城市轨道交通可达性计算方法

城市轨道交通可达性计算方法
城市轨道交通可达性计算方法

第38卷第10期重庆交通大学学报(自然科学版)Vol.38一No.102019年10月JOURNALOFCHONGQINGJIAOTONGUNIVERSITY(NATURALSCIENCE)Oct.2019

一一DOI:10.3969/j.issn.1674 ̄0696.2019.10.01

城市轨道交通可达性计算方法

魏攀一1?2?黄建玲3?陈艳艳1?陈一宁1?吴克寒4?孙继洋1?2?王振报5(1.北京工业大学北京市交通工程重点实验室?北京100124?2.交通运输部公路科学研究院?北京100088?3.北京市交通信息中心?北京100161?4.中国城市规划设计研究院?北京100835?5.河北工程大学建筑与艺术学院?河北邯郸056038)摘要轨道交通是城市客运系统的骨干可达性是公共交通合理性评价的重要指标客观准确评价轨道交通可达性对轨道常规公交换乘衔接调整轨道站点周边用地规划等均起到重要的决策支撑作用通过对传统可达性概念的总结结合轨道交通系统自身特点对轨道交通可达性进行了定义从轨道交通与常规公交换乘便利性和轨道交通自身站点间通达便利性考虑建立了轨道交通可达性计算模型借助等工具以北京市轨道交通为例计算了北京市轨道交通可达性分布状况对比分析了北京地铁号线中段开通前后轨道系统可达性的变化状况结果表明该方法能够客观准确地计算轨道交通可达性值可以很好地应用在轨道交通可达性评价中

关键词交通运输工程城市交通轨道交通可达性公交接驳线路换乘地理信息系统

中图分类号文献标志码文章编号

v

v

v v v

v

v

v v

v v

一收稿日期:2018 ̄03 ̄02?修订日期:2018 ̄08 ̄19

一基金项目:河南省交通运输科技计划项目(2017Z8)

一第一作者:魏攀一(1989 )?男?河南平顶山人?助理研究员?博士研究生?主要从事交通安全二交通规划方面的研究?E ̄mail:weipanyi@foxmail.com?

一通信作者:陈艳艳(1970 )?女?河南郑州人?教授?主要从事交通规划二智能交通等方面的研究?E ̄mail:cdyan@bjut.edu.cn?

结构失稳和整体稳定性分析

结构失稳和整体稳定性分析 失稳破坏是一种突然破坏,人们没有办法发觉及采取补救措施,所以其导致的结果往往比较严重。正因为此,在实际工程中不允许结构发生失稳破坏。 导致结构失稳破坏的原因是薄膜应力,也就是轴向力或面内力。所以在壳体结构、细长柱等结构体系中具有发生失稳破坏的因素和可能性。这也就是为什么在网壳结构的设计过程中稳定性分析如此被重视的原因。 下面根据本人多年来的研究及工程计算经验,谈谈个人对整体稳定性分析的一点看法,也算做一个小结。 1稳定性分析的层次 在对某个结构进行稳定性分析,实际上应该包括两个层次。(一)是单根构件的稳定性分析。比如一根柱子、网壳结构的一根杆件、一个格构柱(桅杆)等。单根构件的稳定通常可以根据规范提供的公式进行设计。不过对于由多根构件组成的格构柱等子结构,还是需要做试验及有限元分析。(二)是整个结构的稳定分析。比如整个网壳结构、混凝土壳结构等结构整体的稳定性分析。整体稳定性分析目前只能根据有限元计算来实现。 2整体稳定性分析的内容 通常,稳定性分析包括两个部分:Buckling分析和非线性“荷载-位移”全过程跟踪分析。 (1)Buckling分析 Buckling分析是一种理论解,是从纯理论的角度衡量一个理想结构的稳定承载力及对应的失稳模态。目前几乎所有的有限元软件都可以实现这个功能。Buckling分析不需要复杂的计算过程,所以比较省时省力,可以在理论上对结构的稳定承载力进行初期的预测。但是由于Buckling分析得到的是非保守结果,偏于不安全,所以一般不能直接应用于实际工程。 但是Buckling又是整体稳定性分析中不可缺少的一步,因为一方面Buckling 可以初步预测结构的稳定承载力,为后期非线性稳定分析施加的荷载提供依据;另一方面Buckling分析可以得到结构的屈曲模态,为后期非线性稳定分析提供结构初始几何缺陷分布。 另外本人认为通过Buckling分析还可以进一步校核单根构件截面设计的合理性。通过Buckling分析得到的屈曲模态,我们可以看出结构可能发生的失稳破坏是整体屈曲还是局部屈曲。如果是局部屈曲,那么为什么会发生局部屈曲?局部屈曲的荷载因子是否可以接受?是否是由于局部杆件截面设计不合理所导致?这些问题希望能引起大家的注意。 (2)非线性稳定分析 前文已经讲过,Buckling分析是一种理论解。但是由于加工误差、安装误差、温度应力、焊接应力等因素的存在,现实中的结构多少都会存在一些初始缺陷,其稳定承载力与理论解肯定存在一定的差别。另外,由于Buckling分析是线性的,所以它不可以考虑构件的材料非线性,所以如果在发生屈曲之前部分构件进入塑性状态,那么Buckling也是无法模拟的。所以必须利用非线性有限元理论对结构进行考虑初始几何缺陷、材料弹塑性等实际因素的稳定性分析。 目前应用较多的是利用弧长法对结构进行“荷载-位移”全过程跟踪技术,来达到计算结构整体稳定承载力的目的。

