数据结构课程设计之图的遍历和生成树求解

合集下载

数据结构中的树与图算法教程

数据结构中的树与图算法教程

数据结构中的树与图算法教程第一章树的基本概念与遍历算法树是一种非线性数据结构,它由若干个节点组成,这些节点以层级的方式连接,形成分支的结构。

树中的一个节点被称为根节点,它没有父节点;其他节点可以有一个或多个父节点,这些节点被称为子节点。

树具有分支,但没有循环。

1.1 具体树的概念在树的结构中,每个节点可以有零个或者多个子节点,但是只能有一个父节点。

树具有层级关系,通过连接节点的边表示。

1.2 树的分类常见的树包括二叉树、二叉搜索树、红黑树等。

其中,二叉树是一种特殊的树结构,它的每个节点最多可以有两个子节点。

1.3 树的遍历算法树的遍历算法主要有前序遍历、中序遍历和后序遍历。

前序遍历是以根节点、左子树、右子树的顺序进行遍历;中序遍历是以左子树、根节点、右子树的顺序进行遍历;后序遍历是以左子树、右子树、根节点的顺序进行遍历。

第二章树的存储结构与常见应用2.1 树的存储结构树的存储结构有两种常见的实现方式,分别是链表实现和数组实现。

链表实现利用指针进行节点的连接,数组实现则使用数组的索引来表示节点之间的关系。

2.2 平衡二叉树平衡二叉树是一种自平衡的二叉搜索树,它的左右子树的高度差不超过1。

平衡二叉树的插入和删除操作都可以通过旋转操作进行平衡。

2.3 哈夫曼树哈夫曼树是一种特殊的二叉树,用于编码和解码数据。

哈夫曼树中出现频率高的字符距离根节点较近,而出现频率低的字符距离根节点较远,以实现编码的高效率。

第三章图的基本概念与遍历算法3.1 图的基本概念图是由节点和边组成的非线性数据结构。

节点表示实体,边表示节点之间的关系。

图可以分为有向图和无向图两种类型,有向图的边是有方向的,无向图的边没有方向。

3.2 图的存储结构图的存储结构有邻接矩阵和邻接表两种常见的方式。

邻接矩阵是一个二维数组,用于表示节点之间的连接关系;邻接表是由链表或者数组实现的,用于表示每个节点相邻节点的信息。

3.3 图的遍历算法图的遍历算法主要有深度优先搜索(DFS)和广度优先搜索(BFS)。

《数据结构》课程教学大纲(三套)

《数据结构》课程教学大纲(三套)

数据结构课程教学大纲(三套)《数据结构》课程教学大纲(36/36 课时)一、课程的性质和任务数据结构是计算机及应用专业中一门重要的专业基础课程,在计算机软件的各个领域中均会使用到数据结构的有关知识。

当用计算机来解决实际问题时,就要涉及到数据的表示及数据的处理,而数据表示及数据处理正是数据结构课程的主要研究对象,通过这两方面内容的学习,为后续课程,特别是软件方面的课程打开厚实的基础。

因此,数据结构课程在计算机应用专业中具有举足轻重的作用。

本课程的任务是:在基础方面,要求学员掌握常用数据结构的基本概念及其不同的实现方法;在技能方面,通过系统学习能够在不同存储结构上实现不同的运算,并对算法设计的方式和技巧有所体会。

总言之,使应用者较全面的掌握各种常用的数据结构,提高运用数据结构解决实际问题的能力。

二、课程的基本要求本课程的教学基本要求如下:本课程要求理论必须与上机实践操作相结合,多做题和调试算法,实现算法。

实践项目只利用课堂时间是不够的,必须提前布置给学生。

通过本课程的学习与实践,学生应达到:1、掌握数据结构的基本概念和基本理论;2、熟练掌握顺序表、链表、队列、栈、树以及二叉树、图等基本数据结构的设计和分析;3、熟练地掌握常用算法(递归、遍历、查找、排序)的知识;4、能对所求解的问题进行分析,抽象出逻辑结构,选择合适的存储结构定义所需的运算,设计相应的算法;5、对算法进行分析和评价。

三、教学内容(一)理论教学(二)实践环节四、课时分配《数据结构》课程共4学分,课内72学时,其中理论课36学时,上机36学时。

五、大纲说明本课程必须理论与上机实践操作相结合,并要教、学、练相结合,讲清基本概念,指出知识要点、重点和难点,并通过实例分析解决算法难点;要求学生认真预习、认真听课、认真思索、认真做实验, 通过对算法的编程实现来提高学生 由于内容多、 难度大, 要特别注重精讲多练, 实践项目一定 要提前布置给学生, 调动学生的主观能动性,鼓励学生多提 问题、共同探讨和解决问题。

数据结构实验报告图的遍历讲解

数据结构实验报告图的遍历讲解

数据结构实验报告图的遍历讲解一、引言在数据结构实验中,图的遍历是一个重要的主题。

图是由顶点集合和边集合组成的一种数据结构,常用于描述网络、社交关系等复杂关系。

图的遍历是指按照一定的规则,挨次访问图中的所有顶点,以及与之相关联的边的过程。

本文将详细讲解图的遍历算法及其应用。

二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,其基本思想是从一个顶点出发,沿着一条路径向来向下访问,直到无法继续为止,然后回溯到前一个顶点,再选择此外一条路径继续访问。

具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问。

(2)从v出发,选择一个未被访问的邻接顶点w,将w标记为已访问,并将w入栈。

(3)如果不存在未被访问的邻接顶点,则出栈一个顶点,继续访问其它未被访问的邻接顶点。

(4)重复步骤(2)和(3),直到栈为空。

2. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,其基本思想是从一个顶点出发,挨次访问其所有邻接顶点,然后再挨次访问邻接顶点的邻接顶点,以此类推,直到访问完所有顶点。

具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问,并将v入队。

(2)从队首取出一个顶点w,访问w的所有未被访问的邻接顶点,并将这些顶点标记为已访问,并将它们入队。

(3)重复步骤(2),直到队列为空。

三、图的遍历应用图的遍历算法在实际应用中有广泛的应用,下面介绍两个典型的应用场景。

1. 连通分量连通分量是指图中的一个子图,其中的任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点。

图的遍历算法可以用来求解连通分量的个数及其具体的顶点集合。

具体步骤如下:(1)对图中的每一个顶点进行遍历,如果该顶点未被访问,则从该顶点开始进行深度优先搜索或者广度优先搜索,将访问到的顶点标记为已访问。

(2)重复步骤(1),直到所有顶点都被访问。

2. 最短路径最短路径是指图中两个顶点之间的最短路径,可以用图的遍历算法来求解。

数据结构第七章-图

数据结构第七章-图

*
V0
V7
V6
V5
V4
V3
V2
V1
若图的存储结构为邻接表,则 访问邻接点的顺序不唯一, 深度优先序列不是唯一的
V0
V1
V3
V2
V7
V6
V5
V4
V0,V1,V3,V4,V7,V2,V5,V6,
※求图G以V0为起点的的深度优先序列(设存储结构为邻接矩阵)
void DFSAL(ALGraph G, int i) {/*从第v个顶点出发,递归地深度优先遍历图G*/ /* v是顶点的序号,假设G是用邻接表存储*/ EdgeNode *p; int w; visited[i] =1; Visit(i); /*访问第v个顶点*/ for (p=G.vertices[i].firstarc;p;p=p->nextarc) {w=p->adjvex; /*w是v的邻接顶点的序号*/ if (!visited[w]) DFSAL(G, w); /*若w尚未访问, 递归调用DFS*/ } }/*DFSAL*/
在邻接表存储结构上的广度优先搜索
*
Q
V0
V1
V2
V3
V4
V7
V5
V6
V1
V2
V3
V0
V4
V7
V5
V6
V0
V7
V6
V5
V4
V3
V2
V1
7.3 图的遍历
7
0
1
2
V0
V2
V3
V1
data
firstarc
0
1
^
^
adjvex
next
3

