潮汐1

潮汐1
潮汐1

凡是到过海边的人们,都会看到海水有一种周期性的涨落现象:到了一定时间,海水推波助澜,迅猛上涨,达到高潮;过后一些时间,上涨的海水又自行退去,留下一片沙滩,出现低潮。如此循环重复,永不停息。海水的这种运动现象就是潮汐。

随着人们对潮汐现象的不断观察,对潮汐现象的真正原因逐渐有了认识。我国古代余道安在他著的《海潮图序》一书中说:“潮之涨落,海非增减,盖月之所临,则之往从之”。哲学家王充在《论衡》中写道:“涛之起也,随月盛衰。”指出了潮汐跟月亮有关系。到了17世纪80年代,英国科学家牛顿发现了万有引力定律之后,提出了潮汐是由于月亮和太阳对海水的吸引力引起的假设,科学地解释了产生潮汐的原因。

潮汐是所有海洋现象中较先引起人们注意的海水运动现象,它与人类的关系非常密切。海港工程,航运交通,军事活动,渔、盐、水产业,近海环境研究与污染治理,都与潮汐现象密切相关。尤其是,永不休止的海面垂直涨落运动蕴藏着极为巨大的能量,这一能量的开发利用也引起人们的兴趣。

[编辑本段]

定义与分类

由于日、月引潮力的作用,使地球的岩石圈、水圈和大气圈中分别产生的周期性的运动和变化,总称潮汐。作为完整的潮汐科学,其研究对象应将地潮、海潮和气潮作为一个统一的整体,但由于海潮现象十分明显,且与人们的生活、经济活动、交通运输等关系密切,因而习惯上将潮汐(tide)一词狭义理解为海洋潮汐。固体地球在日、月引潮力作用下引起的弹性—塑性形变,称固体潮汐,简称固体潮或地潮;

海水在日、月引潮力作用下引起的海面周期性的升降、涨落与进退,称海洋潮汐,简称海潮;

大气各要素(如气压场、大气风场、地球磁场等)受引潮力的作用而产生的周期性变化(如8、12、24小时)称大气潮汐,简称气潮。

其中由太阳引起的大气潮汐称太阳潮,由月球引起的称太阴潮。

[编辑本段]

形成原因

月球引力和离心力的合力是引起海水涨落的引潮力。地潮、海潮和气潮的原动力都是日、月对地球各处引力不同而引起的,三者之间互有影响。因月球距地球比太阳近,月球与太阳引潮力之比为11:5,对海洋而言,太阴潮比太阳潮显著。大洋底部地壳的弹性—塑性潮汐形变,会引起相应的海潮,即对海潮来说,存在着地潮效应的影响;而海潮引起的海水质量的迁移,改变着地壳所承受的负载,使地壳发生可复的变曲。气潮在海潮之上,它作用于海面上引起其附加的振动,使海潮的变化更趋复杂。

潮汐是因地而异的,不同的地区常有不同的潮汐系统,它们都是从深海潮波获取能量,但具有各自独特的特征。尽管潮汐很复杂,但对任何地方的潮汐都可以进行准确预报。海洋潮汐从地球的旋转中获得能量,并在吸收能量过程中使地球旋转减慢。但是这种地球旋转的减慢在人的一生中是几乎觉察不出来的,而且也并不会由于潮汐能的开发利用而加快。这种能量通过浅海区和海岸区的磨擦,以1.7TW的速率消散。只有出现大潮,能量集中时,并且在地理条件适于建造潮汐电站的地方,从潮汐中提取能量才有可能。虽然这样的场所并不是到处都有,但世界各国已选定了相当数量的适宜开发潮汐能的站址。据最新的估算,有开发潜力的潮汐能量每年约200TW·h。

[编辑本段]

潮汐推算

潮汐的发生和太阳,月球都有关系,也和我国传统农历对应。在农历每月的初一即朔点时刻处太阳和月球在地球的一侧,所以就有了最大的引潮力,所以会引起“大潮”,在农历每月的十五或十六附近,太阳和月亮在地球的两侧,太阳和月球的引潮力你推我拉也会引起“大潮”;在月相为上弦和下弦时,即农历的初八和二十三时,太阳引潮力和月球引潮力互相抵消了一部分所以就发生了“小潮”,故农谚中有“初一十五涨大潮,初八二十三到处见海滩”之说。另外在第天也有涨潮发生,由于月球每天在天球上东移13度多,合计为50分钟左右,即每天月亮上中天时刻(为1太阴日=24时50分)约推迟50分钟左右,(下中天也会发生潮水每天一般都有两次潮水)故每天涨潮的时刻也推迟50分钟左右。

我国劳动人民在千百年来总结经验出来许多的算潮方法(推潮汐时刻)如八分算潮法就是其中的一例:简明公式为:

高潮时=0.8h×[农历日期-1(或16)]+高潮间隙

上式可算得一天中的一个高潮时,对于正规半日潮海区,将其数值加或减12时25分(或为了计算的方便可加或减12时24分)即可得出另一个高潮时。若将其数值加或减6时12分即可得低潮出现的时刻——低潮时。但由于,月球和太阳的运动的复杂性,大潮可能有时推迟一天或几天,一太阴日间的高潮也往往落后于月球上中天或下中天时刻一小时或几小时,有的地方一太阴日就发生一次潮汐。故每天的涨潮退潮时间都不一样,间隔也不同.