关于计量标准的重复性的有关说明

关于计量标准的重复性的有关说明 《计量标准考核规范》起草工作组 倪育才丁跃清邓芸珊苗瑜 计量标准的重复性是计量标准的主要计量特性之一。 JJF1033-2008《计量标准考核规范》(以下简称《规范》)规定,计量标准的重复性是建标单位必须提供的主要技术指标之一。它是指在相同测量条件下,重复测量同一个被测量,计量标准提供相近示值的能力。因此,重复性实际上是表示测量结果中随机效应对测量结果的影响大小。重复性之所以是计量标准的一个主要计量特性,是因为对于大多数的测量来说,测量结果的重复性往往都是测量结果的一个重要的不确定度来源。 计量标准的重复性规定用测量结果的分散性来定量地表示,即用单次测量结果y i的实验标准差s(y i)来表示。当测量结果由单次测量得到时,它直接就是由重复性引入的不确定度分量。当测量结果由N次重复测量的平均值得到时,则由重复性引入的不确定 度分量为。 一、重复性的测量方法 在重复性条件下,用计量标准对常规的被检定或被校准对象进行n次的独立重复测量,若得到的各次测量结果为y i(i=1,2,……,n),则其重复性s(y i)可用贝塞尔公式计算。

式中:——n次测量结果的算术平均值;n——重复测量次数,n应尽可能大,一般应不少于10次。 对于可以测量多种参数的计量标准,应分别对每种参数进行重复性试验。 二、重复测量的次数 由于用贝塞尔公式计算得到的实验标准差s不是标准偏差σ的无偏估计量,也就是说,当用实验标准差s作为标准偏差σ的估计值时,除了存在随机误差之外还会存在系统误差,并且该系统误差随测量次数减少而增大。因此,在使用贝塞尔公式计算实验标准差时,一般要求测量次数较多,在计量标准考核中要求测量次数n≥10。但当重复性引入的不确定度分量不是主要分量时,允许适当减少测量次数,但不得少于6次。 三、关于重复性条件 JJF1001-1998《通用计量术语及定义》在术语“测量结果的重复性”的定义中指出,重复性条件包括:相同的测量程序,相同的观测者,在相同的条件下使用相同的仪器,在相同地点以及在短时间内重复测量等。在进行重复性测量时,相同的测量程序,相同的观测者,使用相同的仪器,以及相同地点等要求一般均能得到满足而不会有任何问题。关键是如何理解“在相同的条件下”以及“在短时间内重复测量”这两条要求。 严格地说,要在完全相同的条件下进行两次重复测量是不可能的。这里的“在相同的条件下”应理解为测量时的环境条件应处于统计控制状态下。而要求“在短时间内重复测量”也是为了确保测量时的环境条件基本保持不变。如果测量时间较长,难免环境条件发生变化,因此在进行重复性测量时,测量时间应尽可能短。

边坡的稳定性计算方法

边坡稳定性计算方法 目前的边坡的侧压力理论,得出的计算结果,显然与实际情形不符。边坡稳定性计算,有直线法和圆弧法,当然也有抛物线计算方法,这些不同的计算方法,都做了不同的假设条件。 当然这些先辈拿出这些计算方法之前,也曾经困惑,不做假设简化,基本无法计算。而根据各种假设条件,是会得出理论上的结果,但与实际情况又不符。倒是有些后人不管这些假设条件,直接应用其计算结果,把这些和实际不符的公式应用到现有的规范和理论中。 瑞典条分法,其中的一个假设条件破裂面为圆弧,另一个条件为假设的条间土之间,没有相互作用力,这样的话,对每一个土条在滑裂面上进行力学分解,然后求和叠加,最后选取系数最小的滑裂面。从而得出判断结果。其实,那两个假设条件对吗?都不对! 第一、土体的实际滑动破裂面,不是圆弧。第二、假设的条状土之间,会存在粘聚力与摩擦力。边坡的问题看似比较简单,只有少数的几个参数,但是,这几个参数之间,并不是线性相关。对于实际的边坡来讲,虽然用内摩擦角①和粘聚力C来表示,但对于不同的破裂面,破裂面上的作用力,摩擦力和粘聚力,都是破裂面的函数,并不能用线性的方法分别求解叠加,如果是那样,计算就简单多了。 边坡的破裂面不能用简单函数表达,但是,如果不对破裂面作假设,那又无从计算,直线和圆弧,是最简单的曲线,所以基于这两种曲线的假设,是计算的第一步,但由于这种假设与实际不符,结果肯定与实际相差甚远。

条分法的计算,是来源于微积分的数值计算方法,如果条间土之间,存在相互作用力,那对条状土的力学分解,又无法进行下去。 所以才有了圆弧破裂面的假设与忽略条间土的相互作用的假设。 其实先辈拿出这样与实际不符的理论,内心是充满着矛盾的。 实际看到的边坡的滑裂,大多是上部几乎是直线,下部是曲线形状,不能用简单函数表示,所以说,要放弃求解函数表达式的想法。计算还是可以用条分法,但要考虑到条间土的相互作用。 用微分迭代的方法求解,能够得出近似破裂面,如果每次迭代,都趋于收敛,那收敛的曲线,就是最终的破裂面。 参照图3,下面将介绍这种方法的求解步骤。

重复性与再现性研究(repeatability-and-reproducibility)