数据结构入门-树的遍历以及二叉树的创建

数据结构入门-树的遍历以及二叉树的创建

数据结构⼊门-树的遍历以及⼆叉树的创建树定义:1. 有且只有⼀个称为根的节点2. 有若⼲个互不相交的⼦树,这些⼦树本⾝也是⼀个树通俗的讲:1. 树是有结点和边组成,2. 每个结点只有⼀个⽗结点,但可以有多个⼦节点3. 但有⼀个节点例外,该节点没有⽗结点,称为根节点⼀、专业术语结点、⽗结点、⼦结点、根结点深度:从根节点到最底层结点的层数称为深度,根节点第⼀层叶⼦结点:没有⼦结点的结点⾮终端节点:实际上是⾮叶⼦结点度:⼦结点的个数成为度⼆、树的分类⼀般树:任意⼀个结点的⼦结点的个数都不受限制⼆叉树:任意⼀个结点的⼦结点个数最多是两个,且⼦结点的位置不可更改⼆叉数分类:1. ⼀般⼆叉数2. 满⼆叉树:在不增加树层数的前提下,⽆法再多添加⼀个结点的⼆叉树3. 完全⼆叉树:如果只是删除了满⼆叉树最底层最右边的连续若⼲个结点,这样形成的⼆叉树就是完全⼆叉树森林:n个互不相交的树的集合三、树的存储⼆叉树存储连续存储(完全⼆叉树)优点:查找某个结点的⽗结点和⼦结点(也包括判断有没有⼦结点)速度很快缺点:耗⽤内存空间过⼤链式存储⼀般树存储1. 双亲表⽰法:求⽗结点⽅便2. 孩⼦表⽰法:求⼦结点⽅便3. 双亲孩⼦表⽰法:求⽗结点和⼦结点都很⽅便4. ⼆叉树表⽰法:把⼀个⼀般树转化成⼀个⼆叉树来存储,具体转换⽅法:设法保证任意⼀个结点的左指针域指向它的第⼀个孩⼦,右指针域指向它的兄弟,只要能满⾜此条件,就可以把⼀个⼀般树转化为⼆叉树⼀个普通树转换成的⼆叉树⼀定没有右⼦树森林的存储先把森林转化为⼆叉树,再存储⼆叉树四、树的遍历先序遍历:根左右先访问根结点,再先序访问左⼦树,再先序访问右⼦树中序遍历:左根右中序遍历左⼦树,再访问根结点,再中序遍历右⼦树后续遍历:左右根后续遍历左⼦树,后续遍历右⼦树,再访问根节点五、已知两种遍历求原始⼆叉树给定了⼆叉树的任何⼀种遍历序列,都⽆法唯⼀确定相应的⼆叉树,但是如果知道了⼆叉树的中序遍历序列和任意的另⼀种遍历序列,就可以唯⼀地确定⼆叉树已知先序和中序求后序先序:ABCDEFGH中序:BDCEAFHG求后序:这个⾃⼰画个图体会⼀下就可以了,⾮常简单,这⾥简单记录⼀下1. ⾸先根据先序确定根,上⾯的A就是根2. 中序确定左右,A左边就是左树(BDCE),A右边就是右树(FHG)3. 再根据先序,A左下⾯就是B,然后根据中序,B左边没有,右边是DCE4. 再根据先序,B右下是C,根据中序,c左下边是D,右下边是E,所以整个左树就确定了5. 右树,根据先序,A右下是F,然后根据中序,F的左下没有,右下是HG,6. 根据先序,F右下为G,然后根据中序,H在G的左边,所以G的左下边是H再来⼀个例⼦,和上⾯的思路是⼀样的,这⾥就不详细的写了先序:ABDGHCEFI中序:GDHBAECIF已知中序和后序求先序中序:BDCEAFHG后序:DECBHGFA这个和上⾯的思路是⼀样的,只不过是反过来找,后序找根,中序找左右树简单应⽤树是数据库中数据组织⼀种重要形式操作系统⼦⽗进程的关系本⾝就是⼀棵树⾯向对象语⾔中类的继承关系哈夫曼树六、⼆叉树的创建#include <stdio.h>#include <stdlib.h>typedef struct Node{char data;struct Node * lchild;struct Node * rchild;}BTNode;/*⼆叉树建⽴*/void BuildBT(BTNode ** tree){char ch;scanf("%c" , &ch); // 输⼊数据if(ch == '#') // 如果这个节点的数据是#说明这个结点为空*tree = NULL;else{*tree = (BTNode*)malloc(sizeof(BTNode));//申请⼀个结点的内存 (*tree)->data = ch; // 将数据写⼊到结点⾥⾯BuildBT(&(*tree)->lchild); // 递归建⽴左⼦树BuildBT(&(*tree)->rchild); // 递归建⽴右⼦树}}/*⼆叉树销毁*/void DestroyBT(BTNode *tree) // 传⼊根结点{if(tree != NULL){DestroyBT(tree->lchild);DestroyBT(tree->rchild);free(tree); // 释放内存空间}}/*⼆叉树的先序遍历*/void Preorder(BTNode * node){if(node == NULL)return;else{printf("%c ",node->data );Preorder(node->lchild);Preorder(node->rchild);}}/*⼆叉树的中序遍历*/void Inorder(BTNode * node){if(node == NULL)return;else{Inorder(node->lchild);printf("%c ",node->data );Inorder(node->rchild);}}/*⼆叉树的后序遍历*/void Postorder(BTNode * node){if(node == NULL)return;else{Postorder(node->lchild);Postorder(node->rchild);printf("%c ",node->data );}}/*⼆叉树的⾼度树的⾼度 = max(左⼦树⾼度,右⼦树⾼度) +1*/int getHeight(BTNode *node){int Height = 0;if (node == NULL)return 0;else{int L_height = getHeight(node->lchild);int R_height = getHeight(node->rchild);Height = L_height >= R_height ? L_height +1 : R_height +1; }return Height;}int main(int argc, char const *argv[]){BTNode * BTree; // 定义⼀个⼆叉树printf("请输⼊⼀颗⼆叉树先序序列以#表⽰空结点:");BuildBT(&BTree);printf("先序序列:");Preorder(BTree);printf("\n中序序列:");Inorder(BTree);printf("\n后序序列:");Postorder(BTree);printf("\n树的⾼度为:%d" , getHeight(BTree));return 0;}// ABC##DE##F##G##。