[编辑本段]

咸潮

咸潮,主要是由旱情引起的,一般发生在上一年冬至到次年立春清明期间,由于上游江水水量少,雨量少,使江河水位下降,由此导致沿海地区海水通过河流或其他渠道倒流到内陆区域。咸潮的影响主要表现在氯化物的含量上,按照国家有关标准,如果水的含氯度超过250毫克/升就不宜饮用。这种水质还会危害到当地的植物生存。

咸潮上溯属于沿海地区一种特有的季候性自然现象,多发于枯水季节、干旱时期。咸水上溯意味着位于江河下游的抽水口在咸潮上溯期间抽上来的不是能饮用、灌溉的淡水,而是陆地生命无法赖以生存的海水。我国的咸潮多发生在珠江口。

成因

1.降水减少

降雨比多年平均减少。降雨锐减导致江、湖、库水位急剧下降,降雨减少导致江河流量严重减少,上游少雨,源水水量减少,下游则受海水潮汐影响,形成咸潮。

2.沿江无序挖沙

非法采沙船导致河段已基本没有河沙;没有河沙河段正沿着大江大河自下溯江而上;过量滥采河沙造成河床严重下切,引发咸潮上溯。

3.海平面上升加剧咸潮蔓延

海平面上升与咸潮之间的关系引人注目。河口三角洲将遭受更为严重的洪水、风暴潮、涝灾和咸潮的袭击,面临“被淹”的危险。

4.生产和生活用水增加

随着经济急速发展,工业生产规模扩张,常住人口增长,生产和生活用水急剧增加,导致江河水流量减少,这使咸潮入侵日益严重。

危害

海水的氯化物浓度一般高于5000毫克/升,当咸潮发生时,河水中氯化物浓度从每升几毫克上升到超过250毫克。水中的盐度过高,就会对人体造成危害,老年人和患高血压、心脏病、糖尿病等病人不宜饮用。水中的盐度高还会对企业生产造成威胁,生产设备容易氧化,锅炉容易积垢。在咸潮灾害中,生产中用水量较大的化学原料及化学制品制造、金属制品、纺织服装等产业受到的冲击较大,其中一些企业不得不停产。

咸潮还会造成地下水和土壤内的盐度升高,给“鱼米之乡”的珠三角农业生产造成严重影响,危害到当地的植物生存。从广州市番禹区农村看到的情况令人触目惊心。在番禹石楼镇的一些稻田边,尽管水沟里蓄有一些水,然而田地却龟裂着。该镇因为

咸潮,沟里的水咸度已达0.5%,而如果农作物“饮用”咸度超过0.4%的水,半个月后就会停止生长,甚至死掉。

水质性缺水对当地农业的影响是明显的。据统计部门统计数据显示:广州市番禹区2004年全区早稻面积计划完成6.5万亩,同比减少2.1万亩,近1/3的稻田无法下插;甘蔗面积5.2万亩,同比减少0.1万亩;常年蔬菜面积11万亩,同比减少1. 8万亩。

防治

引潮力是指月球和太阳对地球上海水的引力,以及地球绕地月公共质心旋转时所产生的惯性离心力,这两种力组成的合力,是引起潮汐的原动力.

引潮力的实质是什么?它是怎样产生的?要回答这一问题,首先需从天体引力谈起。绕转着的天体,都受到两种力的作用,一种是绕转天体间的引力,一种是由于绕转而产生的离心力。两种力同时作用,才使天体能够维持其按一定规律绕转的运动状态。月和地球绕转、地和日绕转也是这样。

引力和离心力,对于整个天体来说,二者是保持平衡的。但是,对于天体上的每一个质点(位于天体中心的质点除外)来说,二者则是不平衡的。绕转天体之间的引力同绕转运动所产生的惯性离心力的不平衡,是产生引潮力的根本原因。

太阳和月球对地球的引力,地球在绕转中产生的离心力,以及由于这两种力在地球表面所表现出的不平衡,其本质是相同的。由月球作用而产生的潮汐,称太阴潮;由太阳作用而产生的潮汐,称太阳潮。太阳潮和太阴潮并无本质上的差异,其原理是一样的,但在量值上,太阴潮大于太阳潮。