重复性与再现性研究(repeatability and reproducibility) 又名:R&R研究( R&R study),量具R&R( gage R&,R),测量系统分析『measurement system analysis, MSA) ?概述 重复性与再现性研究的分析对象是由仪器或量具组成的测量系统的变异。测量系统的变异是相对于观测过程的总变异而言的。重复性与再现性研究的主要目的是使测量的变异足够小,从而确保测量结果能反映真实的过程,因为如果测量变异过大,以致掩盖了过程变异,就不可能了解到产品是否符合要求或是否应该继续设法减小过程变异。 重复性与再现性研究的主要对象是两类变异:重复性——指使用相同仪器重复读数时产生的变异;再现性——由不同操作员做同样的测量工作时产生的变异。 ?适用场合 ·当使用仪器或设备进行测量时; ·在研究过程变异或过程能力之前; ·当要在几种测量方法中选择一种时; ·当要对测量方法、程序或培训进行测评或标准化时; ·当作为一个周期性持续改进的程序,保证改进过程保持统计受控时。 ?实施步骤 计划 1确定所要研究的零件或产品、测量过程和仪器。 2确定需要抽取的样本容量和获得样本的方法。通常抽取5~10个样品,如果不能始终保持样本的一致性,就要先找到在研究过程中将样本内变异最小化的方法。 3确定研究需要多少名操作员(执行测量工作的人)以及哪几个操作员,通常是1~3人。 4确定每名操作员要进行的实验次数(重复测量),通常2~3次。 5确定校准、测量以及分析的步骤。 测量 6校准测量仪器。 7确定抽样的随机次序。先由第一名操作员按照标准的操作步骤对所有的样品进行测量,记录结果。 8随机产生另一种抽样次序。和之前一样,让第二名操作员测量全部样品。不允许操作员看其他人的结果。不断重复,直到全部的操作员对所有的样品都测量了一次,此时称为完成了一轮实验。 9重复步骤7、8的工作直到计划的试验全部完成。不能让操作员看到样本容量以及之前的结果或者其他可能会透露测量结果的任何信息。 分析和改进 10分析数据。通常使用计算机软件处理计算,最常用的方法是极差-均值法和方差分析法( ANOV A),后面会给出对这些方法的简单描述。分析的主要指标是: 重复性(设备变异EV)。反映同一名操作者使用同一测量设备重复测量同样的样品时测量结果的变异程度,通常用反映该变异程度的一个区间来表示(通常用99%),同时,也可利用标准差来反映重复性变异。 再现性(测量者变异A V)。反映由不同操作员在测量同样的样品时产生的变异,也通常用反映该变异程度的一个区间来表示(通常用99%),同时,也可利用标准差来反映再现性变异。 重复性与再现性(R&R)。它是结合上述两种变异来估算测量系统变异大小的,同样也要给出其标准差(需要注意的是:它不是重复性和再现性大小的简单加和,因为标准差不具有加和性)。 11将测量变异与整个过程的变异相比较。最简单的方法是计算R&R变异在整个过程变异

以通用条分法进行边坡稳定分析

科技信息 1.引言 条分法是一种基于极限平衡原理的稳定性分析方法,其可分为非严格条分法与严格条分法两种。目前大多数常用的极限平衡条分法均 采用垂直条分法计算安全系数……, 较为完备的是M orgenstern 和Price 提出的方法以及陈祖煜在此基础上发展的通用条分法。早期的一些方 法,如Bishop 法、 Spencer 法等,可以看作是它在一定假设条件下的简化。在众多的条分法中,其核心问题就是如何对条间力进行假设,从而使问题封闭可解。由于垂直条分法仅考虑了力(和力矩)的平衡,不涉及材料的变形,因而,要得到封闭的解答须对滑体的受力特征进行一定的 假设。 一般是从力和力矩平衡条件出发,以一种新的方式给出一般情况下安全系数所应满足的关系。 2.平衡方程 严格法要求土条满足所有的静力平衡条件,即2个力平衡条件及1个力矩平衡条件。以土条为隔离体,其受力分析如图所示。 图1土条受力图 图中符号含义: F 为安全系数;S a 为条底可获得的抗剪力,S a =c l i +N i tg φ,c,φ,l 分别为条底粘聚力、摩擦角、长度;S m 为条底已发挥的抗剪力,U αi 为孔隙水压力;W i 为土条重力;N i 为条底有效法向力;α为 条底倾角; P 左i ,P 右i 分别为土条左、右端条间力;h i ,h i+1分别表征条间力的作用位置;θ2i ,θ1i 分别为土条左、右条间力的水平倾角。 (1)由图可以分别建立水平竖直两个方向的平衡方程:水平方向合力为零,即: P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi -P 右i cos θ1i =0(1)竖直方向合力为零,即: P 右i sin θ1i -S m sin αi -(N i +U αi )cos αi -P 左i sin θ2i +W i =0(2)又由M ohr ———Coulom b 强度准则:S a =c l i +(N i +U αi )tg φ,S m =S a F =c l i +(N i +U αi )tg φF (3) 通常我们易知P 左i 和P 右i 之间存在一定的关系,即:P 右i -P 左i =ΔP i 现以P 右i >P 左i 为例P 右i =P 左i +ΔP i (4) 将(4 )式分别代入(1)(2)式可得P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi -(P 左i +ΔP i )cos θ1i =0(5)(P 左i +ΔP i )sin θ1i -S m sin αi -(N i +U αi )cos αi -P 左i sin θ2i +W i =0(6) 由式(5 )(6)分别可求得ΔP i =P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi 1i -P 左i (7) ΔP i =P 左i sin θ2i +S m sin αi +(N i +U αi )cos αi -W i 1i -P 左i (8) 二者相等可得: P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi cos θ1i -P 左i =P 左i sin θ2i +S m sin αi +(N i +U αi )cos αi -W i sin θ1i -P 左i 即: tg θ1i =P 左i sin θ2i +S m sin αi +(N i +U αi )cos αi -W i i 2i m i i αi i (9) 从而得到θ1i 与θ2i 的关系,即θ1i 可以用θ2i 表示出来。又因为所有的土条满足整体的力平衡状态,即有:∑ΔP i =0 即:∑[P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi ]∑cos θ1i -∑P 左i =0(10)从而可得: ∑S m =∑[P 左i cos θ1i +(N i +U αi )sin αi -P 左i cos θ2i ]i =c l i +(N i +U αi )tg φ(11) 故F= ∑[c l i +(N i +U αi )tg φ]cos αi 左i 1i i αi i 左i 2i (12)其中P 左i ,θ1i ,θ2i 为未知。(2)土条的力矩平衡方程: P 左i cos θ2i (h i '-b tg α)+P 左i b sin θ2i -P 右i cos θ1i (h i +b tg α)+P 右i b sin θ1i =0 (13)h i =P 左i (P 左i +ΔP i )cos θ1i h i 'cos θ2i -b 2(cos θ2i tg α-sin θ2i ∑∑ )+b 2 (tg θ1i -tg α)(14) 将(7)中的ΔP i 代入上式 h i = P 左i cos θ1i P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi h i 'cos θ2i -b 2(cos θ2i tg α-sin θ2i ∑∑ )+b 2 (tg θ1i -tg α)(15)其中P 左i ,θ1i ,θ2i ,S m 中的F 为未知,又由式(9)可以得到θ1i ,θ2i 的关 系,即θ1i 可以用θ2i 表示出来,故h i 是关于h i ' ,P 左i ,θ2i ,F 的函数。 我们可以假设初始植h i ' ,P 左i 均为0则可以通过(7)和(15)假设不 同的θ2i ,F 迭代求h i 直到满足其最后的边界值为零为止。3.结论(1)本文在理论推导过程中采用了与经典公式不同的方法,即将条 间合力的大小,方向P 左i , θ1i ,θ2i ,S m 作为未知数。(2)此方法在计算过程中不需要对方程进行求导,因而通过编程求得其安全系数。 (3)在通用条分法中,不同条块界面上剪切强度和滑动面上剪切强度应该具有不同的折减系数,这有待于今后进一步研究 (4)影响边坡稳定的条件有很多,仅仅通过条间的剪切力确定是远远不够的,比如说条块的形状,大小等都会对滑动趋势产生很大的影响,因此在实际的工程运用中应该充分予以考虑。 参考文献[1]Lee W A ,Lee T ,Sharma S ,et a1.Slope Stability an d Stabilization Methods [M ].New York :Wiley —Interscience Publication ,1996 [2]Fmdlund D C State of the art :analytical methods for slope stability analysis [A ].In :Proceedings of the 4International Symposium on Landslides [C ].Toronto :Ont ,1984.229-250 [3]张鲁渝.一个用于边坡稳定分析的通用条分法.岩石力学与工程学报,2005.2 [4]丁桦,张均锋,郑哲敏.关于边坡稳定分析的通用条分法的探讨.岩石力学与工程学报,2004.11 [5]朱大勇,钱七虎.严格极限平衡条分法框架下的边坡临界滑动 场.土木工程学报, 2000,33[6]杨明成.基于力平衡求解安全系数的一般条分法.岩石力学与工程学报,2005.4 以通用条分法进行边坡稳定分析 山东交通学院 曹丽娜 王日升 [摘要]本文首先介绍了通用条分法的基本方程。它直接将条间力合力的大小和方向作为未知数,并通过一系列的转化求得土条间合力方向间的关系,从而易通过编程求得其安全系数。[关键词]通用条分法边坡稳定 极限平衡 高校理科研究 526——