数据结构与算法课程设计报告---图的算法实现

数据结构与算法课程设计报告---图的算法实现

数据结构与算法课程设计报告课程设计题目:图的算法实现专业班级:信息与计算科学1002班目录摘要 (1)1、引言 (1)2、需求分析 (1)3、概要设计 (2)4、详细设计 (4)5、程序设计 (10)6、运行结果 (18)7、总结体会 (19)摘要(题目): 图的算法实现实验内容图的算法实现问题描述:(1)将图的信息建立文件;(2)从文件读入图的信息,建立邻接矩阵和邻接表;(3)实现Prim、Kruskal、Dijkstra和拓扑排序算法。

关键字:邻接矩阵、Dijkstra和拓扑排序算法1.引言本次数据结构课程设计共完成图的存储结构的建立、Prim、Kruskal、Dijkstra 和拓扑排序算法等问题。

通过本次课程设计,可以巩固和加深对数据结构的理解,通过上机和程序调试,加深对课本知识的理解和熟练实践操作。

(1)通过本课程的学习,能够熟练掌握数据结构中图的几种基本操作;(2)能针对给定题目,选择相应的数据结构,分析并设计算法,进而给出问题的正确求解过程并编写代码实现。

使用语言:CPrim算法思想:从连通网N={V,E}中的某一顶点v0出发,选择与它关联的具有最小权值的边(v0,v),将其顶点加入到生成树的顶点集合V中。

以后每一步从一个顶点在V中,而另一个顶点不在V中的各条边中选择权值最小的边(u,v),把它的顶点加入到集合V中。

如此继续下去,直到网中的所有顶点都加入到生成树顶点集合V中为止。

拓扑排序算法思想:1、从有向图中选取一个没有前驱的顶点,并输出之;2、从有向图中删去此顶点以及所有以它为尾的弧;重复上述两步,直至图空,或者图不空但找不到无前驱的顶点为止。

没有前驱-- 入度为零,删除顶点及以它为尾的弧-- 弧头顶点的入度减1。

2.需求分析1、通过键盘输入建立一个新的有向带权图,建立相应的文件;2、对建立的有向带权图进行处理,要求具有如下功能:(1)用邻接矩阵和邻接表的存储结构输出该有向带权图,并生成相应的输出结果;(2)用Prim、Kruskal算法实现对图的最小生成树的求解,并输出相应的输出结果;(3)用Dijkstra算法实现对图中从某个源点到其余各顶点的最短路径的求解,并输出相应的输出结果;(4)实现该图的拓扑排序算法。

北京师范大学《数据结构》课程教学大纲

北京师范大学《数据结构》课程教学大纲

北京师范大学《数据结构》课程教学大纲一、课程基本信息中文名称: 数据结构英文名称:Data Structure课程类别(公共任选课、学科基础课、专业方向课):学科基础课学分: 4学时: 48+32建议开设学期:2 开课单位建议:信息科学与技术学院主讲教师:(姓名) 沈复兴(性别)男(职称) (学科方向)教授 计算机软件郑新 女 副教授 计算机应用肖永康 男 讲师 计算机应用二、课程目标:本课程的主要目标是使学生深入了解数据结构的思想和数据结构的实现方法,特别是数据结构在实际工作中的应用和技术。

本课程追求理论联系实际,实践教学与相应的教学内容相呼应。

在形式上,灵活多样地采取了实践、拓展性学习、报告会等多种形式,目的在于加深学生对所学内容的理解,发展学生从事发展算法与程序设计研究和实践的能力,努力做到学以致用,同时激发学生的学习兴趣和主动参与精神,更好地掌握和运用所学习的知识。

三、课程内容与主要学习材料(含教材及参考书目)课程内容:第一章 绪论1. 教学内容:♦数据结构的一些基本概念:数据、数据元素、数据的逻辑结构、物理结构、算法等。

♦抽象数据类型。

♦描述算法的程序语言(C++)。

♦算法时间复杂度和空间复杂度的分析。

2. 教学目的及要求♦掌握数据、数据对象、数据元素、数据结构、数据的逻辑结构与物理结构、逻辑结构与物理结构间的关系等数据结构的基本概念;♦了解数据类型、抽象数据类型、数据抽象和信息隐蔽原则以及面向对象这种数据抽象实现方法♦了解算法的定义、算法的特性、算法的时间代价、算法的空间代价♦掌握用C++语言描述算法的方法,能够使用C++语言编写程序3. 教学重点数据结构的概念;算法分析;C++语言。

4. 学时分配本章共教授4学时.第二章数组1. 教学内容♦线性表的基本概念♦顺序表:顺序表的定义和特点;顺序表的类定义;顺序表的查找、插入和删除;使用顺序表的事例;顺序表复杂度分析♦特殊矩阵的压缩存储:特殊矩阵定义、稀疏矩阵类定义、矩阵转置与快速转置、矩阵乘法与输出♦字符串:字符串类型定义;字符串操作的实现;字符串的模式匹配2. 教学目的及要求♦了解线性表的逻辑结构特性,以及线性表的两种存储实现方式♦熟练掌握顺序表的定义与实现,包括搜索、插入、删除算法的实现及其平均比较次数的计算,掌握应用顺序表作为集合的简单操作♦了解稀疏矩阵的定义及其数组实现♦掌握字符串的定义及实现3. 教学重点线性表的基本概念、顺序表的实现及应用4. 教学难点矩阵的快速转置及模式匹配改进5. 教学时间分配本章共教授4学时.第三章链表1.教学内容♦单链表:单链表的结构;单链表的类定义;单链表中的查找、插入与删除;带表头结点的单链表;单链表的游标类及静态链表♦循环链表:循环链表的类定义及操作;用循环链表解约瑟夫问题;♦多项式及其相加:多项式的链表表示类定义;多项式的加法♦双向链表:双向链表的类定义及操作♦稀疏矩阵:稀疏矩阵的正交链表表示法及建立和删除操作2.教学目的及要求♦了解链表与数组一样,是一种实现级结构。

数据结构课程设计二 叉 树 遍 历 及 应 用

数据结构课程设计二 叉 树 遍 历 及 应 用

实验报告课程:数据结构课程设计设计题目:二叉树遍历及应用学号:班级:软件11k1姓名: 南方小羊指导教师:刘军二叉树的遍历1、问题描述利用先序遍历建立一棵二叉树,并分别用前序、中序、后序遍历该二叉树2、节点形式Lchild data Rchild3、说明(1)输入数据:1,2,3,0,0,4,0,0,5,0,0其中“0”表示空子树。

(2)输出数据:先序:1,2,3,4,5中序:3,2,4,1,5后序:3,4,2,5,1二叉树的应用1、问题描述运用二叉树的遍历的算法,编写算法分别实现如下功能。

(1)求出二叉树中的结点的总数。

(2)求出二叉树中的叶子数目。

(3)求出二叉树的深度。

运用上题所建立的二叉树,求出其结点总数、叶子数目、深度,最后释放所有结点。

二叉树结点结构中包数据域(data),指针域(*lchild,*rchild)。

结点结构的代码如下:typedef struct tree{int data;struct tree *lchild,*rchild;}*bitree;本实例使用的是二叉树,首先建立头结点,并且保存数据,然后根据递归方法,分别建立其左右孩子结点,且左右孩子结点的指针域指向空。

先序递归遍历时,输出第一个根结点数据,然后分别遍历左子树再遍历右子树,中序遍历,先访问根结点的左子树输出数据,再输出根结点的数据,再访问右子树,后序遍历先访问根结点的右子树,再访问根结点,再访问左子树输出。