为了便于说明问题,仅以月球对地球的作用为例,对引潮力进行分析。并且,假定地球是完全被均匀的海水所覆盖的球体。这就是说,我们在这里对引潮力和潮汐的分析,是以只考虑月球的作用,而不考虑其它任何因素对潮汐的影响为前提条件的。

地球在绕地月公共质心运动时,处于其不同位置的所有质点,惯性离心力都是相同的,其绝对值大小等于月球对地心质点的引力;其方向都互相平行,与月球对地心质点的引力方向相反。

地球是一个具有平均半径约6371千米的球体,构成这一庞大球体的各个质点,因其在地球体上所处的位置不同,而与月球质心具有不同的距离和相对位置。因此,根据万有引力定律可以知道,与月心距离和相对位置不同的地球上各质点,受月球实际引力的方向和大小,都有一定的差异。如图,C为月球质心,O为地球质心。A位于OC连线上,是距月心最近的地球质点,称为月球在地球上的正垂点。B是月心和地心连线延长线与地表的交点,为地球上距月心最远的一点,叫做月球在地球上的反垂点。在地球上,正垂点A所受月球的实际引力最大,它与地月心连线重迭,并指向月心。反垂点B所受月球的实际引力最小,它与地月心连线的延长线重迭,也指向月心。地球表面其他任何地点所受月球的实际引力,其

量值都小于正垂点、而大于反垂点;其方向虽然也都指向月心,但却都不同地月心连线重迭,而是各有不同大小的夹角。地球质心O所受月球的实际引力,在数值上是整个地球全部质点所受月球实际引力的平均值,并指向月心。

在地球的质心,绕转所产生的惯性离心力与月球对它的实际引力,保持平衡,即二者在同一直线上,作用于同一点,绝对值相等,方向相反,其合力为零。由于地表一切地点的惯性离心力相等、方向平行,而月球对它们的实际引力,与月球对地心的实际引力又都存在着不同程度的差异,因此,在地表任何地点,离心力与月球实际引力都是不平衡的,它们的合力都不等于零。月球在地表的正垂点A所受实际引力与离心力作用于同一直线,方向相反。在这里,实际引力大于离心力绝对值,引力起主导作用,引力与离心力的合力是向上指向月心的;反垂点B所受实际引力也与离心力作用于同一直线,方向相反。在这里,则是离心力的绝对值大于月球实际引力,离心力起主导作用,两种力的合力背向月心方向,但在地球上也是向上的。地表其它任何地点所受月球实际引力,都不和离心力作用于同一直线,力的方向相差都不等于180°,而且力的绝对值也不相等。因此,除正、反两个垂点外,地表一切地点所受月球实际引力,都与离心力构成一个方向不同、大小不等的合力。这些合力,就是引起地球上潮汐现象的直接动力——引潮力。

引潮力在地球上的分布是不均匀的。各地点引潮力大小、方向的差异,必然使被海水所覆盖的地球变形。以正垂点为中心的半球,引潮力的水平分力指向正垂点,另一个分力指向月球(或太阳),海水质点向正垂点方向集中、朝向月球(或太阳)隆起;以反垂点为中心的半球,引潮力的水平分力指向反垂点,另一个分力背向月球(或太阳),海水质点向反垂点方向集中、背向月球(或太阳)隆起;在这两个半球交界的地方,引潮力指向地心,海水质点向下移动。这样,就使完全被海水覆盖的地球,变成一个分别朝向和背向月球(或太阳)隆起的扁球体。正垂点和反垂点的连线,就是这个扁球体的长轴。这种由于引潮力作用而产生的变形,称为潮汐变形。

在地球上看来,在引潮力作用下,以正、反垂点为中心的海水朝向和背向月球(或太阳)隆起,都是海面的向上升高,在正、反垂点周围,各形成一个水位特高的地区,叫做潮汐隆起;在距正、反垂点最远的地方,指向地心的引潮力使那里的海面下降,形成水位特低的地带。

以正垂点为中心的潮汐隆起,称为顺潮,它始终朝向月球(或太阳);以反垂点为中心的潮汐隆起,称为对潮,它始终背向月球(或太阳)。因此,随着月球(或太阳)自东向西的周日视运动,两个潮汐隆起不断地自东向西移动,一日之内在地球上移动一周。距正、反垂点最远的海面最低地带,也相应在地球上自东向西移动。这样,在地表某个具体地点所看到的情况,就是随着时间的流逝,海面不断上升,达到最高水位后,又不断下降,降到最低水位后,又开始上升……如此不停地循环往复,这就是海面不断涨落的周期性运动