计算方法算法的数值稳定性实验报告

专业 序号 姓名 日期 实验1 算法的数值稳定性实验 【实验目的】 1.掌握用MATLAB 语言的编程训练,初步体验算法的软件实现; 2.通过对稳定算法和不稳定算法的结果分析、比较,深入理解算法的数值稳定性及其重要性。 【实验内容】 1.计算积分 ()dx a x x I n ?+=1 0) (n (n=0,1,2......,10) 其中a 为参数,分别对a=0.05及a=15按下列两种方案计算,列出其结果,并对其可靠性,说明原因。 2.方案一 用递推公式 n aI I n 1 1n + -=- (n=1,2,......,10) 递推初值可由积分直接得)1 ( 0a a In I += 3. 方案二 用递推公式 )1 (11-n n I a I n +-= (n=N,N-1,......,1) 根据估计式 ()()()11111+<<++n a I n a n 当1 n a +≥n 或 ()()n 1 111≤<++n I n a 当1 n n a 0+< ≤ 取递推初值为 ()()()() 11212])1(1111[21N +++=++++≈N a a a N a N a I 当1 a +≥ N N 或

()()]1111[21N N a I N +++= 当1 a 0+< ≤N N 计算中取N=13开始 【解】:手工分析怎样求解这题。 【计算机求解】:怎样设计程序?流程图?变量说明?能否将某算法设计成具有形式参数的函数 形式? 【程序如下】: % myexp1_1.m --- 算法的数值稳定性实验 % 见 P11 实验课题(一) % function try_stable global n a N = 20; % 计算 N 个值 a =0.05;%或者a=15 % %-------------------------------------------- % % [方案I] 用递推公式 %I(k) = - a*I(k-1) + 1/k % I0 =log((a+1)/a); % 初值 I = zeros(N,1); % 创建 N x 1 矩阵(即列向量),元素全为零 I(1) =-a*I0+1; for k = 2:N I(k) =-a*I(k-1)+1/k; end % %--------------------------------------------