统计二叉树叶子的个数可以看成一个遍历问题,访问一个结点,判断该结点是否为叶子,如果是将叶子树加1,可以采用任何遍历实现,求二叉树的深度是假设根结点为第一层的结点,所有K层结点的左右孩子在K+1层,所以可以通过先序遍历计算二叉树中每个结点的层数,其中最大的就是二叉树的深度。

四、实验心得:树结构是数据结构课程的典型内容,而且综合使用了多种逻辑结构,具有代表性,可以锻炼个人编程能力。

在刚开始选题后,我感觉无从下手,一是因为没有实践经验,二是因为对数据结构课程的内容没有把握到位,然后在参考一些专业书籍并且学习了之前其他人的课程设计,才逐渐可以上手去自己做。

数据结构图

数据结构图

所以:对于点多边少的稀疏图来说,采用邻接表 结构使得算法在时间效 率上大大提高。
16
3/12
广度优先搜索(Breadth First Search,简称BFS ) BFS类似于树的层序遍历; 用一个数组用于标志已访问与否,还需要一个工作队列。
【例】一个无向图的BFS
8
6
CD
4
7
HG
BA
邻接多重表(Adjacency Multilist)
9
边表
• 在某些应用中,有时主要考察图中边的权值以及所依附的 两个顶点,即图的结构主要由边来表示,称为边表存储结 构。
• 边表结构采用顺序存储,用2个一维数组构成,一个存储 顶点信息,一个存储边的信息。边数组的每个元素由三部 分组成:
– 边的起点下标 – 边的终点下标 – 边的权值
1
A [i][
j]


0
如果 (vi , v j ) 或 vi , v j G的边 其它
无权图的邻接矩阵表示示例
V1
V2
V0
3
V3
4 12/15
带权图的邻接矩阵的定义
A [i][ j] wij
如果 (vi , vj ) 或 vi , v j G的边 其它
带图权的图邻的接邻矩接阵矩表阵示表示示例示[例例6.9]
1
第一部分 图的定义和术语
2
图的定义
“图” G可以表示为两个集合:G =(V, E)。每条 边是一个顶点对(v, w) E ,并且 v, w V。
通常:用 |V| 表示顶点的数量(|V| ≥ 1), 用 |E| 表示边的数量(|E| ≥ 0)。
(1) 无向图(完全有向图边数与顶点数之间的 关系) (2) 有向图(完全有向图弧数与顶点数之间的 关系) (3) 简单图:没有重边和自回路的图 (4) 邻接 (5) 路径,路径长度 (6) 无环(有向)图:没有任何回路的(有向)图 (7) 度,入度,出度 (8) 无向图的顶点连通、连通图、连通分量 (9) 有向图的顶点强连通,强连通图、连通分量

《数据结构》课程设计

《数据结构》课程设计

《数据结构》课程设计一、课程目标《数据结构》课程旨在帮助学生掌握计算机科学中基础的数据组织、管理和处理方法,培养其运用数据结构解决实际问题的能力。

课程目标如下:1. 知识目标:(1)理解基本数据结构的概念、原理和应用,如线性表、栈、队列、树、图等;(2)掌握常见算法的设计和分析方法,如排序、查找、递归、贪心、分治等;(3)了解数据结构在实际应用中的使用,如操作系统、数据库、编译器等。

2. 技能目标:(1)能够运用所学数据结构解决实际问题,具备良好的编程实践能力;(2)掌握算法分析方法,能够评价算法优劣,进行算法优化;(3)能够运用数据结构进行问题建模,提高问题解决效率。

3. 情感态度价值观目标:(1)激发学生对计算机科学的兴趣,培养其探索精神和创新意识;(2)培养学生团队合作意识,学会与他人共同解决问题;(3)增强学生的责任感和使命感,使其认识到数据结构在信息技术发展中的重要性。

本课程针对高中年级学生,结合学科特点和教学要求,将目标分解为具体的学习成果,为后续教学设计和评估提供依据。

课程注重理论与实践相结合,旨在提高学生的知识水平、技能素养和情感态度价值观。

二、教学内容《数据结构》教学内容依据课程目标进行选择和组织,确保科学性和系统性。

主要包括以下部分:1. 线性表:- 线性表的定义、特点和基本操作;- 顺序存储结构、链式存储结构及其应用;- 线性表的相关算法,如插入、删除、查找等。

2. 栈和队列:- 栈和队列的定义、特点及基本操作;- 栈和队列的存储结构及其应用;- 栈和队列相关算法,如进制转换、括号匹配等。

3. 树和二叉树:- 树的定义、基本术语和性质;- 二叉树的定义、性质、存储结构及遍历算法;- 线索二叉树、哈夫曼树及其应用。

4. 图:- 图的定义、基本术语和存储结构;- 图的遍历算法,如深度优先搜索、广度优先搜索;- 最短路径、最小生成树等算法。

5. 排序和查找:- 常见排序算法,如冒泡、选择、插入、快速等;- 常见查找算法,如顺序、二分、哈希等。

数据结构_二叉树的遍历_课程设计

数据结构_二叉树的遍历_课程设计

8
if(bt!=NULL)/*二叉树 bt 非空*/ { inorder(bt->lchild);/*中序遍历 bt 的左子树*/ printf("%c",bt->data);/*访问结点 bt*/ inorder(bt->rchild);/*中序遍历 bt 的右子树*/ } } void postorder(bitree *bt)/*后序序遍历二叉树*/ { if(bt!=NULL) { postorder(bt->lchild); postorder(bt->rchild); printf("%c",bt->data); } }
3.2.2 二叉树的中序递归遍历算法
void inorder(bitree *bt)/*中序序遍历二叉树*/ { if(bt!=NULL)/*二叉树 bt 非空*/ { inorder(bt->lchild);/*中序遍历 bt 的左子树*/ printf("%c",bt->data);/*访问结点 bt*/ inorder(bt->rchild);/*中序遍历 bt 的右子树*/ } }
图 1 “菜单”界面
图2
创建二叉树
5
图 3 二叉树的先序遍历
图4
二叉树的中序输出
6
图 5 二叉树的后序输出
五:实验总结 虽然做的过程中出现很多错误。但是最后还是一一纠正了,并在其中发现了自 身的不足,补学补差。最后终于完成了。
六:源程序附录
#include<stdio.h> #include<stdlib.h> typedef char datatype; typedef struct node { datatype data;/*数据元素*/ struct node *lchild,*rchild;/*指向左,右孩子*/ }bitree; bitree *root;/*二叉树结点类型定义*/ bitree *creatbitree(bitree *root)/*创建二叉树*/ { char ch;

第7章图(下)-数据结构简明教程(第2版)-微课版-李春葆-清华大学出版社

第7章图(下)-数据结构简明教程(第2版)-微课版-李春葆-清华大学出版社



(1)置U的初值等于V(即包含有G中的全部顶点),TE的初
和 最
值为空集(即图T中每一个顶点都构成一个连通分量)。

(2)将图G中的边按权值从小到大的顺序依次选取:若选取


的边未使生成树T形成回路,则加入TE;否则舍弃,直到TE中包

含n-1条边为止。
实现克鲁斯卡尔算法的关键是如何判断选取的边是否与生成树 中已保留的边形成回路?
7.4
建立了两个辅助数组closest和lowcost。
所有顶点分为U和V-U两个顶点集。
U中的顶点i:lowcost[i]=0;

