数据结构-图的遍历ppt

合集下载

数据结构-实验6图的存储和遍历

数据结构-实验6图的存储和遍历

实验6.1实现图的存储和遍历一,实验目的掌握图的邻接矩阵和邻接表存储以及图的邻接矩阵存储的递归遍历。

二,实验内容6.1实现图的邻接矩阵和邻接表存储编写一个程序,实现图的相关运算,并在此基础上设计一个主程序,完成如下功能:(1)建立如教材图7.9所示的有向图G的邻接矩阵,并输出。

(2)由有向图G的邻接矩阵产生邻接表,并输出。

(3)再由(2)的邻接表产生对应的邻接矩阵,并输出。

6.2 实现图的遍历算法(4)在图G的邻接矩阵存储表示基础上,输出从顶点V1开始的深度优先遍历序列(递归算法)。

(5)利用非递归算法重解任务(4)。

(6)在图G的邻接表存储表示基础上,输出从顶点V1开始的广度优先遍历序列。

三,源代码及结果截图#include<stdio.h>#include<stdlib.h>#include<string.h>#include<iostream.h>#include<malloc.h>#define MAX_VERTEX_NUM 20typedef char VRType;typedef int InfoType; // 存放网的权值typedef char VertexType; // 字符串类型typedef enum{DG,DN,AG,AN}GraphKind; // {有向图,有向网,无向图,无向网}/*建立有向图的邻接矩阵*/typedef struct ArcCell{VRType adj;//VRType是顶点关系类型,对无权图用1或0表示是否相邻;对带权图则为权值类型InfoType *info; //该弧相关信息的指针(可无)}ArcCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];typedef struct{VertexType vexs[MAX_VERTEX_NUM];//顶点向量AdjMatrix arcs;//邻接矩阵int vexnum,arcnum;;//图的当前顶点数和弧数GraphKind kind;//图的种类标志}MGraph;/* 顶点在顶点向量中的定位*/int LocateVex(MGraph &M,VRType v1){int i;for(i=0;i<M.vexnum;i++)if(v1==M.vexs[i])return i;return -1;}void CreateGraph(MGraph &M)//建立有向图的邻接矩阵{int i,j,k,w;VRType v1,v2;M.kind=DN;printf("构造有向网:\n");printf("\n输入图的顶点数和边数(以空格作为间隔):");scanf("%d%d",&M.vexnum,&M.arcnum);printf("输入%d个顶点的值(字符):",M.vexnum);getchar();for(i=0;i<M.vexnum;i++) //输入顶点向量{scanf("%c",&M.vexs[i]);}printf("建立邻接矩阵:\n");for(i=0;i<M.vexnum;i++)for(j=0;j<M.vexnum;j++){M.arcs[i][j].adj=0;M.arcs[i][j].info=NULL;}printf("请顺序输入每条弧(边)的权值、弧尾和弧头(以空格作为间隔):\n");for(k=0;k<M.arcnum;++k)// 构造表结点链表{cin>>w>>v1>>v2;i=LocateVex(M,v1);j=LocateVex(M,v2);M.arcs[i][j].adj=w;}}//按邻接矩阵方式输出有向图void PrintGraph(MGraph M){int i,j;printf("\n输出邻接矩阵:\n");for(i=0; i<M.vexnum; i++){printf("%10c",M.vexs[i]);for(j=0; j<M.vexnum; j++)printf("%2d",M.arcs[i][j].adj);printf("\n");}}// 图的邻接表存储表示typedef struct ArcNode{int adjvex; // 该弧所指向的顶点的位置struct ArcNode *nextarc; // 指向下一条弧的指针InfoType *info; // 网的权值指针)}ArcNode; // 表结点typedef struct VNode{VertexType data; // 顶点信息ArcNode *firstarc; // 第一个表结点的地址,指向第一条依附该顶点的弧的指针}VNode,AdjList[MAX_VERTEX_NUM];// 头结点typedef struct{AdjList vertices;int vexnum,arcnum; // 图的当前顶点数和弧数int kind; // 图的种类标志}ALGraph;void CreateMGtoDN(ALGraph &G,MGraph &M){//由有向图M的邻接矩阵产生邻接表int i,j;ArcNode *p;G.kind=M.kind;G.vexnum=M.vexnum;G.arcnum=M.arcnum;for(i=0;i<G.vexnum;++i){//构造表头向量G.vertices[i].data=M.vexs[i];G.vertices[i].firstarc=NULL;//初始化指针}for(i=0;i<G.vexnum;++i)for(j=0;j<G.vexnum;++j)if(M.arcs[i][j].adj){p=(ArcNode*)malloc(sizeof(ArcNode));p->adjvex=j;p->nextarc=G.vertices[i].firstarc;p->info=M.arcs[i][j].info;G.vertices[i].firstarc=p;}}void CreateDNtoMG(MGraph &M,ALGraph &G){ //由邻接表产生对应的邻接矩阵int i,j;ArcNode *p;M.kind=GraphKind(G.kind);M.vexnum=G.vexnum;M.arcnum=G.arcnum;for(i=0;i<M.vexnum;++i)M.vexs[i]=G.vertices[i].data;for(i=0;i<M.vexnum;++i){p=G.vertices[i].firstarc;while(p){M.arcs[i][p->adjvex].adj=1;p=p->nextarc;}//whilefor(j=0;j<M.vexnum;++j)if(M.arcs[i][j].adj!=1)M.arcs[i][j].adj=0;}//for}//输出邻接表void PrintDN(ALGraph G){int i;ArcNode *p;printf("\n输出邻接表:\n");printf("顶点:\n");for(i=0;i<G.vexnum;++i)printf("%2c",G.vertices[i].data);printf("\n弧:\n");for(i=0;i<G.vexnum;++i){p=G.vertices[i].firstarc;while(p){printf("%c→%c(%d)\t",G.vertices[i].data,G.vertices[p->adjvex].data,p->info);p=p->nextarc;}printf("\n");}//for}int visited[MAX_VERTEX_NUM]; // 访问标志数组(全局量)void(*VisitFunc)(char* v); // 函数变量(全局量)// 从第v个顶点出发递归地深度优先遍历图G。

