能。 二、实验仪器 1.数字万用表。 2.信号发生器。 3.双踪示波器。 三、预习要求 1.分析图7.1,若输入正弦波,V o与V i相位差是多少?当输入信号为100Hz 有效值为2V时,V o=? 2.分析图7.2电路,若输入方波,V o与V i相位差是多少?当输入信号为160Hz有效值为1V时,输出V o=? 3.拟定实验步骤、做好记录表格。 四、实验内容 1.积分电路: 实验电路如图7.1所示 (1)取V i=-1V,断开开关K(开关K用一连线代替,拔出连线一端作为断开)用示波器观察V o的变化。 (2)测量饱和输出电压及有效积分时间。 (3)使图7.1中积分电容改为0.1u,断开K,V i分别输入100Hz幅值为2V 的方波和正弦波信号,观察V o和V i大小及相位关系,并记录波形。

(4)改变图7.1电路的频率,观察V o和V i的相位,幅值关系。当f=1000Hz时

2.微分电路 实验电路如图7.2所示。 (1)输入正弦波信号,f=160Hz有效值为1V,用示波器观察V o与V i波形并测量输出电压。

由上图V o=9V (2)改变正弦波频率(20Hz~400Hz),观察V o和V i的相位、幅值变化情况并记录。 f=300Hz (3)输入方波,f=200Hz,V=+-5V,用示波器观察V o波形;按上述步骤重复试验。

V=5V 3.积分——微分电路 实验电路如图7.3所示 (1)在V i输入f=200Hz,V=+-6V的方波信号,用示波器观察V o和V i的波形并记录。

实验1-积分器和微分器29上课讲义

实验1 积分器和微分器(uA741) 13223529 电信132 一.实验目的 1.学会用集成运放设计积分器和微分器,熟悉电路原理和原件参数的计算; 2.熟悉积分器和微分器的特点、性能,并学会应用。 二.实验内容 1.电路设计与仿真 用Multisim软件对积分器和微分器电路进行仿真,并记录仿真结果。 2.积分器 (1)调零:将输入端ui1接地,用数字万用表测输出电压 uO1,调节调零电位器Rp1,直至UO1=0(或UO1≈0)。 (2)输入方波信号: ①用信号发生器,在输入端ui1加入方波信号,频率为100Hz,电压幅度为±2V。用数字示波器观察ui1、uO1的波形,并记录其数值。 ②输入信号的电压幅度不变,改变频率,观察并记录ui1、uO1的波形。 ③输入信号的频率不变,改变电压幅度,观察并记录ui1、uO1的波形。

(4)输入正弦波: ①用信号发生器,在输入端ui1加入正弦波信号,频率为100Hz,电压有效值为1V。用数字示波器观察ui1、uO1波形及相位差,并记录其数值。 Ui1=1V,Uo1=1.5V,相位差为90度 图1-4 ②改变正弦波信号的频率,观察并记录ui1、uO1的波形及相位差。

图1-5 Ui1=1V,Uo1=1V, 相位差为45度 3.微分器 (1)调零: 将输入端ui2接地,用数字万用表测输出电压uO2,调节调零电位器Rp2,直至UO2=0(或UO2≈0)。 (2)输入方波信号: 用信号发生器,在输入端ui2加入方波信号,频率为200Hz,电压幅度为±2V。用数字示波器观察ui2、uO2的波形,并记录其数值。 图1-6 (3)输入正弦波: ①用信号发生器,在输入端ui2加入正弦波信号,频率为160Hz,电压有效值为1V。观察并记录ui2、uO2的波形及相位差。

RC积分电路与微分电路

1 无源微、积分电路 (一).输出信号与输入信号的微分成正比的电路,称为微分电路。 原理:从图1得:)(dt dU RC C R U C i O ==,因O C i U U U ==,当,0t t =时,0=C U ,所以0i O U U =随后C 充电,因RC≤Tk,充电很快,可以认为i C U U =,则有: dt dU RC dt dU RC U i C O == ---------------------式1 这就是输出O U 正比于输入i U 的微分dt dU i RC 电路的微分条件:RC≤Tk (二)输出信号与输入信号的积分成正比的电路,称为积分电路。 原理:从图2得,?= =iCdt C U U C O 1,因O R i U U U +=,当0t t =时,C O U U =.随后C 充电,由于RC≥Tk,充电很慢,所以认为C R U U i R i ==,即R U iC i =,故 ??==iCdt RC iCdt C U O 11 这就是输出O U Uo 正比于输入i U 的积分?iCdt . RC 电路的积分条件:RC≥Tk (三) 积分电路和微分电路的特点 积分电路和微分电路的特点 1:积分电路可以使输入方波转换成三角波或者斜波 图 1 图2