V-U中的顶点j:lowcost[j]>0。




小 生
i
j


U中i:lowcost[i]=0
V-U中j:lowcost[j]>0
7.4
实现普里姆算法(2/3):

通过深度优先遍历产生的生成树称为深度优先生成树。


通过广度优先遍历产生的生成树称为广度优先生成树。






无向图进行遍历时:
7.4
连通图:仅需要从图中任一顶点出发,进行深度优先遍历或广
度优先遍历便可以访问到图中所有顶点,因此连通图的一次遍
历所经过的边的集合及图中所有顶点的集合就构成了该图的一
7.4
为此设置一个辅助数组vset[0..n-1],它用于判定两个顶点之

间是否连通。

数组元素vset[i](初值为i)代表编号为i的顶点所属的连通

子图的编号。

图的遍历算法实验报告

图的遍历算法实验报告

图的遍历算法实验报告
《图的遍历算法实验报告》
在计算机科学领域,图的遍历算法是一种重要的算法,它用于在图数据结构中
访问每个顶点和边。

图的遍历算法有两种常见的方法:深度优先搜索(DFS)
和广度优先搜索(BFS)。

在本实验中,我们将对这两种算法进行实验,并比较
它们的性能和应用场景。

首先,我们使用深度优先搜索算法对一个简单的无向图进行遍历。

通过实验结
果可以看出,DFS算法会首先访问一个顶点的所有邻居,然后再递归地访问每
个邻居的邻居,直到图中所有的顶点都被访问到。

这种算法在一些应用场景中
非常有效,比如寻找图中的连通分量或者寻找图中的环路。

接下来,我们使用广度优先搜索算法对同样的无向图进行遍历。

通过实验结果
可以看出,BFS算法会首先访问一个顶点的所有邻居,然后再按照距离递增的
顺序访问每个邻居的邻居。

这种算法在一些应用场景中也非常有效,比如寻找
图中的最短路径或者寻找图中的最小生成树。

通过对比实验结果,我们可以发现DFS和BFS算法各自的优势和劣势。

DFS算
法适合用于寻找图中的连通分量和环路,而BFS算法适合用于寻找最短路径和
最小生成树。

因此,在实际应用中,我们需要根据具体的需求来选择合适的算法。

总的来说,图的遍历算法是计算机科学中非常重要的算法之一,它在许多领域
都有着广泛的应用。

通过本次实验,我们对DFS和BFS算法有了更深入的了解,并且对它们的性能和应用场景有了更清晰的认识。

希望通过这篇实验报告,读
者们也能对图的遍历算法有更深入的理解和认识。

图的定义和基本术语图的存储结构图的遍历生成树最短路径

图的定义和基本术语图的存储结构图的遍历生成树最短路径
操作结果: 在图G中增添新顶点v。
DeleteVex(&G, v) //删除顶点 初始条件: 图G存在, v和G中顶点有相同特性 。 操作结果:删除G中顶点v及其相关的弧。
InsertArc(&G, v, w) //插入弧 初始条件:图G存在,v 和w是G中两个顶点。 操作结果:在G中增添弧<v,w>,若G是无向的, 则还增添对称弧<w,v>。
DestroyGraph (&G ) // 销毁 初始条件:图G存在。 操作结果:销毁图G 。
LocateVex(G, u) // 定位 初始条件:图G存在,u 和G中顶点有相同特性 。 操作结果: 若G中存在顶点u ,则返回该顶点在 图中位置 ;否则返回其它信息。
GetVex(G, v)// 求值 初始条件:图G存在,v 是G中某个顶点。 操作结果:返回v的值。
//{有向图,有向网,无向图,无向网}
typedef struct ArcCell {// 弧的定义 VRType adj;//VRType是顶点关系类型。对无权图,
//用1或0表示相邻否;对带权图,则为权值类型。 InfoType *info; // 该弧相关信息的指针 } ArcCell ,
AdjMatrix[MAX_VERTEX_NUM] [MAX_VERTEX_NUM];
V2
V3
0110 0000 0001 10 0 0
//- -图的数组(邻接矩阵)存储表示--
#define INFINITY INT_MAX //最大值∞ #define MAX_VERTEX_NUM 20//最大顶点个数 typedef enum{DG,DN,UDG, UDN }graphkind;
表示,称为无向边;

数据结构课程设计报告-最短路径算法-二叉树的三种遍历

数据结构课程设计报告-最短路径算法-二叉树的三种遍历

数据结构课程设计报告班级:计算机科学与技术132班姓名:赖恒财指导教师:董跃华成绩:32信息工程学院2015 年7月8日目录图的最短路径算法实现1. 需求分析 (1)1.1 程序设计内容 (1)1.2 设计要求 (1)2.概要设计 (2)3.详细设计 (2)3.1 数据类型的定义 (2)3.2 功能模块的设计 (2)3.3 主程序流程 (9)4.调试分析 (10)4.1 问题回顾和分析 (10)4.2.经验和体会 (11)5.测试结果 (12)二叉树的遍历1.设计目的 (13)2.需求分析 (14)2.1课程设计的内容和要求 (14)2.2选题的意义及背景 (14)3.概要设计 (14)3.1设计思想 (14)3.2程序数据类型 (16)3.3程序模块分析 (16)3.3.1置空栈 (16)3.3.2入栈 (17)3.3.3出栈 (17)3.3.4取栈顶操作 (17)3.3.5判空栈 (17)3.4函数关系: (18)4.详细设计 (18)4.1二叉树算法程序截图和结果 (18)5.程序测试结果及问题分析 (19)6.总结 (20)参考文献 (21)附录1 (22)附录2 (26)图的最短路径算法实现----基于floyd最短路径算法1.需求分析设计校园平面图,所含景点不少于8个。

以图中顶点表示学校内各景点,存放景点的名称、景点介绍信息等;以边表示路径,存放路径长度信息。

要求将这些信息保存在文件graph.txt中,系统执行时所处理的数据要对此文件分别进行读写操作。

1.1程序设计内容1.从文件graph.txt中读取相应数据, 创建一个图,使用邻接矩阵表示图;2.景点信息查询:为来访客人提供校园任意景点相关信息的介绍;3.问路查询:为来访客人提供校园任意两个景点之间的一条最短路径。

1.2 设计要求(1) 程序要具在一定的健壮性,即当输入数据非法时,程序也能适当地做出反应。

(2) 程序要添加适当的注释,程序的书写要采用缩进格式。

数据结构:第7章 图3-最小生成树

数据结构:第7章 图3-最小生成树

• 按照生成树的定义,n 个顶点的连通网络的生成树有 n
个顶点、n-1 条边。
即有权图
目标:
在网络的多个生成树中,寻找一个各边权值之和最小的
生成树。
构造最小生成树的准则 ❖ 必须只使用该网络中的边来构造最小生成树;
❖ 必须使用且仅使用n-1条边来联结网络中的n个顶点;
❖ 不能使用产生回路的边。
典型用途:
(b) u={1} w={2,3,4,5,6}
0 6 1 5
6
0
5
3
1 5 0 7 5 4
5
7
0
2
3 5 0 6
4 2 6 0
i
1234
closest[i] 1 1 1 1
lowcost[i] 0 6 1 5
56 11 ∞∞
closest用于存放顶点序号 lowest存放权值
15 4 6
1 25
3
54
5
6
(c ) u={1,3} w={2,4,5,6}
1
1
4
25
6
32
54
5
6
(d) u={1,3,6} w={2,4,5}
i
1234 5 6
closest[i] 1 3 1 1 3 3
lowcost[i] 0 5 0 5 5 4
i
1234 5 6
closest[i] 1 3 1 6 3 3

v3 v1

树 v4 v2
v1
0^ 1^ 0^ 1^
2.生成森林
若一个图是非连通图或非强连通图,但有若 干个连通分量或若干个强连通分量,则通过 深度优先搜索遍历或广度优先搜索遍历,不 可以得到生成树,但可以得到生成森林,且 若非连通图有 n 个顶点,m 个连通分量或强 连通分量,则可以遍历得到m棵生成树,合 起来为生成森林,森林中包含n-m条树边。