(2024年)《数据结构》全套课件

(2024年)《数据结构》全套课件

30
树形数据结构的查找算法
二叉排序树的查找
从根节点开始,若查找值小于当前节点 值,则在左子树中查找;若大于当前节 点值,则在右子树中查找。
VS
平衡二叉树的查找
在保持二叉排序树特性的基础上,通过旋 转操作使树保持平衡,提高查找效率。
2024/3/26
31
散列表的查找算法
散列函数的设计
将关键字映射为散列表中位置的函数。
过指针来表示。
链式存储的特点
逻辑上相邻的元素在物理位置上 不一定相邻;每个元素都包含数
据域和指针域。
链式存储的优缺点
优点是插入和删除操作不需要移 动元素,只需修改指针;缺点是
存储密度小、空间利用率低。
2024/3/26
11
线性表的基本操作与实现
插入元素
在线性表的指定位 置插入一个元素。
查找元素
在线性表中查找指 定元素并返回其位 置。
自然语言处理的应用
在自然语言处理中,需要处理大量的文本数据,数据结构中的字符 串、链表、树等可以很好地支持文本的处理和分析。
41
数据结构在计算机网络中的应用
2024/3/26
路由算法的实现
计算机网络中的路由算法需要大量的数据结构支持,如最短路径 树、距离向量等。
网络流量的控制
在计算机网络中,需要对网络流量进行控制和管理,数据结构中的 队列、缓冲区等可以很好地支持流量的控制。
37
06
数据结构的应用与拓展
2024/3/26
38
数据结构在算法设计中的应用
01
作为算法设计的基 础
数据结构为算法提供了基本操作 和存储方式,是算法实现的重要 基础。
02
提高算法效率

图的遍历和搜索PPT课件

图的遍历和搜索PPT课件

7
1
2 4
3 5
Dfs: 124356
6
2021/3/12
8
1
2 4
3
6
5
Bfs: 123645
2021/3/12
9
A
B
C
D
E
2021/3/12
10
A
AB
AC
ABC
ACD ACE
ABCD ABCE ACDE ACED
ABCDE ABCDE ACDEC
ACEDC
ABCDEC ABCDEC ACDECB
readln(f,ch1,ch2,ch3); data[ch1,ch3]:=1; data[ch3,ch1]:=1; end; close(f);assign(f,'wjx.out');rewrite(f); end;
2021/3/12
14
procedure main(ch:char;step:integer); var r:char; begin
2021/3/12
3
1
2