(完整版)土坡稳定性计算

第九章土坡稳定分析 土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。 第一节概述 学习土坡的类型及常见的滑坡现象。 一、无粘性土坡稳定分析 学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。 二、粘性土坡的稳定分析 学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。 三、边坡稳定分析的总应力法和有效应力法 学习稳定渗流期、施工期、地震期边坡稳定分析方法。 四、土坡稳定分析讨论 学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。 第二节基本概念与基本原理 一、基本概念 1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土坡。 3.滑坡(landslide):土坡中一部分土体对另一部分土体产生相对位移,以至丧失原有稳 定性的现象。 4.圆弧滑动法(circleslipmethod):在工程设计中常假定土坡滑动面为圆弧面,建立这一 假定的稳定分析方法,称为圆弧滑动法。它是极限平衡法的一种常用分析方法。 二、基本规律与基本原理 (一)土坡失稳原因分析 土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。1.产生滑动的内部因素主要有: (1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。 (2)斜坡的土层结构:如在斜坡上堆有较厚的土层,特别是当下伏土层(或岩层)不透水时,容易在交界上发生滑动。 (3)斜坡的外形:突肚形的斜坡由于重力作用,比上陡下缓的凹形坡易于下滑;由于粘性土有粘聚力,当土坡不高时尚可直立,但随时间和气候的变化,也会逐渐塌落。 2.促使滑动的外部因素 (1)降水或地下水的作用:持续的降雨或地下水渗入土层中,使土中含水量增高,土中易溶盐溶解,土质变软,强度降低;还可使土的重度增加,以及孔隙水压力的产生,使土体作用有动、静水压力,促使土体失稳,故设计斜坡应针对这些原因,采用相应的排水措施。(2)振动的作用:如地震的反复作用下,砂土极易发生液化;粘性土,振动时易使土的结

边坡稳定性分析方法

第二节边坡稳定性分析方法 力学验算法和工程地质法是路基边坡稳定性分析和验算方法常用的两种方法。 1.力学验算法 (1)数解法假定几个不同的滑动面,按力学平衡原理对每个滑动面进行验算,从中找出最危险滑动面,按此最危险滑动面的稳定程度来判断边坡的稳定性。此方法计算较精确,但计算繁琐。(2)图解或表解法在图解和计算的基础上,经过分析研究,制定图表,供边坡稳定性验算时采用。以简化计算工作。 2.工程地质法 根据稳定的自然山坡或已有的人工边坡进行土类及其状态的分析研究,通过工程地质条件相对比,拟定出与路基边坡条件相类似的稳定值的参考数据,作为确定路基边坡值的依据。 一般土质边坡的设计常用力学验算法进行验算,用工程地质法进行校核;岩石或碎石土类边坡则主要采用工程地质法进行设计。 3.力学验算法的基本假定 滑动土楔体是均质各向同性、滑动面通过坡脚、不考虑滑动土体内部的应力分布及各土条(指条分法)之间相互作用力的影响。 一、直线滑动面法 松散的砂类土路基边坡,渗水性强,粘性差,边坡稳定主要靠其内摩擦力。失稳土体的滑动面近似直线状态,故直线滑动面法适用于砂类土:

如图2-2-4所示,验算时,先通过坡脚或变坡点假设一直线滑动面,将路提斜上方分割出下滑土楔体ABD,沿假设的滑动面AD滑动,其稳定系数K按下式计算(按边坡纵向单位长度计): 验算的边坡是否稳定,取决于最小稳定系数Kmin的值。当Kmin=时,边坡处于极限平 衡状态。由于计算的假定,计算参数(r,Ψ,c)的取值都与实际情况存在一定的差异,为了保证边坡有足够的稳定性,通常以最小稳定系数Kmin≥来判别边坡的稳定性。但Kmin过大,则设计偏于保守,在工程上不经济。 当路堤填料为纯净的粗砂、中砂、砾石、碎石时,其粘聚力很小,可忽略不计,则式(2-2-3)变为: 式(2-2-3)也适用于均质砂类土路堑边坡的稳定性验算。

稳定性验算

承载能力极限状态 1)根据JTJ250-98《港口工程地基规范》的5.3.2规定,土坡和地基的稳定性验算,其危险滑弧应满足以下承载能力极限状态设计表达式: /Sd Rk R M M γ≤ 式中:Sd M 、Rk M ——分别为作用于危险滑弧面上滑动力矩的设计值和抗滑力矩的标准值; R γ为抗力分项系数。 2)采用简单条分法验算边坡和地基稳定,其抗滑力矩标准值和滑动力矩设计值按下式计算: ()cos tan ()sin Rk ki i ki i ki i ki Sd s ki i ki i M R C L q b W M R q b W α?γα??=+ +?? ??=+?? ∑∑∑ 式中:R ——滑弧半径(m ); s γ——综合分项系数,取1.0; ki W ——永久作用为第i 土条的重力标准值(KN/m ),取均值,零压线以 下用浮重度计算; ki q ——第i 土条顶面作用的可变作用的标准值(kPa ); i b ——第 i 土条宽度(m ); i α——第i 土条滑弧中点切线与水平线的夹角(°); ki ?、ki C ——分别为第i 土条滑动面上的内摩擦角(°)和粘聚力(kPa ) 标准值,取均值; i L ——第 i 土条对应弧长(m )。 3)地基稳定性计算步骤 (1) 确定可能的滑弧圆心范围。通过边坡的中点作垂直线和法线,以坡面中点为圆心,分别以1/4坡长和5/4坡长为半径画同心圆,最危险滑弧圆心即在该4条线所包含的范围内。

(2) 作滑动滑弧。选定某些滑动圆心,作圆与软弱层相切,则与防波堤及土层相交的圆弧即为滑弧。 (3) 进行条分。对滑弧内的土层等进行条分,选择土条的宽度,并且对土条进行编号。 (4) 计算各个土条的自重力。利用公式ki i i i W h b γ=计算各个土条的自重力。 (5) 计算滑弧中点切线与水平线的夹角。作滑弧的中点切线,读出它与水平线之间的夹角,注意滑弧滑动的方向,确定夹角的正负。 (6) 确定土条内滑弧的内摩擦角与粘聚力。对于不同的土层,内摩擦角与粘聚力取均值。 (7) 计算危险弧面上的滑动力矩与抗滑力矩。利用公式计算抗滑力 矩 和 滑 动 力 矩。 抗滑力矩为 ( )c o R k k i i k i i k i i k i M R C L q b W α???= ++ ?? ∑ ∑;而滑动力矩为()sin Sd s ki i ki i M R q b W γα??=+??∑。 确定是否满足要求。利用承载能力极限状态设计表达式/Sd Rk R M M γ≤判断是否满足稳定性的要求。