图算法表示及遍历方法详解

图算法表示及遍历方法详解

图算法表示及遍历方法详解图是计算机科学中常用的数据结构之一,用于表示和解决各种实际问题。

本文将详细介绍图的算法表示以及遍历方法,帮助读者更深入了解和应用图算法。

一、图的定义和表示方法图是由节点(顶点)和边构成的一种数据结构。

常见的图表示方法有两种:邻接矩阵和邻接表。

1. 邻接矩阵表示法邻接矩阵是一个二维矩阵,其中的元素表示图中各个节点之间的连接关系。

对于一个有n个节点的图,邻接矩阵是一个n x n的矩阵,用0和1表示节点之间是否有边相连。

例如,对于一个有4个节点的图,邻接矩阵可以表示为:1 2 3 41[0, 1, 1, 0]2[1, 0, 0, 1]3[1, 0, 0, 0]4[0, 1, 0, 0]邻接矩阵表示法简单直观,适用于节点数量相对较小、边的数量相对较大时。

2. 邻接表表示法邻接表是通过链表的形式,将每个节点的邻接顶点存储起来,用于表示图的连接关系。

对于一个有n个节点的图,可以使用一个长度为n 的数组,数组中的每个元素都是一个链表,链表中存储了与该节点相连的其他节点。

例如,对于一个有4个节点的图,邻接表可以表示为:1->2->32->1->43->14->2邻接表表示法相对节省存储空间,适用于节点数量较大、边的数量相对较小的情况。

二、图的遍历方法图的遍历是指按一定规则依次访问图中的每个节点,以达到查找、搜索或其他操作的目的。

常见的图遍历方法有深度优先搜索(DFS)和广度优先搜索(BFS)。

1. 深度优先搜索(DFS)深度优先搜索从某个节点开始,沿着一条路径一直访问到最后一个节点,然后回溯到上一个节点,再选择另一条未访问过的路径,重复上述过程,直到遍历完整个图。

DFS可以使用递归或栈来实现。

以下是使用递归实现DFS的示例代码:```pythondef dfs(graph, start, visited):visited[start] = Trueprint(start)for neighbor in graph[start]:if not visited[neighbor]:dfs(graph, neighbor, visited)```2. 广度优先搜索(BFS)广度优先搜索从某个节点开始,先访问其所有邻接节点,然后再访问邻接节点的邻接节点,依次类推,直到遍历完整个图。

2024版《数据结构》课程标准

2024版《数据结构》课程标准

•课程概述与目标•基本数据类型与操作•复杂数据类型与操作目录•算法设计与分析基础•排序与查找算法专题•文件组织与处理技术•实验环节与项目实践指导01课程概述与目标数据结构定义及重要性数据结构定义重要性课程要求学生应具备一定的编程基础,熟悉至少一门编程语言;教师应具备丰富的数据结构教学经验和实践经验,能够灵活运用多种教学方法和手段进行教学。

知识目标掌握数据结构的基本概念、基本原理和基本方法,了解各种数据结构的特性、适用场景以及相互之间的联系与区别。

能力目标培养学生运用数据结构解决实际问题的能力,包括抽象问题能力、设计算法能力、编写程序能力以及调试程序能力等。

素质目标培养学生严谨的科学态度、良好的团队合作精神以及创新意识,提高学生的综合素质。

课程目标与要求教材选用及参考资源教材选用参考资源02基本数据类型与操作线性表线性表的定义与基本操作01线性表的顺序存储结构02线性表的链式存储结构03栈和队列栈的定义与基本操作队列的定义与基本操作栈和队列的应用串和数组串的定义与基本操作串的存储结构数组的定义与基本操作特殊矩阵的压缩存储03复杂数据类型与操作树和二叉树树的基本概念二叉树树的遍历哈夫曼树及其应用线索二叉树树和森林图的基本概念图的存储结构图的遍历最小生成树最短路径拓扑排序和关键路径图论基础及应用顺序查找、折半查找、索引顺序查找等。

静态查找表动态查找表哈希表查找算法的分析与评价二叉排序树和平衡二叉树等。

哈希函数的构造方法、处理冲突的方法等。

时间复杂度、空间复杂度等。

查找技术04算法设计与分析基础算法概念及表示方法算法定义算法表示方法时间复杂度空间复杂度其他指标030201算法性能评价指标将原问题分解为若干个子问题,分别分治策略类似于回溯法,但在搜索过程中通过剪枝等操作来减少搜索空间,提高效分支限界策略通过保存子问题的解,避免重复计算,提高效率。

动态规划贪心策略通过探索所有可能的解来求解问题,当发现当前路径无法得到解时,回溯回溯策略0201030405典型算法设计策略05排序与查找算法专题内部排序方法比较插入排序简单插入排序、希尔排序交换排序冒泡排序、快速排序选择排序简单选择排序、堆排序01020304哈希表查找技术06文件组织与处理技术文件概念及分类方法文件定义文件分类根据文件的性质和记录的组织方式,文件可分为顺序文件、索引文件、散列文件和链式文件等。

数据结构毕业设计论文题目整理

数据结构毕业设计论文题目整理

数据结构课程设计题目1.飞机订票系统(限1 人完成)(顺序或链式存储)任务:通过此系统可以实现如下功能:录入:可以录入航班情况(数据可以存储在一个数据文件中,数据结构、具体数据自定)查询:可以查询某个航线的情况(如,输入航班号,查询起降时间,起飞抵达城市,航班票价,票价折扣,确定航班是否满仓);可以输入起飞抵达城市,查询飞机航班情况;订票:(订票情况可以存在一个数据文件中,结构自己设定)可以订票,如果该航班已经无票,可以提供相关可选择航班;退票:可退票,退票后修改相关数据文件;客户资料有姓名,证件号,订票数量及航班情况,订单要有编号。

修改航班信息:当航班信息改变可以修改航班数据文件要求:根据以上功能说明,设计航班信息,订票信息,客户信息的存储结构,设计程序完成功能;2.宿舍管理查询软件(限1 人完成)任务:为宿舍管理人员编写一个宿舍管理查询软件, 程序设计要求:采用交互工作方式建立数据文件,包括学生信息、宿舍信息、住宿信息,学生信息按关键字(姓名、学号)进行排序(排序方法自选,不能相同);查询: (用二分查找实现以下操作)按姓名查询按学号查询(用顺序查找实现以下操作)按房号查询3.校园导航问题(限1 人完成)设计要求:设计你的学校的平面图,至少包括10个以上的场所,每两个场所间可以有不同的路,且路长也可能不同,找出从任意场所到达另一场所的最佳路径(最短路径)。