潮汐要素复习整理

潮汐原理复习思考题整理 (第四章~第五章) 第四章 1.什么是中期观测资料分析和短期观测资料分析,以及调和常数求解的实际步骤 中期观测资料分析:属于不同群的分潮的会合周期最长为1个月,因此把长度长于一个月但不足一年的观测记录称为中期观测资料 短期观测资料分析:观测的时间长度只有一天或几天 调和常数求解的实际步骤: ?中期观测资料分析(TB P103-107) 1)区分主分潮和随从分潮2)取L 段观测记录,式(4.4)可以写为(4.6) 3)将式(4.6)的余弦函数展开得到(4.7) 4)式(4.7)是包含2(P+Q)+1个未知数的由 () 1 L l l M = ∑ 个方程组成的矛盾方程组 5)通过最小二乘法得到矛盾方程组的法方程(4.10) 6)当L=1时,法方程(4.10)变为TB P106 7)引入Q个随从分潮与相应的主分潮的差比关系后,将给出另外2Q个方程(4.11) 8)进一步求得(4.12) ?短期观测资料分析(TB P116-119) 1)潮汐调和常数的初算2)潮流调和常数的计算 3)噪声方差的估计4)不合理数据的舍弃 5)调和常数和余流的计算6)潮流椭圆要素的计算 2.短期资料观测引入的参数D 和d 代表什么含义,具有什么作用? 振幅系数D 和迟角订正d 用准调和分潮表达式比用调和分潮表达式要简单的多,不但可以简化许多分析过程,而 且对分析实际潮汐特征也能使得问题变得更容易。 3.什么是准调和分潮,它和调和分潮有什么区别 ?实际准调和分潮的振幅和相角与A 小时前的引潮力准调和分潮相应量有关,与其余时刻,特别是与当时引潮力则没有关系,故A 叫做准调和分潮的潮龄 ?区别 4.了解潮汐和潮流的自报TB P119 第五章 1.潮汐特征值的含义TB P120-121 2.对于不同潮汐类型港口潮汐特征值的计算方法

第十二章:潮汐与潮流分解

第十二章潮汐与潮流 1.根据潮汐静力学观点: A. 赤道上没有潮汐周日不等现象 B. 南、北回归线上没有潮汐周日不等现象 C. 两极没有潮汐周日不等现象 D. 纬度等于月球赤纬的地方没有潮汐周日不等现象 2.以下哪些因素会引起潮汐预报值与实际值相差较大: A. 寒潮 B. 台风 C. AB都是 D. AB都不是 3.英版《潮汐表》中调和常数表的用途是: A. 结合主港潮汐预报表预报附港潮汐 B.利用简化调和常数法预报主附港潮汐 C. 以上都对 D. 以上都不对 4. 则对应该主港低潮时的附港潮时差为: A. -0017 B. 0017 C. -0039 D. 0039 ?kn3其意思为: 5.中国沿海某海区海图上的往复流图示为:?→ A. 该海区涨潮流大潮日最大流速为3kn B. 该海区落潮流大潮日最大流速为3kn C. 该海区涨潮流大潮日最大流速为6kn D. 该海区落潮流大潮日最大流速为6kn 6.中国某海区为往复流,大潮日最大流速为4kn,则农历初七该地的最大流速为: A. 3kn B. 4kn C. 2kn D. 3/2kn 7.地球表面上所受引潮力都指向球心的各点组成的水圈称之为______。 A. 真子午圈 B.照耀圈 C. 卯酉圈 D. 向心圈 8.月赤纬等于0时的潮汐特征为: A. 相邻的两个高潮潮高相等 B. 涨落潮时间相等 C. 相邻的两个低潮潮高相等 D. 以上三者都对 9.某港口潮汐现象为:每天两次高潮和两次低潮,潮差和涨落潮时间均不相等,该港口为: A. 正规半日潮港 B.不正规半日潮港 C. 正规日潮港 D. 不正规日潮港 10.台风对潮汐的影响是: A.引起“增水” B. 引起“减水” C. 引起降雨 D. 产生狂浪

潮汐的变化规律

潮汐的变化规律 由于太阳与月亮对地球的引力作用,我国大部分沿海地区均有一昼夜各出现海水涨落两次的潮汐现象。每月的农历初一至初五(或农历十六至二十)为大潮汐(当地人称“大活汛”);农历初六至十二(或农历二十一至农历二十五)为小潮汐(当地人称“死汛”);而初九或二十四为最小潮(当地人称“死汛底”)。每天的潮汐时间均后延45分钟左右,如此周而复始 有个计算公式共,仅供大家参考。 满潮时间=(农历日—1或16)乘以0.8+10:32 干潮时间=满潮时间加或减6:12 潮汐表编辑 潮汐预报表的简称。它预报沿海某些地点在未来一定时期的每天 潮汐情况。在航运方面,有些水道和港湾须在高潮前后才能航行和进出港;在军事方面,有时为了选择有利的登陆地点和时间,就必须考虑和掌握潮汐的情况;在生产方面,沿海的渔业、水产养殖业、农业、盐业、资源开发、港口工程建设、测量、环境保护和潮汐发电等,都要掌握潮汐变化的规律。潮汐表就是为这些方面服务的。 中文名 潮汐预报表 外文名