重复性和再现性不确定度

量具重复性与再现性分析:GR&R 是用来检定检测产品的人员是否具备识别产品特性的能力,正常的产品是否会误判,不正常的产品是否会漏判,也就是检定“检测系统是否正常”的一个工具。GR&R是研究重复性和再现性的,是计量型分析。 1.简称:重复性(EV)(equipment variance)设备偏差、(再现性AV)(appriser variance)人員偏差、产品偏差(PV)(products variance), 2.重复性(Repeatability):重复性是用本方法在正常和正确操作情况下,由同一操作人员,在同一实验室内,使用同一仪器,并在短期内,对相同试样所作多个单次测试结果,在95%概率水平两个独立测试结果的最大差值。在中国仪器中当测量条件是在以下4个状况下实验时,相同的待测量的测量结果有一致性的称为重复性,4个条件如下:a、相同的测量环境b、相同的测量仪器及在相同的条件下使用c、相同的位置d、在短时间内的重复 3.再现性(Reproducibility)是指两个不同的实验室对同一物料进行测定两个分析结果接近的程度.再现性的值总是大于或等于重复性,因为再现性的测量结果把重复性引起的偏差考虑进去了。在很多实际工作中,最重要的再现性指由不同操作者、采用相同的方法、仪器,在相同的环境条件下,检测同一被测物的重复检测结果之间的一致性,即检测条件的改变只限于操作者的改变。也就是说别人用你说的方法和仪器也能做出同样的结果来,这就是试验的再现性。当然,这样的试验就叫做再现性实验。 4.测量结果的重复性:是指“在相同测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性”。上述定义中的“一致性”是定量的,可以用重复性条件下对同一量进行多次测量所得结果的分散性来表示。而表示测量结果分散性的量,最为常用的是实验标准。重复性条件。质言之,就是在尽量相同的条件下,包括程序、人员、仪器、环境等,以及尽量短的时间间隔内完成重复测量任务。这里的“短时间”可理解为:保证前四个条件相同或保持不变的时间段,它主要取决于人员的素质、仪器的性能以及对各种影响量的监控。从数理统计和数据处理的角度来看,在这段时间内测量应处于统计控制状态,即符合统计规律的随机状态。通俗地说,它是测量处于正常状态的时间间隔。重复观测中的变动性,正是由于各种影响量不能完全保持恒定而引起的。重复性标准差有时也称为组内标准差。 5.活动介绍:1)每个作业员检测二次,每次检验产品50PCS,50PCS中混有不合格品也有合格品,检验员需在同一次内发现该次的不良品,不良品数不定。不良项目在日常不良中可以发现的,为常见的不良现象。2)评价员会先前对合格的产品混入不良品,且此不良品会作好相应标识,作业员在检查过程中在正常检验的情况下需发现该不良,且不良项目与评价员为一致。示为达标,合格员。若未能发现相应的不良品,或发现的不良项目不能对应,或误判。需将检验员重新作合适相应的培训。3)此项测试为个人评价,作业员需独立完成,外部人员不得参与。6.量具重复性和再现性(GRR)的可接受准则是:a) 低于10%的误差—测量系统可以被接受;b) 10%至30%的误差—根据应用的重要性、量具成本、维修的费用等确定是否是可接受的;c) 大于30%的误差—测量系统需要改进;d) 过程能力被测量系统区分开的分级数(ndc)应该大于或等于5(取整数). 不确定度测量不确定度:是目前对于误差分析中的最新理解和阐述,以前用测量误差来表述,但两者具有完全不同的含义.现在更准确地定义为测量不确定度.是指测量获得的结果的不确定的程度. 不确定度的计算: 不确定度的值即为各项值距离平均值的最大距离。 例:有一列数。A1,A2, ... , An, 他们的平均值为A,则不确定度为:max{ |A - Ai|, i = 1, 2, ..., n}

边坡稳定性计算方法+文档

一、边坡稳定性计算方法 在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。根据边坡不同破裂面形状而有不同的分析模式。边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。 (一)直线破裂面法 所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。为了简化计 算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂性土 坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。 图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗剪度指 标为c、φ。如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析该滑动体 的稳定性。 沿边坡长度方向截取一个单位长度作为平面问题分析。 已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(ΔABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为: T=W · sina 和 则此时边坡的稳定程度或安全系数 可用抗滑力与下滑力来表示,即 为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为 从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时 图9-1 砂性边坡受力示意图

当 F s =1时,β=φ,表明边坡处于极限平衡状态。此时β角称为休止角,也称安息角。 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。这类滑坡滑动面的深度与长度之比往往很小。当深长比小于 0.1时,可以把它当作一个无限边坡进行分析。 图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。取一单位长度的滑动土条进 行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的剪应 力等于土的抗剪强度,即 得 式中N s =c/ γ H 称为稳定系数。通过稳定因数可以确定α和φ关系。当c=0 时,即无 粘性土。α =φ,与前述分析相同。