要求:能增加场所4.图书借阅管理系统(限1 人完成)(顺序或链式存储)主要分为两大功能:1)图书管理(增加图书、查询图书、删除图书、图书借阅、还书);2)会员管理(增加会员、查询会员、删除会员、借书信息);5.学生成绩管理(限1 人完成)(顺序或链式存储)包括:课程信息,学生信息等;能增加课程或学生。

实现功能:输入、输出、插入、删除、查找、显示、保存、排序、退出。

6.活期储蓄帐目管理(限1 人完成)活期储蓄处理中,储户开户、销户、存入、支出活动频繁,系统设计要求:1)能比较迅速地找到储户的帐户,以实现存款、取款记账;2)能比较简单,迅速地实现插入和删除,以实现开户和销户的需要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

##大学数据结构课程设计报告题目:图的遍历和生成树求解院(系):计算机工程学院学生:班级:学号:起迄日期: 2011.6.20指导教师:2010—2011年度第 2 学期一、需求分析1.问题描述:图的遍历和生成树求解实现图是一种较线性表和树更为复杂的数据结构。

在线性表中,数据元素之间仅有线性关系,每个数据元素只有一个直接前驱和一个直接后继;在树形结构中,数据元素之间有着明显的层次关系,并且每一层上的数据元素可能和下一层中多个元素(及其孩子结点)相关但只能和上一层中一个元素(即双亲结点)相关;而在图形结构中,节点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。

生成树求解主要利用普利姆和克雷斯特算法求解最小生成树,只有强连通图才有生成树。

2.基本功能1) 先任意创建一个图;2) 图的DFS,BFS的递归和非递归算法的实现3) 最小生成树(两个算法)的实现,求连通分量的实现4) 要求用邻接矩阵、邻接表等多种结构存储实现3.输入输出输入数据类型为整型和字符型,输出为整型和字符二、概要设计1.设计思路:a.图的邻接矩阵存储:根据所建无向图的结点数n,建立n*n的矩阵,其中元素全是无穷大(int_max),再将边的信息存到数组中。

其中无权图的边用1表示,无边用0表示;有全图的边为权值表示,无边用∞表示。

b.图的邻接表存储:将信息通过邻接矩阵转换到邻接表中,即将邻接矩阵的每一行都转成链表的形式将有边的结点进行存储。

c.图的广度优先遍历:假设从图中的某个顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后再访问此邻接点的未被访问的邻接点,并使“先被访问的顶点的邻接点”先于“后被访问的顶点的邻接点”被访问,直至图中所有已被访问的顶点的邻接点都被访问到。

若此时图中还有未被访问的,则另选未被访问的重复以上步骤,是一个非递归过程。

d.图的深度优先遍历:假设从图中某顶点v出发,依依次访问v的邻接顶点,然后再继续访问这个邻接点的系一个邻接点,如此重复,直至所有的点都被访问,这是个递归的过程。

e.图的连通分量:这是对一个非强连通图的遍历,从多个结点出发进行搜索,而每一次从一个新的起始点出发进行搜索过程中得到的顶点访问序列恰为其连通分量的顶点集。

本程序利用的图的深度优先遍历算法。

2.数据结构设计:ADT Queue{数据对象:D={ai | ai∈ElemSet,i=1,2,3……,n,n≥0}数据关系:R1={<ai-1,ai>| ai-1,ai∈D,i=1,2,3,……,n}基本操作:InitQueue(&Q)操作结果:构造一个空队列Q。

QueueEmpty(Q)初始条件:Q为非空队列。

操作结果:若Q为空队列,则返回真,否则为假。

EnQueue(&Q,e)初始条件:Q为非空队列。

操作结果:插入元素e为Q的新的队尾元素。

DeQueue(&Q,e)初始条件:Q为非空队列。

操作结果:删除Q的队头元素,并用e返回其值。

}ADT QueueADT Graph{数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。

数据关系R:R={VR}VR={<v,w>|v,w∈V且P(v,w),<v,w>表示从v到w的弧,谓词P(v,w)定义了弧<v,w>的意义或信息} 基本操作P:CreatGraph(&G,V,VR);初始条件:V是图的顶点集,VR是图中弧的集合。

操作结果:按V和VR的定义构造图G。

BFSTraverse(G,visit());初始条件:图G存在,Visit是定点的应用函数。

操作结果:对图进行广度优先遍历。

在遍历过程中对每个顶点调用函数Visit一次且仅一次。

一旦visit()失败,则操作失败。

DFSTraverse(G,visit());初始条件:图G存在,Visit是定点的应用函数。

操作结果:对图进行广度优先遍历。

在遍历过程中对每个顶点调用函数Visit一次且仅一次。

一旦visit()失败,则操作失败。

DFStra_fen(G)初始条件:图G存在,存在图的深度优先遍历算法。

操作结果:从多个顶点对图进行深度优先遍历,得到连通分量。

}ADT Graph;3.软件结构设计:三、详细设计1.定义程序中所有用到的数据及其数据结构,及其基本操作的实现;邻接矩阵定义:typedef struct ArcCell{VRType adj;//VRType是顶点关系类型。