Tidal prediction table 作用 预报沿海某些地点潮汐情况 服务行业 航运,军事,生产... 最早文献 《海涛志》 包括 主港逐日预报表,附港差比数等 目录 1简介 2文献来源 3港差比数 4潮汐信息 5简便算法 6潮汐时间 1简介编辑 cháo xī biǎo 潮汐表 tide tables 潮汐表又称潮汐长期预测表,即在正常天气情况下由天文因素影响所

产生的潮汐。 2文献来源编辑 英国开尔文 中国唐代窦叔蒙在《海涛志》一文中提出了根据月相推算高潮时刻的图表法,这是保存下来的介绍潮汐预报方法的最早的文献,大约比英国的《伦敦桥潮候表》早400年。19世纪60年代末,英国开尔文和G.H.达尔文等人提出了潮汐调和分析方法,后来还设计和制造了机械的潮汐推算机,使潮汐表的编算工作得到迅速发展。自20世纪60年代以来,电子计算机已广泛应用在潮汐推算工作中。 潮汐表一般包括主港逐日预报表(通常有高潮和低潮的时间和潮高,有的港还有每小时的潮高)、附港差比数、潮信和任意时刻的潮高计算等内容。 主港逐日预报表 潮汐现象可视为由许多不同周期的分潮叠加而成,故任意时刻的潮高可表示为 图片中A为平均海平面在潮高基准面上的高度,表示分潮的圆频率,为交点因子,d为格林威治开始时的天文相角,H和为分潮的调和常数──振幅和迟角。这样,应用已求出的该港的潮汐调和常数,就能

潮汐规律

潮汐规律 潮汐即海水的涨落现象。白天海水的涨落称潮,夜间海水的涨落称汐。海钓不同于淡水钓,除了温度、气压、风向等影响外,与潮汐的关系十密切。 按海洋每天潮汐由小潮转向大潮,由大潮再转向小潮的反复循环规律,以农历为预测,一个月有二次由小潮到大潮循环期。沿海的渔民把每次的潮汐周期按每天列为从小半眼至十二眼(有时十三眼),由一眼水至七眼水是潮落潮涨每天递增过程,由八眼水至半眼水是潮落潮涨每天递减过程。每次潮汐周期末,即十二眼水当天,出现新的潮汐流(新潮水),而旧潮汐(老潮水)还有3-4天才完全退去,这样就形成了天的每天二次海潮汐的景象,小半眼水至二眼水就是每天二次潮水。小半眼水:潮涨潮落较小,今天起4天内,每天都有二次潮涨潮落过程,退潮低水位时,海水平面还在较高潮位中。半眼水:潮涨潮落较小,今天起3天内,每天都有二次潮涨潮落过程,退潮低水位时,海水平面还在较高潮位中。一眼水:潮涨潮落较小,今天起2天内,每天都有二次潮涨潮落过程,退潮低水位时,海水平面还在较高潮位中。二眼水:潮水开始每天增大。潮涨潮落较小,今天有二次潮涨潮落过程,退潮低水位海潮开始退得较低。三眼水:潮水每天都在增大。潮涨潮落开始大,今天只有一次潮涨潮落过程,高潮与低潮落差,一般有4-6米;

退潮低水位海潮开始退得较快较低。四眼水:潮水每天都在增大,潮涨潮落比前一天大。今天只有一次潮涨潮落过程,高潮与低潮落差,一般有5-6.5米;潮水高低潮相隔时间约11小时。退潮低水位海潮开始退得很快很低。五眼水:潮水每天都在增大,潮涨潮落比前一天大。今天只有一次潮涨潮落过程,高潮与低潮落差,一般有6-7米。潮水高低潮相隔时间约11小时。退潮低水位海潮退得很快很低。六眼水:潮水每天都在增大,潮涨潮落比前一天大。今天只有一次潮涨潮落过程,高潮与低潮落差,一般有7-8米。潮水高低潮相隔时间约11小时。退潮低水位海潮退得很快很低。七眼水:潮水今天达到最大,潮涨潮落比前一天大。今天只有一次潮涨潮落过程,高潮与低潮落差,一般有8-9米。潮水高低潮相隔时间约11小时。退潮低水位海潮退得很快很低。八眼水:潮水今天从最大潮开始缓慢减少,但不明显,潮涨潮落比前一天小一点点。今天只有一次潮涨潮落过程,高潮与低潮落差,一般有8-9米。潮水高低潮相隔时间约11小时。退潮低水位海潮退得很快很低。九眼水:潮水今天起从高潮位每天逐步递减中,当天潮水高潮水位比前一日减得明显,但还是在高潮位中,潮涨潮落比前一天小约o.5米。今天只有一次潮涨潮落过程,高潮与低潮落差,一般有7-8米。潮水高低潮相隔时间约11小时。退潮低水位海潮退得较快较低。十眼水:潮水今天