计量标准的测量重复性考核

国家《计量标准考核办法》规定了各级政府计量行政部门组织建立的社会公用计量标准部门、企业、事业单位建立的最高计量标准,必须经规定的政府计量行政部门主持考核合格后,方具有开展计量检定、进行量值传递资格的规定。在建立计量标准过程中,建标技术报告是对计量标准器及配套设备、环境条件、检定人员的水平是否达到国家检定系统表和计量检定规程规定技术指标的整体论证,所以说建标技术报告是建立计量标准的重要技术文件之一。而计量标准的测量重复性计量考核是撰写建标技术报告的必备条件之一。 《计量标准考核规范》明确提出了计量标准的测量重复性与稳定性考核及计量标准器在两次鉴定周期之间进行。 1、 计量标准测量重复性考核计量标准的测量重复性是指在重复性条件下,用该计量标准测量一种稳定的被测对象时,所得到的观测值的试验标准差s(y)。重复性条件包括测量程序、人员、仪器、环境等。 为确保所得到的实验标准差s具有足够的可靠性,重复测量n次,n应满足大于10的要求。 2、 测量重复性实验标准差的判定(1)测量重复性不大于测量不确定度评定中所采用的重复性数据。 (2)若测量不确定度评定中无相应数据,应小于测量结果的合成标准不确定度。 例如以型号为AGT—10的案秤为例,取最大称量点10kg做标准不确定度的测量重复性所引起的标准不确定度分项的评定。 用固定砝码在重复性条件下对秤进行10次连续测量,得到测量列(10.000,10.000,10.000,10.001,10.0 02,10.002,10.000,10.001,10.000,10.000)kg 平均值为1.0006kg单次试验标准差s=0.84g 任取3台同类型的秤,对每一台秤在10kg称量点处进行3组测量,每组测量均在重复性条件下连续测量10次,共得9组测量列,每组测量列分别计算,得到9个单次实验标准差如下表所示: 表1m组实验标准差计算结果 合并样本标准差=0.89 在实际测量中,每次测量重复性为3次,该结果的测量不确定度为0.51g 3、 计量标准测量重复性考核记录格式在对计量标准进行测量重复性实验时,要求考核试验人员做好所选择的被测对象、实验依据、重复测量n次的观测数据、试验人员、环境条件等有关信息的原始纪录,并把该原始记录作为《计量标准测量重复性考核记录》的附件予以存档,做出测量重复性是否符合要求的判断结论。 (作者单位:沈阳计量测试院) 计量标准的测量重复性考核 文/顾众冯学年杨久萍 28 2008年1期 (上)技术论文 责任编辑张晓明

第一性原理计算判断材料稳定性的几种方法

第一性原理计算判断材料稳定性的几种方法 当我们通过一些方法,如:人工设计、机器学习和结构搜索等,设计出一种新材料的时候,首先需要做的一件事情就是去判断这个材料是否稳定。如果这个材料不稳定,那么后续的性能分析就犹如空中楼阁。因此,判断材料是否稳定是材料设计领域中非常关键的一个环节。接下来,我们介绍几种通过第一性原理计算判断材料是否稳定的方法。 1.结合能 结合能是指原子由自由状态形成化合物所释放的能量,一般默认算出来能量越低越稳定。对于简单的二元化合物A m B n(A,B为该化合物中包含的两种元素,m,n为相应原子在化学式中的数目),其结合能可表示为: 其中E(A m B n)为化学式A m B n的能量,E(A)和E(B)分别为自由原子A和B的能量,E b越低,越稳定。 2.形成能 形成能是指由相应单质合成化合物所释放的能量。同样,对于二元化合物A m B n,其形成能可表示为: 其中E(A)和E(B)分别为对应单质A和B归一化后的能量。 用能量判断某一材料稳定性的时候,选择形成能可能更符合实际。因为实验合成某一材料的时候,我们一般使用其组成单质进行合成。如果想进一步判断该材料是处于稳态还是亚稳态,那

么需要用凸包图(convex hull)进行。如图1所示,计算已知稳态A x B y的形成能,构成凸包图(红色虚线),其横轴为B在化学式中所占比例,纵轴为形成能。通过比较考察化合物与红色虚线的相对位置,如果在红色虚线上方则其可能分解(如:图1 插图中的D,将分解为A和B)或处于亚稳态(D的声子谱没有虚频);如果在红色虚线下方(如:图1 插图中的C),则该化合物稳定。 图 1:凸包图用于判断亚稳态和稳态[[1]] 3.声子谱 声子谱是表示组成材料原子的集体振动模式。如果材料的原胞包含n个原子,那么声子谱总共有3n支,其中有3条声学支,3n-3条光学支。声学支表示原胞的整体振动,光学支表示原胞内原子间的相对振动。 计算出的声子谱有虚频,往往表示该材料不稳定。因为

51 PKPM计算关于结构稳定性的验算与控制

1.PKPM计算关于结构稳定性的验算与控制2011-9-19 20:10 阅读(458) 转自土木工程网,https://www.360docs.net/doc/d212193478.html, A 控制意义: 对结构稳定性的控制,避免建筑在地震时发生倾覆. 当高层、超高层建筑高宽比较大,水平风、地震作用较大,地基刚度较弱时,结构整体倾覆验算很重要,它直接关系到结构安全度的控制。 B 规范条文 规范:高规5.4.2条,高层建筑结构如果不满足第5.4.1条(即结构刚重比)的规定时,应考虑重力二阶效应对水平力(地震、风)作用下结构内力和位移的不利影响。 规范:高规5.4.4条,规定了高层建筑结构的稳定所应满足的条件. 高规5.4.1条,当高层建筑结构的稳定应符合一定条件时,可以不考虑重力二阶效应的不利影响。 高规第12.1.6条,高宽比大于4的高层建筑,基础底面不宜出现零应力区;高宽比不大于4的高层建筑,基础底面与地基之间零应力区面积不应超过基础底面面积的15%。计算时,质量偏心较大的裙楼与主楼可分开考虑。 C 计算方法及程序实现 重力二阶效应即P-Δ效应包含两部分,(1)由构件挠曲引起的附加重力效应;(2)由水平荷载产生侧移,重力荷载由于侧移引起的附加效应。一般只考虑第(2)种,第(1)种对结构影响很小。 当结构侧移越来越大时,重力产生的福角效应(P-Δ效应)将越来越大,从而降低构件性能直至最终失稳。 在考虑P-Δ效应的同时,还应考虑其它相应荷载,并考虑组合分项系数,然后进行承载力设计。 对于多层结构P-Δ效应影响很小。 对于大多数高层结构,P-Δ效应影响将在5%~10%之间。 对于超高层结构,P-Δ效应影响将在10%以上。 所以在分析超高层结构时,应该考虑P-Δ效应影响。 (P-Δ效应对高层建筑结构的影响规律:中间大两端小) 框架为剪切型变形,按每层的刚重比验算结构的整体稳定 剪力墙为弯曲型变形,按整体的刚重比验算结构的整体稳定 整体抗倾覆的控制??基础底部零应力区控制 D 注意事项 >>结构的整体稳定的调整 当结构整体稳定验算符合高规5.4.4条,或通过考虑P-Δ效应提高了结构的承载力后,对于不满足整体稳定的结构,必须调整结构布置,提高结构的整体刚度(只有高宽比很大的结构才有可能发生)。