3
4
6
5
Dfs: 124563 Bfs: 123465
2021/3/12
4
1 2 4 5 6 3
Dfs: 124563
2021/3/12
5
1
2
3
4
6
5
Bfs: 123465
2021/3/12
6
1
2
3
4
5
6
Dfs: 124356 Bfs: 123645
2021/3/12
2021/3/12
22
一. 递归算法:

北京理工大学数据结构图课件

北京理工大学数据结构图课件
A
B C D
第 5 页
E
7.1 图的定义与术语
3、无向图——无向图G是由两个集合V(G)和 E(G)组成的。 其中:V(G)是顶点的非空有限集。 E(G)是边的有限集合,边是顶点的 无序对,记为 (v,w) 或 (w,v),并且 (v,w)=(w,v)。
第 6 页
7.1 图的定义与术语

例如:
G2 = <V2,E2> V2 = { v0 ,v1,v2,v3,v4 } E2 = { (v0,v1), (v0,v3), (v1,v2), (v1,v4), (v2,v3), (v2,v4) }
V5
第 15 页
7.1 图的定义与术语
非 连 通 图
V0
V1
V2
V3
V0
V1 V3
V2
强连通分量
第 16 页
7.1 图的定义与术语
7、生成树
包含无向图 G 所有顶点的极小连通子图称为G生 成树。 极小连通子图意思是:该子图是G的连通子图, 在该子图中删除任何一条边,子图不再连通。
V0 V2 V3 V4 V3 连通图G1 V1 V0 V1 连通 所有顶点 V4 无回路
第 22 页
7.2 图的存储结构 3、有向图的逆邻接表 顶点:用一维数组存储(按编号顺序) 以同一顶点为终点的弧:用线性链表存储。
vexdata V0 V1 0 1 v0 v1 v2
v3
firstarc 3 0 0 ^ ^
V2
V3
2 3
^
^
2
章 类似于有向图的邻接表,所不同的是: 以同一顶点为终点弧:用线性链表存储
Boolean visited[MAX]; // 访问标志数组

数据结构ppt课件完整版

数据结构ppt课件完整版

针对有序数据集合,每次通过中间元素将 待查找区间缩小为之前的一半,直到找到 元素或区间为空。
哈希查找
树形查找
通过哈希函数将数据映射到哈希表中,实 现快速查找。
如二叉搜索树、平衡树等,通过树形结构实 现高效查找。
排序算法分类及实现原理
插入排序
将待排序元素逐个插入到已排序序列中,直到所有元素均插入完毕。
由n(n>=0)个具有相同类型 的数据元素(结点)a1,a2,
...,an组成的有序序列。
同一性
每个元素必须是同一类型的数 据。
有序性
元素之间具有一对一的前驱和 后继关系,即除首尾元素外, 每个元素都有一个前驱和一个 后继。
可变性
线性表的长度可变,即可以插 入或删除元素。
顺序存储结构与链式存储结构比较
定义
用一段连续的存储单元依次存储线性 表的数据元素。
优点
可以随机存取表中任一元素,且存取 时间复杂度为O(1)。
顺序存储结构与链式存储结构比较
• 缺点:插入和删除操作需要移动大量元素,时间 复杂度高;需要预先分配存储空间,容易造成空 间浪费。
顺序存储结构与链式存储结构比较
定义
用一组任意的存储单元存储线性 表的数据元素(这组存储单元可 以是连续的,也可以是不连续的
查找操作
查找指定元素的位置。
遍历操作
访问线性表中的每个元素。
销毁操作
释放线性表占用的存储空间。
03
栈和队列
栈定义及特点
栈(Stack)是一种特殊的线性数据结构,其数据的存 取遵循后进先出(LIFO, Last In First Out)的原则。 栈的特点
具有记忆功能,能保存数据的状态。
栈的基本操作包括入栈(push)、出栈(pop)、查 看栈顶元素(top)等。 只能在栈顶进行数据的插入和删除操作。