潮汐与潮流

潮汐与潮流 2008-04-02 22:28:09| 分类:自然地理| 标签:|字号大中小订阅 潮汐与潮流 潮汐(Tide)是海面周期性的升降运动。与潮汐现象同时发生的还有海水周期性的水平流动,即潮流(Tidal Stream)。 潮汐与渔业、盐业、港口建筑、以及海水动力利用有着十分密切的关系。潮汐与航海的关系也非常重要,将直接影响船舶的航行计划的实施和航海安全,如需要通过浅水区,须预先依据潮汐资料计算出当地潮高、潮时,并正确调整吃水差;为了保证船舶安全地航行在计划航线上,须随时掌握当的潮汐与潮流资料,观测船位,调整航向。即使是在港内,也不容忽视潮汐、潮流对船舶安全的影响。在沿岸航行中,船长的航行命令、公司的航行规章制度、国际性机构对航行值班驾驶员的指导性文件中,都将掌握当时和未来的潮汐和潮流列为确保航行安全的驾驶台工作的重要内容。 潮汐学有着丰富的内容,本章仅从航海应用实际出发,阐述潮汐的基本成因、潮汐术语、潮流的计算方法等内容。 §13—1 潮汐的基本成因和潮汐术语 一、潮汐的成因 海水的涨落现象是由诸多复杂因素决定的,经研究表明,潮汐产生的原动力,是天 体的引潮力,即天体的引力、地球与天体相对运动所需的惯性离心力的向量和。其 中最主要的是月球的引潮力,其次是太阳的引潮力。 本章仅从航海实际需要出发,扼要地利用平衡潮理论(静力学理论)分析潮汐的基 本成因,并对调和常数分析法作简单扼要的介绍。 平衡潮理论是牛顿创立的,所谓平衡潮是指海水在引潮力和重力作用下,达到平衡 时的潮汐。 为了使问题简化,作以下两个假设: 1、整个地球被等深的海水所覆盖,所有自然地理因素对潮汐不起作用; 2、海水没有摩擦力、惯性力,外力使海水在任何时候都处于平衡状态。 下面以月引潮力为例来分析潮汐的成因: ㈠月球的引力 根据万有引力定律,有: 式中:mM ——月球质量;mE——地球质量; R——地月中心距离;k——万有引力系数。

上海潮汐表

上海潮汐表 农历涨潮落潮涨潮落潮 初九、二十四07:12 13:24 19:36 01:48 初十、二十五08:00 14:12 20:24 02:36 初十一、二十六08:48 15:00 21:12 03:24 初十二、二十七09:36 15:48 22:00 04:12 初十三、二十八10:24 16:36 22:48 05:00 初十四、二十九11:12 17:24 23:36 05:48 初十五、三十12:00 18:12 00:24 06:36 初一、十六00:48 07:00 13:12 19:24 初二、十七01:36 07:48 14:00 20:12 初三、十八02:24 08:36 14:48 21:00 初四、十九03:12 09:24 15:36 21:48 初五、二十04:00 10:12 16:24 22:36 初六、二十一04:48 11:00 17:12 23:24 初七、二十二05:36 11:48 18:00 00:12 初八、二十三06:24 12:36 18:48 01:00 以上数据会有些许误差,但基本准确,红色为最大潮时间(鱼进来机率最大),紫色为小潮时间(鱼进来机率最小) 潮汐时间计算解析:

1.地球各点地方时与太阳的关系:由于地球一刻不停地自西向东自转,一般来说,东边比西边先看到日出,也就是东边的时刻比西边时刻早。古时候,各地都把当地太阳高度最大时刻定为12 点,因此各地的地方是不同的。如右图,在此光照图上我们可以确定此图中任一点的地方时。 2.潮汐与太阳和月球的关系:海洋的潮汐现象是因月球和太阳的引力在地球上分布不均造成的。引潮力是在地球朝向月球(或太阳)的一面和背向月球(或太阳)的一面同时发生的。朝向月球和太阳一面形成的潮汐称顺潮,背向月球和太阳一面形成的潮汐称对潮。据科学推测是:当月、日、地三者成一直线时引力最大,潮涨落的最大,形成大潮,这时是新月和望月(初一、十五)的时候;当日、月、地三者成直角三角形时引力最小,潮涨落的最小,形成小潮,这时是月上弦(初七、八)和下弦(廿二、廿三)的时候。 根据万有引力定律,月球的引潮力是太阳的 2.17 倍,可见,海洋潮汐主要是由月球引潮力引起的。如右图所示:(在一个周期的时间内,最常见到的是两涨两落)但在实际上形成大潮和小潮的时间,并不正好是上述时间,为方便起见,本文只从理论上探讨形成大潮和小潮的时间以及一日内潮汐涨落(高潮和低潮)时间。 3.从上可以看出,地球上各个地方的地方时当地与由太阳的相互位置所决定,而一个地方海水的涨落(潮汐)主要由此地与月球的相互位置决定。潮汐高潮的时间,在理论上应该在月亮的上、下中天