计算方法算法的数值稳定性实验报告

专业 序号 姓名 日期 实验1算法的数值稳定性实验 【实验目的】 1.掌握用MATLAB 语言的编程训练,初步体验算法的软件实现; 2.通过对稳定算法和不稳定算法的结果分析、比较,深入理解算法的数值稳定性及其重要性。 【实验内容】 1.计算积分 ()dx a x x I n ?+=1 0)(n (n=0,1,2......,10) 其中a 为参数,分别对a=0.05及a=15按下列两种方案计算,列出其结果,并对其可靠性,说明原因。 2.方案一 用递推公式 n aI I n 11n + -=- (n=1,2,......,10) 递推初值可由积分直接得)1(0a a In I += 3. 方案二 用递推公式 )1(11-n n I a I n +-= (n=N,N-1,......,1) 根据估计式 ()()() 11111+<<++n a I n a n 当1n a +≥n 或 ()()n 1111≤<++n I n a 当1 n n a 0+<≤ 取递推初值为 ()()()()11212])1(1111[21N +++=++++≈N a a a N a N a I 当1 a +≥N N 或 ()()]1111[21N N a I N +++= 当1a 0+< ≤N N 计算中取N=13开始 【解】:手工分析怎样求解这题。 【计算机求解】:怎样设计程序?流程图?变量说明?能否将某算法设计成具有形式参数的函数形式? 【程序如下】: % myexp1_1.m --- 算法的数值稳定性实验 % 见 P11 实验课题(一) % function try_stable global n a N = 20; % 计算 N 个值 a =0.05;%或者a=15 % %--------------------------------------------

整体稳定性

结构的整体稳定性 1概述 结构的整体稳定性指结构的整体工作能力,以及抵御抗倾覆、抗连续坍塌的能力。 结构的失稳破坏是一种突然破坏,人们没有办法发觉及采取补救措施,所以其导致的后果往往比较严重。正因为如此,在实际工程中不允许结构发生失稳破坏。 1.1稳定性的分析层次 在对某个结构进行稳定性分析,实际上应该包括两个层次。 (一)是单根构件的稳定性分析。比如一根柱子、网壳结构的一根杆件、一个格构柱(桅杆)等。单根构件的稳定通常可以根据规范提供的公式进行设计。不过对于由多根构件组成的格构柱等子结构,还是需要做试验及有限元分析。 (二)是整个结构的稳定分析。比如整个网壳结构、混凝土壳结构等结构整体的稳定性分析。整体稳定性分析目前只能根据有限元计算来实现。 1.2整体稳定性分析的内容 通常,稳定性分析包括两个部分:Buckling分析和非线性“荷载-位移”全过程跟踪分析。 (1)Buckling分析(屈曲分析是一种用于确定结构开始变得不稳定时的临介荷载和屈曲结构发生屈曲响应时的模态形状的技术。) Buckling分析是一种理论解,是从纯理论的角度衡量一个理想结构的稳定承载力及对应的失稳模态。目前几乎所有的有限元软件都可以实现这个功能。Buckling分析不需要复杂的计算过程,所以比较省时省力,可以在理论上对结构的稳定承载力进行初期的预测。但是由于Buckling分析得到的是非保守结果,偏于不安全,所以一般不能直接应用于实际工程。

但是Buckling又是整体稳定性分析中不可缺少的一步,因为一方面Buckling可以初步预测结构的稳定承载力,为后期非线性稳定分析施加的荷载提供依据;另一方面Buckling分析可以得到结构的屈曲模态,为后期非线性稳定分析提供结构初始几何缺陷分布。 (2)非线性稳定分析 由于Buckling分析是线性的,所以它不可以考虑构件的材料非线性,所以如果在发生屈曲之前部分构件进入塑性状态,那么Buckling也是无法模拟的。所以必须利用非线性有限元理论对结构进行考虑初始几何缺陷、材料弹塑性等实际因素的稳定性分析。 目前应用较多的是利用弧长法对结构进行“荷载-位移”全过程跟踪技术,来达到计算结构整体稳定承载力的目的。 由于弧长法属于一种非线性求解方法,而且在非线性稳定分析中通常需要考虑几何非线性、材料非线性及弹塑性,所以通常需要求助于通用有限元软件。比如ANSYS、ABAQUS、NASTRAN、ADINA等。 在这些通用有限元软件中,可以较好的计算结构的屈曲前、屈曲后性能。通常通过“荷载-位移”曲线来判断计算结果的合理性及结构的极限稳定承载力。通过有限元软件不但可以较好的对结构进行非线性稳定分析,同时还可以考虑初始几何缺陷、材料非线性、材料弹塑性等问题。基本上可以实现对结构的真实模拟分析。 1.3整体稳定性分析的关键问题 结构的整体稳定性分析是很长时间以来一直备受关注的课题,而且在今后很长的段之间内仍将是热门研究对象。这是因为结构整体稳定承载力的影响因素很多,例如:初始几何缺陷、焊接应力、材料非线性、荷载形式等。所以很多问题需要大家深入考虑。 2钢结构的整体稳定性 在钢结构的可能破坏形式中,属于失稳破坏的形式包括:结构和构件的整体

相关文档
最新文档