《数据结构》课件

《数据结构》课件

第二章 线性表
1
线性表的顺序存储结构
2
线性表的顺序存储结构使用数组来存储元素,
可以快速随机访问元素。
3
线性表的常见操作
4
线性表支持常见的操作,包括插入、删除、 查找等,可以灵活地操作其中的元素。
线性表的定义和实现
线性表是一种数据结构,它包含一组有序的 元素,可以通过数组和链表来实现。
线性表的链式存储结构
线性表的链式存储结构使用链表来存储元素, 支持动态扩展和插入删除操作。
第三章 栈与队列
栈的定义和实现
栈是一种特殊的线性表,只能在一 端进行插入和删除操作,遵循后进 先出的原则。
队列的定义和实现
队列是一种特殊的线性表,只能在 一端进行插入操作,在另一端进行 删除操作,遵循先进先出的原则。
栈和队列的应用场景和操作
哈希表是一种高效的查找数据结构, 通过哈希函数将关键字映射到数组 中,实现快速查找。
排序算法包括冒泡排序、插入排序 和快速排序等,可以根据数据规模 和性能要求选择合适的算法。
结语
数据结构的学习心得 总结
学习数据结构需要掌握基本概念 和常见操作,通过实践和练习加 深理解和熟练度。
下一步学习计划的安 排
在掌握基本数据结构的基础上, 可以进一步学习高级数据结构和 算法,提升编程技能。
相关学习资源推荐
推荐一些经典的数据结构教材和 在线学习资源,如《算法导论》 和LeetCode等。
栈和队列在计算机科学中有许多应 用,如函数调用、表达式求值和作 业调度等。
第四章 树与二叉树
树的定义和性质
树是由节点和边组成的一种非线性数据结构,每个 节点可以有多个子节点。
二叉树的遍历方式
二叉树的遍历方式包括前序遍历、中序遍历和后序 遍历,可以按不同顺序输出节点的值。

图的遍历(深度优先遍历和广度优先遍历)

图的遍历(深度优先遍历和广度优先遍历)

遍历规则 从图中某结点v0出发,深度优先遍历(DFS: Depth First Search)图的规则为: 访问v0; 对v0的各个出点v01,v02,…,v0m,每次从它们中按一定方式(也可任选)选取一个未被访问过的结点,从该结点出发按深度优先遍历方式遍历。 然,因为我们没有规定对出点的遍历次序,所以,图的深度优先遍历结果一般不唯一。
20.2 深度优先遍历
例如,对图 20‑1给出的有向图与无向图,一些遍历结果(结点访问次序)为: 左图:从1出发:1,2,4,5;或1,5,2,4 从2出发:2,1,5,4;或2,4,1,5 右图:从a出发:a,b,c,d;或a,b,d,c; … …
A 如果不想让visited或top做为函数参数,也可以在函数中将其定义为static型量。但是,这样的程序是不可再入的,即函数再次被调用时,static型的量也不重新初始化,造成错误!
上面函数中的参数visited和top实质上是中间变量,只是为了避免在递归调用时重新初始化而放在参数表中,造成使用的不方便,为此,做个包装程序: long DFS1(int g[][CNST_NumNodes], long n, long v0, long *resu ) { char *visited; long top=0; visited = new char[n]; for (long i=0; i<n; i++) visited[i]=0; long num=DFS1( g, n, v0, visited, resu, top ); delete visited; return num; }
深度优先遍历非递归算法的一般性描述。
long DFS_NR(图g,结点v0)
单击此处可添加副标题

数据结构图结构(动态PPT)课件

数据结构图结构(动态PPT)课件

结合实际问题
将数据结构图与实际问题相结合,通过分析问题的本质和 规律,选择合适的数据结构和算法进行求解。
创新应用方式
在传统的数据结构图应用基础上,探索新的应用方式和方 法,如基于数据结构图的机器学习模型、数据结构图在社 交网络分析中的应用等。
跨学科融合
将数据结构图与其他学科领域进行融合,如物理学、化学 、生物学等,通过借鉴其他学科的理论和方法,创新数据 结构图的应用场景和解决方案。
包括无向图、有向图、权 重图、邻接矩阵、邻接表 等。
图的遍历方法
深度优先搜索(DFS)和 广度优先搜索(BFS)的 原理和实现。
非线性数据结构图应用案例
树的应用案例
包括二叉搜索树、堆、哈夫曼树等在实际问题中的应用,如排序、优先队列、 编码等。
图的应用案例
包括最短路径问题(Dijkstra算法、Floyd算法)、最小生成树问题(Prim算法 、Kruskal算法)以及网络流问题等在实际问题中的应用,如交通网络规划、电 路设计等。
根据实际需求,选择适合的最小生 成树算法,如Prim算法、Kruskal算
法等。
B
C
D
可视化呈现结果
将算法的运行过程和结果以图形化的方式 呈现出来,方便用户直观地理解和掌握最 小生成树算法的原理和实现过程。
实现算法逻辑
编写代码实现最小生成树算法的逻辑,包 括节点的选择、边的添加和权重的计算等 。
拓展思考:如何创新应用数据结构图解决问题
作用
帮助理解复杂数据结构的组成和 关系,提高数据处理的效率。
常见类型及特点
01
02
03
04
线性数据结构图
元素之间一对一关系,如数组 、链表等。
树形数据结构图