潮流潮汐

潮汐现象 潮汐(Tide):海面在外力作用下产生的周期性的升降 现象。 白天的海面上升为潮,晚上的海面上升为汐。 涨潮(Rising tide或Flood tide):海面上升的过程。 落潮(Falling tide或Ebb tide ):海面下降的过程。 高潮(High Water):海面涨到最高位置时,称为高潮。 低潮(Low Water):海面落到最低位置时,称为低潮。 潮流(Tidal Stream):伴随海面周期性的升降运动 而产生的海水周期性的水平方向的流动。 潮汐的变化周期:指相邻高潮或相邻低潮的时间间隔,一般大约为半天或一天,即所谓的半日潮和日潮。 注意的是:海水的涨落时快时慢,高潮后,海面下降速度缓慢,到高、低潮中间附近时下降速度最快,随后又减慢,直到发 生低潮。 停潮(Slack Tide):低潮前后的一段时间内,海面 处于停止状态,称为停潮。

低潮时(Time of Low Water):简记T L W,停潮的中间 时刻。 平潮(Slack Tide):高潮前后的一段时间内,海面 处于停止状态,称为平潮。 高潮时(Time of High Water):简记T H W,平潮的中 间时刻。 涨潮时间(Duration of Rise):从低潮到高潮的时 间间隔。 落潮时间(Duration of Fall):从高潮到低潮的时 间间隔。 潮汐的基本成因 潮汐由天体的引潮力产生的。 引潮力:天体的引力和惯性离心力的合力。 对潮汐影响较大的是月球和太阳的引潮力,其中月球 引潮力是产生潮汐的主要因素,包括月球的引力和地球绕 月地公共质心进行平动运动所产生的惯性离心力。 月球连续两次上(下)中天的平均时间间隔约为24h50m,即一个太阴日,故在一个太阴日中同一地点产生两次高潮 和两次低潮,相邻高(低)潮的时间间隔为12h25m。 在一个太阴日中,两个高潮和两个低潮有明显的差异;涨落潮的时间间隔也不相等称为潮汐的周日不等。

潮汐的类型

一、潮汐的类型 潮汐现象非常复杂。仅以海水涨落的高低来说,各地就很不一样。有的地方潮水几乎察觉不出,有的地方却高达几米。在我国台湾省基隆,涨潮时和落潮时的海面只差0.5米,而杭州湾的潮差竟达8.93米。在一个潮汐周期(约24小时50分钟,天文学上称一个太阴日,即月球连续两次经过上中天所需的时间)里,各地潮水涨落的次数、时刻、持续时间也均不相同。潮汐现象尽管很复杂,但大致说来不外三种基本类型。 半日潮型:一个太阴日内出现两次高潮和两次低潮,前一次高潮和低潮的潮差与后一次高潮和低潮的潮差大致相同,涨潮过程和落潮过程的时间也几乎相等(6小时12.5分)。我国渤海、东海、黄海的多数地点为半日潮型,如大沽、青岛、厦门等。 全日潮型:一个太阴日内只有一次高潮和一次低潮。如南海汕头、渤海秦皇岛等。南海的北部湾是世界上典型的全日潮海区。 混合潮型:一月内有些日子出现两次高潮和两次低潮,但两次高潮和低潮的潮差相差较大,涨潮过程和落潮过程的时间也不等;而另一些日子则出现一次高潮和一次低潮。我国南海多数地点属混合潮型。如榆林港,十五天出现全日潮,其余日子为不规则的半日潮,潮差较大。 从各地的潮汐观测曲线可以看出,无论是涨、落潮时,还是潮高、潮差都呈现出周期性的变化,根据潮汐涨落的周期和潮差的情况,可以把潮汐大体分为如下的4种类型: 正规半日潮:在一个太阴日(约24时50分)内,有两次高潮和两次低潮,从高潮到低潮和从低潮到高潮的潮差几乎相等,这类潮汐就叫做正规半日潮。 不正规半日潮:在一个朔望月中的大多数日子里,每个太阴日内一般可有两次高潮和两次低潮;但有少数日子(当月赤纬较大的时候),第二次高潮很小,半日潮特征就不显著,这类潮汐就叫做不正规半日潮。 正规日潮:在一个太阴日内只有一次高潮和一次低潮,像这样的一种潮汐就叫正规日潮,或称正规全日潮。 不正规日潮:这类潮汐在一个朔望月中的大多数日子里具有日潮型的特征,但有少数日子(当月赤纬接近零的时候)则具有半日潮的特征。 凡是一天之中两个潮的潮差不等,涨潮时和落潮时也不等,这种不规则现象称为潮汐的日不等现象。高潮中比较高的一个叫高高潮,比较低的叫低高潮;低潮中比较低的叫低低潮,比较高的叫高低潮。 不论那种潮汐类型,在农历每月初一、十五以后两三天内,各要发生一次潮差最大的大潮,那时潮水涨得最高,落得最低。在农历每月初八、二十三以后两三天内,各有一次潮差最小的小潮,届时潮水涨得不太高,落得也不太低。 二、潮汐要素 涨潮时潮位不断增高,达到一定的高度以后,潮位短时间内不涨也不退,称之为平潮,平潮的中间时刻称为高潮时。 平潮的持续时间各地有所不同,可从几分钟到几十分钟不等。平潮过后,潮位开始下降。 当潮位退到最低的时候,与平潮情况类似,也发生潮位不退不涨的现象,叫做停潮,其中间时刻为低潮时。 停潮过后潮位又开始上涨,如此周而复始地运动着。从低潮时到高潮时的时间间隔叫做涨潮时,从高潮时到低潮时的时间间隔则称为落潮时。