微分电路可以使使输入方波转换成尖脉冲波 2:积分电路电阻串联在主电路中,电容在干路中 微分则相反 3:积分电路的时间常数t要大于或者等于10倍输入脉冲宽度 微分电路的时间常数t要小于或者等于1/10倍的输入脉冲宽度 4:积分电路输入和输出成积分关系 微分电路输入和输出成微分关系 微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10就可以了。 积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于 积分电路能将方波转换成三角波。 积分电路具有延迟作用。 积分电路还有移相作用。 积分电路的应用很广,它是模拟电子计算机的基本组成单元。在控制和测量系统中也常常用到积分电路。此外,积分电路还可用于延时和定时。在各种波形(矩形波、锯齿波等)发生电路中,积分电路也是重要的组成部分。(四)验证:你比如说产生三角波的方法,有这样两个简单的办法,第一就是在方波发生电路中,当滞回比较器的阈值电压数值比较小时,咱们就可以把电容两端的电压看成三角波,第二呢直接吧方波电压作为积分运算电路的发生电路的输出电压uo1=+Uz,时积分电路的输出电压uo将线性下降;而当uo1=-Uz时,uo

实验五 数值积分与数值微分

实验四 数值积分与数值微分 实验4.1 (高斯数值积分方法用于积分方程求解) 问题提出:线性的积分方程的数值求解,可以被转化为线性代数方程组的求解问题。而线性代数方程组所含未知数的个数,与用来离散积分的数值方法的节点个数相同。在节点数相同的前提下,高斯数值积分方法有较高的代数精度,用它通常会得到较好的结果。 实验内容:求解第二类Fredholm 积分方程 b t a t f ds s y s t k t y b a ≤≤+=?),()(),()( 首先将积分区间[a,b]等分成n 份,在每个子区间上离散方程中的积分就得到线性代数方程组。 实验要求:分别使用如下方法,离散积分方程中的积分 1.复化梯形方法; 2.复化辛甫森方法; 3.复化高斯方法。求解如下的积分方程。 1)t t e ds s y e e t y --=?10)(1 2)(,方程的准确解为t e ; 2)t t st e e ds s y e t y +-+=?2102 11)()(,方程的准确解为t e ; 比较各算法的计算量和误差以分析它们的优劣。 实验4.2(高维积分数值计算的蒙特卡罗方法) 问题提出:高维空间中的积分,如果维数不很高且积分区域是规则的或者能等价地写成多重积分的形式,可以用一元函数积分的数值方法来计算高维空间的积分。蒙特卡罗方法对计算复杂区域甚至不连通的区域上的积分并没有特殊的困难。 实验内容:对于一般的区域Ω,计算其测度(只要理解为平面上的面积或空间中的体积)的一般方法是:先找一个规则的区域A 包含Ω,且A 的测度是已知的。生成区域A 中m 个均匀分布的随机点m i p i ,,2,1, =,如果其中有n 个落在区域Ω中,则区域Ω的测度m(Ω)为n/m 。函数f(x)在区域Ω上的积分可以近似为:区域Ω的测度与函数f(x)在Ω中n 个随机点上平均值的乘积,即 ∑?Ω ∈Ω?Ω≈k p k p f n m dx x f )(1)()( 实验要求:假设冰琪淋的下部为一锥体而上面为一半球,考虑冰琪淋体积问题:计算锥面222y x z +=上方和球面1)1(222=-++z y x 内部区域的体积。如果使用球面坐标,该区域可以表示为如下的积分: ???4/0cos 20202sin π? πθρ??ρd d d 用蒙特卡罗方法可以计算该积分。 另一方面,显然这样的冰琪淋可以装在如下立方体的盒子里 20,11,11≤≤≤≤-≤≤-z y x

比例、求和、积分、微分电路讲解

深圳大学实验报告课程名称:模拟电路 实验名称:比例、求和、积分、微分电路 学院:信息工程学院 专业:班级: 3 组号:指导教师:吴迪 报告人:李子茜学号:2014130116 实验时间:2015 年10 月9 日星期五实验地点N102 实验报告提交时间:2015 年10 月21 日