对无权图,用1或0表示相邻否;对带权图,则为权值类型InfoType *info;//该弧相关信息的指针}ArcCell,AdjMatrix[max][max];typedef struct{VertexType vexs[max];//顶点向量AdjMatrix arcs;//邻接矩阵int vexnum,arcnum;//图的当前顶点数和弧数}MGraph_L;邻接表的定义:typedef struct ArcNode//弧结点{int adjvex;//该弧指向的顶点的位置struct ArcNode *nextarc;//指向下一条弧的指针InfoType *info;//该弧相关信息的指针}ArcNode;typedef struct VNode//邻接链表顶点头接点{VertexType data;//顶点信息ArcNode *firstarc;//指向第一条依附该顶点的弧的指针}VNode,AdjList;typedef struct//图的定义{AdjList vertices[max];int vexnum,arcnum;//图的当前顶点数和弧数}ALGraph;队列定义:typedef struct QNode{QElemType data;struct QNode *next;}QNode,*QueuePtr;typedef struct{QueuePtr front;//队头指针QueuePtr rear;//队尾指针}LinkQueue;2.主函数和其他函数的伪码算法;主函数:int main(){int s;char y='y';cout<<"||¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤菜单¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤||"<<endl;cout<<"||-------------------------【0、创建一个无向图------------------------------||"<<endl;cout<<"||-------------------------【1、显示该图的邻接矩阵--------------------------||"<<endl;cout<<"||-------------------------【2、显示该图的邻接表----------------------------||"<<endl;cout<<"||-------------------------【3、广度优先遍历--------------------------------||"<<endl;cout<<"||-------------------------【4、深度优先遍历--------------------------------||"<<endl;cout<<"||-------------------------【5、最小生成树MiniSpanTree_PRIM 算法-------------||"<<endl;cout<<"||-------------------------【6、最小生成树MiniSpanTree_KRUSCAL算法----------||"<<endl;cout<<"||-------------------------【7、连通分量------------------------------------||"<<endl;cout<<"||¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤||"<<endl;while(y=='y'){cout<<"请选择菜单:"<<endl;cin>>s;if(s==0){++o;if(o==2){n=0;l=0;o=0;}}switch(s){case 0:cout<<"创建一个无向图:"<<endl;MGraph_L G;creatMGraph_L(G);ALGraph gra;creatadj(gra,G);break;case 1:cout<<"邻接矩阵显示如下:"<<endl;ljjzprint(G);break;case 2:cout<<"邻接表显示如下:"<<endl;adjprint(gra,G);break;case 3:cout<<"广度优先遍历:";BFSTraverse(gra);cout<<endl;break;case 4:cout<<"深度优先遍历:";DFStra(gra);cout<<endl;break;case 5:if(n==0){cout<<"无权图没有最小生成树";break;}else if(l>0){cout<<"若该图为非强连通图(含有多个连通分量)时,最小生成树不存在"<<endl;break;}else{int i,g[max][max];for(i=0;i!=G.vexnum;++i)for(int j=0;j!=G.vexnum;++j)g[i+1][j+1]=G.arcs[i][j].adj;cout<<"普利姆算法:"<<endl;MiniSpanTree_PRIM(g,G.vexnum);break;}case 6:if(n==0){cout<<"无权图没有最小生成树";break;}else if(l>0){cout<<"该图为非强连通图(含有多个连通分量),最小生成树不存在"<<endl;break;}else{cout<<"克鲁斯卡尔算法:"<<endl;MiniSpanTREE_KRUSCAL(G,gra);break;}case 7:cout<<"连通分量:"<<endl;DFSTraverse_fen(gra);break;}cout<<endl<<"是否继续?y/n:";cin>>y;if(y=='n')break;}return 0;}邻接矩阵存储:int creatMGraph_L(MGraph_L &G)//创建图用邻接矩阵表示{char v1,v2;int i,j,w;cout<<"请输入顶点和弧的个数"<<endl;cin>>G.vexnum>>G.arcnum;cout<<"输入各个顶点"<<endl;for(i=0;i<G.vexnum;++i){cin>>G.vexs[i];}for(i=0;i<G.vexnum;++i)for(j=0;j<G.vexnum;++j){G.arcs[i][j].adj=int_max;G.arcs[i][j].info=NULL;}for(int k=0;k<G.arcnum;++k){cout<<"输入一条边依附的顶点和权"<<endl;cin>>v1>>v2>>w;//输入一条边依附的两点及权值i=localvex(G,v1);//确定顶点V1和V2在图中的位置j=localvex(G,v2);G.arcs[i][j].adj=w;G.arcs[j][i].adj=w;}for(i=0;i!=G.vexnum;++i)for(j=0;j!=G.vexnum;++j){if(G.arcs[i][j].adj!=1&&G.arcs[i][j].adj<int_max)n+=1;}if(n>=1)cout<<"这是一个有权图"<<endl;else cout<<"这是一个无权图"<<endl;cout<<"图G邻接矩阵创建成功!"<<endl;return G.vexnum;}邻接矩阵的输出:void ljjzprint(MGraph_L G) //邻接矩阵的输出{int i,j;if(n==0){for(i=0;i!=G.vexnum;++i){for(j=0;j!=G.vexnum;++j){if(G.arcs[i][j].adj==int_max){cout<<"0"<<" ";}else {cout<<G.arcs[i][j].adj<<" ";}}cout<<endl;}}else{for(i=0;i!=G.vexnum;++i){for(j=0;j!=G.vexnum;++j){if(G.arcs[i][j].adj==int_max){cout<<"∞"<<" ";}else {cout<<G.arcs[i][j].adj<<" ";}}cout<<endl;}}}用邻接表存储图:int creatadj(ALGraph &gra,MGraph_L G)//用邻接表存储图{int i=0,j=0;ArcNode *arc;//,*tem,*p;for(i=0;i!=G.vexnum;++i){gra.vertices[i].data=G.vexs[i];gra.vertices[i].firstarc=NULL;}for(i=0;i!=G.vexnum;++i)for(j=0;j!=G.vexnum;++j){if(G.arcs[i][j].adj!=int_max){arc=(ArcNode *)malloc(sizeof(ArcNode));arc->adjvex=j;arc->nextarc=gra.vertices[i].firstarc;gra.vertices[i].firstarc=arc;}}gra.vexnum=G.vexnum;gra.arcnum=G.arcnum;cout<<"图G邻接表创建成功!"<<endl;return 1;}邻接表输出:void adjprint(ALGraph gra,MGraph_L G) //邻接表输出{int i;for(i=0;i!=gra.vexnum;++i){ArcNode *p;cout<<"["<<i<<","<<G.vexs[i]<<"]";p=gra.vertices[i].firstarc;while(p!=NULL){cout<<"->"<<"["<<p->adjvex<<"]";p=p->nextarc;}cout<<"->"<<"End";cout<<endl;}}初始化队列:Status InitQueue(LinkQueue &Q)//初始化队列{Q.front=Q.rear=(QueuePtr)malloc(sizeof(QNode));if(!Q.front)return 0;//存储分配失败Q.front->next=NULL;return 1;}入队:Status EnQueue(LinkQueue &Q,QElemType e)//入队,插入元素e为Q的新的队尾元素{QueuePtr p;p=(QueuePtr)malloc(sizeof(QNode));if(!p)return 0;//存储分配失败p->data=e;p->next=NULL;Q.rear->next=p;Q.rear=p;return 1;}出队:Status DeQueue(LinkQueue &Q,QElemType &e)//出队,若队列不空,则删除Q 的队头元素,用e返回,并返回真,否则假{QueuePtr p;if(Q.front==Q.rear)return 0;p=Q.front->next;e=p->data;Q.front->next=p->next;if(Q.rear==p)Q.rear=Q.front;free(p);return 1;判断队为空:Status QueueEmpty(LinkQueue Q)//判断队为空{if(Q.front==Q.rear) return 1;return 0;}广度优先遍历:void BFSTraverse(ALGraph gra){int i,e;LinkQueue q;for(i=0;i!=gra.vexnum;++i)visited[i]=0;InitQueue(q);for(i=0;i!=gra.vexnum;++i)if(!visited[i]){visited[i]=1;cout<<gra.vertices[i].data;EnQueue(q,i);while(!QueueEmpty(q)){DeQueue(q,e);for(we=firstadjvex(gra,gra.vertices[e]);we>=0;we=nextadjvex(gra,g ra.vertices[e],we)){if(!visited[we]){visited[we]=1;cout<<gra.vertices[we].data;EnQueue(q,we);}}}}深度优先遍历:int DFS(ALGraph gra,int i){visited[i]=1;int we1;cout<<gra.vertices[i].data;for(we=firstadjvex(gra,gra.vertices[i]);we>=0;we=nextadjvex(gra,g ra.vertices[i],we)){we1=we;if(visited[we]==0)DFS(gra,we);we=we1;}return 1;}int DFStra(ALGraph gra){int i,j;for(i=0;i!=gra.vexnum;++i){visited[i]=0;}for(j=0;j!=gra.vexnum;++j){if(visited[j]==0)DFS(gra,j);}return 0;}连通分量:int DFSTraverse_fen(ALGraph gra){int i,j;for(i=0;i!=gra.vexnum;++i)visited[i]=0;for(j=0;j!=gra.vexnum;++j){if(visited[j]==0){DFS(gra,j);cout<<endl;l++;}}return 0;}3.主要函数的程序流程图,实现设计中主程序和其他子模块的算法,以流程图的形式表示。

相关文档
最新文档