数据结构图结构-(动态PPT)

数据结构图结构-(动态PPT)
2
3
1
*
图的术语
完全图 边达到最大的图
无向完全图:具有n(n-1)/2条边的简单图称为无向完全图 有向完全图:具有n(n-1)条边的有向图。 稀疏图: 边或弧很少的图。 稠密图: 边或弧很多的图。 权:与图的边或弧相关的数。 网:边或弧上带有权值的图。
*
图的术语
路径长度:路径上边或弧的数目
路径 非空有限点、弧交替序列,
1.无向图邻接表
2
5
3
4
1
1 2 3 4 5
G2
1
2
3
4
5
adjvex nextarc
vexdata firstarc
*
2.有向图邻接表
2
3
4
1
4
3
1
2
1 2 3 4
如图G1的邻接表为:
G1
1
2
3
4
*
在邻接表的边链表中,各个边结点的链入顺序任意,视边结点输入次序而定。
设图中有 n 个顶点,e 条边,则用邻接表表示无向图时,需要 n 个顶点结点,2e 个边结点;用邻接表表示有向图时,若不考虑逆邻接表,只需 n 个顶点结点,e 个边结点。
04
03
G2
*
图的术语
证明:对有向图,每个顶点至多有n-1条边与其它的n-1个顶点相连,则n个顶点至多有n(n-1)条边。但对无向图,每条边连接2个顶点,故最多为n(n-1)/2
02
设n为顶点数,e为边或弧的条数 对无向图有:0 ≤ e ≤ n(n-1)/2 有向图有:0≤ e ≤ n(n-1)
回路:无重复边的闭路径。
回路但不是环
*
图的术语
01

(2024年)数据结构严蔚敏PPT完整版

(2024年)数据结构严蔚敏PPT完整版

选择排序的基本思想
在未排序序列中找到最小(或最大)元素,存放到排序 序列的起始位置,然后,再从剩余未排序元素中继续寻 找最小(或最大)元素,然后放到已排序序列的末尾。 以此类推,直到所有元素均排序完毕。
2024/3/26
33
交换排序和归并排序
交换排序的基本思想
通过不断地交换相邻的两个元素(如果它们的顺序错 误)来把最小的元素“浮”到数列的一端。具体实现 时,从第一个元素开始,比较相邻的两个元素,如果 前一个比后一个大,则交换它们的位置;每一对相邻 元素做同样的工作,从开始第一对到结尾的最后一对 ;这步做完后,最后的元素会是最大的数;针对所有 的元素重复以上的步骤,除了最后一个;持续每次对 越来越少的元素重复上面的步骤,直到没有任何一对 数字需要比较。
图的基本操作
创建图、添加顶点、添加边、删除顶点、删除边 等
2024/3/26
27
图的存储结构
01
邻接矩阵表示法
用一个二维数组表示图中顶点间的 关系,适用于稠密图
十字链表表示法
用于有向图,可以方便地找到任一 顶点的入边和出边
03
2024/3/26
02
邻接表表示法
用链表表示图中顶点间的关系,适 用于稀疏图
入栈操作将元素添加到栈顶,出栈操作将栈顶元素删 除,取栈顶元素操作返回栈顶元素但不删除,判断栈
是否为空操作检查栈中是否有元素。
2024/3/26
12
栈的表示和实现
栈可以用数组或链表来实现。
用数组实现时,需要预先分配一块连续的内存空间,用一个变量指示栈顶位置。入栈和出栈操作都可以 通过移动栈顶位置来实现。
22
二叉树的定义和基本操作
二叉树的定义
二叉树是一种特殊的树,每个节点最 多有两个子节点,分别称为左子节点 和右子节点。