一、实验目的 1、掌握用集成运算放大电路组成比例、求和电路的特点及性能; 2、掌握用运算放大器组成积分微分电路; 3、学会上述电路的测试和分析方法 二、实验仪器 1、数字万用表 2、双踪示波器 3、信号发生器 三、预习要求 (1)复习比例、求和、积分微分电路的基本工作原理; (2)估算所有要填入表格的理论值; (3)拟定实验步骤,做好记录表格。 对于理想运放,当其工作在线性状态时,若U+≈U-,则这一特性称为理想运放输入端的“虚短路”特性;若I+=I-≈0,则这一特性称为理想运放输入端的“虚开路”特性。 四、实验内容 1.熟悉电压跟随电路 运算放大器UA741上的引脚排列如图5-5所示。1和5为偏置(调零端),2为反向输入端,3为正向输入端,4为-Vcc,6为输出端,7接+Vcc,8为空脚。 电压跟随实验电路如图5-6所示。按表5-18内容实验并测量记录。注意:集成运放实验板上的+12V、-12V和GND孔必须与实验箱上电源部分的+12V、-12V和GND孔连接,以保证集成运放的正常供电。 图5-5 UA741引脚排列图

图5-6 电压跟随电路 表5-18 电压跟随电路测试表 2.熟悉反相比例放大器 反相比例放大电路的实验电路如图5-7,已知Uo=-RF*Ui/R1,按表5-19的实验内容测量并测量记录。 表5-7 反相比例放大电路 U i(V) -2 -0.5 0 +0.5 1 U0(V) R L=∞ R L=5.1KΩ

微积分电路实验报告--器件实验

示波器的使用及微分、积分电路实验报告 一、实验目的 1、熟练掌握示波器、函数信号发生器、及面包板的使用方法 2、能够准确解读示波器的图像,读出实验所需数据 3、了解微分、积分电路的原理,能够做出简单的微分、积分电路,并解释 其波形 二、实验仪器 双踪示波器、函数信号发生器、面包板、电阻、电容,数字万用表 三、实验原理 微、积分电路原理 所谓的微分及积分电路实际上就是在电路分析中的一阶电路,简单的微、积分电路,可利用电阻和电容、脉冲信号组成。 如图: 其中脉冲信号为矩形波,电阻两端电压输出为微分形式,电容两端输出为积分形式。所以微、积分电路其实为同一电路,只是不同部分电压的输出不同。 因为实验中,函数信号为最小值0V ,最大值5V ,所以我们也以此来计算电容、电阻两端电压变化情况。 因为dq i dt =,而对于电容又有q=Cu ; 所以电容两端有du i C dt =,则根据欧姆定理及基尔霍夫定律(KVL ): c c s du RC u u dt +=; 上式可变为 1 ()c s c du u u dt RC =- 即 1c s c du dt u u RC =-,可变为()1 s c s c d u u dt u u RC --=-,

两端积分,可得1 ln()s c u u t k RC --= + 积分常数可由初始条件加以确定: 当一个信号周期开始,电容两端电压先是从0V 变为5V ,再变为0V 。 所以是两个过程,第一个过程,(0)0c u V = 则,t =0时,可知ln s k u =-; 所以1ln()ln s c s u u u t RC --=- ,即1ln s c s u u t u RC -=- 两边取反对数,得1 t s c RC s u u e u --=,即:1()(1)t RC c s u t u e -=- 而R c s u u u +=,所以1t RC R s u u e - = 第二个过程,(0)c s u u =,则,t =0时,可知s c u u -趋近于0,不能直接算出k 值,所以可以将电容看做一个以电压源0()c u t 与一个初始电压为0的电容的串联,所以10()()()c c u t u t u t =+。 而1()u t 看做零状态响应:110()()(1)t RC c u t u t e - =-- 则10()()t RC c c u t u t e -=,而(0)c s u u =,所以1()t RC c s u t u e -= 又因为R c s u u u +=,而s u =0所以1t RC R s u u e -=- 由此可知,两个过程一开始,电容两端的电压都不会发生突变,而是渐渐减小或增加,但始终为正(脉冲信号无反方向信号),而电阻两端的电压则会发生突变,电压与上一次突变反向,电压值的大小为脉冲信号的最大值。所以电阻两端电压的波形图的峰峰值应为对应的电容两端电压的波形图的两倍。 有以上两个过程的分析可知,电容的充放电的时间主要与R 、C 相关,所以

相关文档
最新文档