《图的遍历和连通性》课件

《图的遍历和连通性》课件
《图的遍历和连通性》ppt课件
目录 CONTENTS
• 图的遍历 • 图的连通性 • 图的遍历和连通性之间的关系 • 图遍历和连通性的实际应用 • 图遍历和连通性的算法复杂度分析
01
图的遍历
深度优先遍历
深度优先遍历是一种用于遍历或搜索树或图的算法。这个算法会尽可能深地搜索 树的分支。当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的 起始节点。
计算机视觉和图像处理
图像分割
目标检测
图像拼接
图像增强
在计算机视觉和图像处理领 域,图遍历算法被广泛应用 于图像分割。通过图遍历算 法,可以将图像划分为不同 的区域或对象,便于后续的
识别和分析。
利用图遍历算法,可以对图 像中的目标进行检测和定位 ,为后续的目标跟踪、行为
分析等提供基础数据。
通过图遍历算法,可以将多 张图像拼接成一张完整的图 像,便于全景图的生成和展
关键节点和最短路径等重要信息。
输入 交通标拥题堵优

利用图遍历算法,可以分析交通拥堵的原因,找到拥 堵瓶颈路段,为交通管理部门提供优化建议,提高路 网的通行效率和运输能力。
交通路网分 析
路径规划
在物流配送领域,图遍历算法可以帮助企业找到最优 的配送路径,降低运输成本和提高配送效率。
物流配送优 化
通过图遍历算法,可以找到两点之间的最短路径或最 少拥堵路径,为出行者提供路线建议,提高出行效率 和舒适度。
THANK YOU FOR YOUR WATCHING
01
时间复杂度为O(V^3),用于计算所有顶点对之间的最短路径。
Johnson算法
02
时间复杂度为O((V+E)logV),适用于稀疏图,通过预处理计算

非线性数据结构-图.ppt

非线性数据结构-图.ppt

V={ 1,2,3,4}
E={〈1,2>,<1,3> ,<3,4>,<4,1>}
1
2
G2
3
4
3/32
3. 边和弧
边: 无向图中顶点的偶对,写成(Vx,Vy)
或(Vy,Vx)。
弧: 有向图中顶点的偶对,〈Vx,Vy〉表示从
Vx到Vy。
弧头: 弧的终点 弧尾: 弧的起点
弧 〈Vx,Vy〉
弧尾Vx
1 2 G.nodes= 3 4
1
2
A= G.Arc=
0110 0000 0001 1 0 0 0 4x4
G2
3
4
12/32
3.借助邻接矩阵求顶点的度
–无向图
– 第i行(或第i列)的元素之和是顶点Vi 的度。例,G1中V2的度是3。
–有向图
– 第i行的元素之和为顶点Vi的出度;第j 列的元素之和为顶点Vj的入度。例,G2中,
(V4,V6)
23/32
2.8 树的应用----Huffman树
Huffman树的概念 构造Huffman树 Huffman编码
24/32
一. Huffman树的概念
树的带权路径长度定义为:
n
WPL = ∑ wklk
k=1
其中:
n 是树中叶结点的个数
wi 是第i个结点的权值 li 是第i个结点的路径长度
2.5 图的逻辑结构
图是对结点的前趋和后继个数不加限制的数据 结构,用来描述元素之间“多对多”的关系。
1/32
一. 图的定义
1. 定义: 图 G =(V,E)
其中:V:顶点的非空集合
E:顶点的偶对---边的集合

2024版《数据结构图》ppt课件

2024版《数据结构图》ppt课件
重要性
良好的数据结构可以带来更高的运 行或存储效率,是算法设计的基础, 对程序设计的成败起到关键作用。
常见数据结构类型介绍
线性数据结构
如数组、链表、栈、队 列等,数据元素之间存
在一对一的关系。
树形数据结构
如二叉树、多叉树、森 林等,数据元素之间存
在一对多的关系。
图形数据结构
由顶点和边组成,数据 元素之间存在多对多的
队列定义、特点及应用场景
队列的特点 只能在队尾进行插入操作,队头进行删除操作。
队列是一种双端开口的线性结构。
队列定义、特点及应用场景
应用场景 操作系统的任务调度。 缓冲区的实现,如打印机缓冲区。
队列定义、特点及应用场景
广度优先搜索(BFS)。
消息队列和事件驱动模型。
串定义、基本操作及实现方法
最短路径问题 求解图中两个顶点之间的最短路径,即路径上边 的权值之和最小。
3
算法介绍 Prim算法、Kruskal算法、Dijkstra算法、Floyd 算法等。
拓扑排序和关键路径问题探讨
拓扑排序
对有向无环图(DAG)进行排序, 使得对每一条有向边(u,v),均有
u在v之前。
关键路径问题
求解有向无环图中从源点到汇点 的最长路径,即关键路径,它决
遍历二叉树和线索二叉树
遍历二叉树
先序遍历、中序遍历和后序遍历。遍历算 法可以采用递归或非递归方式实现。
VS
线索二叉树
利用二叉链表中的空指针来存放其前驱结 点和后继结点的信息,使得在遍历二叉树 时可以利用这些线索得到前驱和后继结点, 从而方便地遍历二叉树。
树、森林与二叉树转换技巧
树转换为二叉树
加线、去线、层次调整。将树中的每个结点的所有孩子结点用线连接起来,再去掉与原结点相连的线,最后 将整棵树的层次进行调整,使得每个结点的左子树为其第一个孩子,右子树为其兄弟结点。

2017唐班数据结构-13_2图的遍历

2017唐班数据结构-13_2图的遍历
for ( i =1 ; i <= n ; i++ ) visited[i] = 0; CREATQuene Q; Q.insert(v); visited[v] = 1; BFS2[广度优先遍历] while(! Q.empty()) { /* 当队列不空时 */
v=Q.delete(); /* 出队 */ cout<<v; for ( p = Head[v]->adjacent ; p ; p = p->link ) .
图的连通性:非连通图中,从一个顶点出发,只能访 问它所在的连通分量上的所有顶点。用户指定下一个 出发点访问其它连通分量。
重复访问:访问完某个顶点后可能沿着某些边又回到 曾经访问过的顶点。避免重复,用标识数组visited[ ]。 初值为0,标识未访问。如果顶点 i 被访问,则置 visited[i]为1.
✓ 下推上: 显然 ✓ 上推下: 数学归纳法
应用1 求无向图的连通分支数
思想:每遍历一个连通分支,计数加1 遍历用深搜和广搜均可
应用2 判断图中是否有环
方法非常多;下面考虑用图的遍历求解
思想:深搜时,每个结点有两个状态,标记是 否被访问过(0未访问,1已访问过)。判环时, 多引入一个状态,标记结点正在访问中(-1正 在访问中)。如果一个结点正在访问中,又遍 历到该接点,那个存在环路。这种状况是由于 出现了反向边,即后代指向祖先的边。
如果使用邻接矩阵,则对于每一个被访问的顶 点,循环要检测矩阵中的 n 个元素,总的时间 代价为O(n2)。
定理5.1
DFS每次遍历一个连通分支 Vs = { v | v ∈ V 且 s ->E* v } Vs = { v | v ∈ V 且 visited[v] = 1 }
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为每个顶点设立一个“访问标志 visited[w]”;
-
深度优先搜索-连通图
void DFS(Graph G, int v) {
// 从顶点v出发,深度优先搜索遍历连通图 G
visited[v] = TRUE; for(w=FirstAdjVex(G, v);
w>=0; w=NextAdjVex(G,v,w)) if (!visited[w]) DFS(G, w);
图的遍历
复习 图的遍历 深度优先搜索 广度优先搜索 课堂练习 小结和作业
-
复习-图的存储结构
B A
F
C D
E
010010 100011 000101 001001 110000 011100
-
复习-图的存储结构
B A
F
C D
E
0A
1B 2C 3D 4E 5F
1
4
0
4
5
3
5
2
5
0
1
1
2
3
-
复习-图的存储结构
}
-
邻接点函数的实现
int nextAdjVex(ALGragh G, int v, int w){ p=G.vertices[v].firstarc;//v的第1个邻接点 while(p && p->adjvex != w) p=p->nextarc; if(p) p = p->nextarc;//w之后的下一个邻接点 if(p) return p->adjvex; else return -1;}
// 对v的尚未访问的邻接顶点w递归调用DFS
} // DFS
余顶点,并且使图中的每个顶点仅被访问一次的过 程。
用途:是解决图的连通性、拓扑排序和求关键路
径等算法的基础。
分类: 深度优先搜索 广度优先搜索
-
深度优先搜索
V
w1
w2
SG1
SG2
W1、W2和W3 均为 V 的邻接点,SG1、SG2
w3 和 SG3 分别为含顶点 W1、W2和W3 的子图。
SG3
-
深度优先搜索
-
存储结构的比较
•邻接矩阵:修改边<v, w>(以及<w,v>) •邻接表:无向图,修改两个顶点的链表;有向图, 修改一个(或两个)顶点的链表 •十字链表:涉及两个链表 •多重邻接表:涉及两个链表
-
存储结构的比较
4、邻接点
FirstAdjVex(G, v);
// 返回 v 的“第一个邻接点” 。若该顶点 //在 G 中没有邻接点,则返回“空”。
-
用C语言描述存储结构
1、图的二个参数:
顶点个数
Vertex(Vertices),vexnum
边数(弧数) Edge(arc),arcnum,edgenum
2、图的第三个参数: 图的类型 GraphKind={DG, UDG, DN, UDN}
-
图的遍历
定义:从图中某个顶点出发游历图,访遍图中其
V
w1
w2
SG1
SG2
访问顶点V ;
for (W1、W2、W3 ) w3 若邻接点Wi未被访问,
则从它出发进行深度优 SG3 先搜索历。
-
深度优先搜索-连通图
V1 V2 V5 V6 V3
V4
V8
V7
深度遍历序列: V1 V2 V4 V8 V5 V6 V3 V7
-
深度优先搜索
V1
V2
V3
V4
V5
二、存储空间
•邻接矩阵: n + n2 •邻接表用于DG和DN:n + e或者n + 2e;用于 UDG和UDN:n + 2e •十字链表: n + e •邻接多重链表: n + e
-
存储结构的比较
三、对操作的支持
1、对顶点的访问 LocateVex(G, u); //返回u的位置 GetVex(G, v); // 返回 v 的值。 PutVex(&G, u, value);// 对 u 赋值value。
1
2
3
2
5
2^
-
1 ^ 4^
3
4
3 ^5^
复习-图的存储结构
AC
B
0A
01
1B ∧
2C
2 1∧
0 2∧∧ 2 0∧∧
-
存储结构的比较
一、应用范围
•邻接矩阵可用于DG、UDG、DN、UDN •邻接表可用于DG、UDG、DN、UDN •十字链表用于DG和DN •邻接多重链表用于UDG和UDN
-
存储结构的比较
V6
V7
V8
-
深度优先搜索
V1
V2
V3
V4 V8
V6
V7
-
深度优先搜索
w2
w1 V
w7
w8
w3 w4
w6
w5
-
深度优先搜索-连通图
1、从深度优先搜索遍历连通图的过程类似于树的先 根遍历 2、对图G深度优先搜索得到的顶点序列不是唯一的? 3、搜索过程中经过的边和所有的顶点构成了图的一 棵生成树。 4、如何判别V的邻接点是否被访问?
-
邻接点函数的实现
FirstAdjVex(G, v); //返回第1个邻接点 的位置,没有邻接点,返回-1。
NextAdjVex(G, v, w); //返回w后面的邻接
点的位置。
0A
1
4
1B
0
4
5
2C 3D
3
5
2
5
4E 5F
0
Байду номын сангаас
1
1
2
3
-
邻接点函数的实现
int firstAdjVex(ALGragh G, int v){ p=G.vertices[v].firstarc;//v的第1个邻接点 if(!p) return -1;//无邻接点 return p->adjvex;
-
存储结构的比较
2、插入和删除顶点 InsertVex(&G, v); //在图G中增添新顶点v。 DeleteVex(&G, v); // 删除G中顶点v及其相关的弧。 都要对存放顶点数组元素的操作 但是对邻接矩阵,还要修改邻接矩阵
-
存储结构的比较
3、插入和删除弧 InsertArc(&G, v, w); DeleteArc(&G, v, w);
A
B
E
CD
01001 00100 00010 11000 00100
-
复习-图的存储结构
A
B
E
CD
0A 1B 2C 3D 4E
1
4
2
3
0
1
2
-
复习-图的存储结构
A
0A
B
E
1B
2C
CD
3D
4E
3
0
3
1
4
2
0
-
复习-图的存储结构
例a
b
c
d
e
1a 2b 3c 4d
5e
mark ivex ilink jvex jlink
NextAdjVex(G, v, w);
// 返回 v 的(相对于 w 的) “下一个邻接 // 点”。若 w 是 v 的最后一个邻接点,则 // 返回“空”。
-
存储结构的比较
•邻接矩阵:第v行 •邻接表:第v个链表 •十字链表:第v个链表 •多重邻接表:第v个链表
-
存储结构的比较
4、邻接边 •邻接矩阵:第v行 •邻接表:第v个链表 •十字链表:第v个链表 •多重邻接表:第v个链表
相关文档
最新文档