温州沿海潮汐时间表

说明:飞云江比瓯江涨潮和平潮平均提前约1小时。 补充回答: 说明:上面是瓯江的,飞云江比瓯江涨潮和平潮平均提前约1小时。瓯江潮汐时间表----浙江温州

教大家一个公式,误差不会太大,当然,离瓯江口远点的会稍微晚一些:平潮时间=(农历-3)*0.8,如:农历初十的平潮时间大约是:7*0.8=5.6,即5点(与17时)36分左右,初三、十八中午(半夜)平潮。 瓯江潮汐时间表----浙江温州 教大家一个公式,误差不会太大,当然,离瓯江口远点的会稍微晚一些:平潮时间=(农历-3)*0.8,如:农历初十的平潮时间大约是:7*0.8=5.6,即5点(与17时)36分左右,初三、十八中午(半夜)平潮。 潮汐是我国沿海地区的一种自然现象,古代称白天的潮汐为“潮”,晚上的称为“汐”,合称为“潮汐”,它的发生与太阳、月球对地球的吸引力而产生的。也和我国传统农历相对应。在农历每月的初一(十五、十六)即朔点时刻处太阳和月球在地球的一侧,所以就有了最大的引潮力,所以会引起“大潮”。在月相为上弦和下弦时,即农历的初八和二十三时,太阳引潮力和月球引潮力互相抵消了一部分所以就发生了“小潮”。故日照农谚中有“初一、十五涨大潮;初八、二十三,到处见海滩”和“初一十五明(天亮)了满,紧干慢干晌了天;初八二十三,一天两(早晚)个干”之说。由于月球每天在天球上东移13度多,合计为50分钟左右,即每天月亮上中天时刻(为1太阴日=24时50分)约推迟50分钟左右,(下中天也会发生潮水每天一般都有两次潮水)故每天涨潮的时刻也推迟50分钟左右。

潮汐的推算方式 农历上半月,即初一至十五,上午是当天的日子×0.8;下午是当天的日子×0.8+24。假如今天是初九,那么上午涨潮的时间是9x0.8=7.2 。即是7时12分。下午涨潮的时间是9×0.8+24=晚7时36分。下半月只要将农历当天的日子减去15,再按照前面的公式计算就可以了。 由于月亮每天升起来的时间比前一天晚48分钟,所以潮汐的涨落每天也推迟48分钟。 日照沿海赶海拾贝的时间,大约落潮时间后两小时至涨潮时间后一个半小时。 例:初一十六赶海拾贝的时间是:白天9:00——14:42 夜间21:24——3:06(转载) 潮汐是我国沿海地区的一种自然现象,古代称白天的潮汐为“潮”,晚上的称为“汐”,合称为“潮汐”,它的发生与太阳、月球对地球的吸引力而产生的。也和我国传统农历相对应。在农历每月的初一(十五、十六)即朔点时刻处太阳和月球在地球的一侧,所以就有了最大的引潮力,所以会引起“大潮”。在月相为上弦和下弦时,即农历的初八和二十三时,太阳引潮力和月球引潮力互相抵消了一部分所以就发生了“小潮”。故日照农谚中有“初一、十五涨大潮;初八、二十三,到处见海滩”和“初一十五明(天亮)了满,紧干慢干晌了天;初八二十三,一天两(早晚)个干”之说。由于月球每天在天球上东移13度多,合计为50分钟左右,即每天月亮上中天时刻(为1太阴日=24时50分)约推迟50分钟左右,(下中天也会发生潮水每天一般都有两次潮水)故每天涨潮的时刻也推迟50分钟左右。 农历上半月,即初一至十五,上午是当天的日子×0.8;下午是当天的日子×0.8+24。假如今天是初

潮汐规律总结

凡是到过海边的人们,都会看到海水有一种周期性的涨落现象:到了一定时间,海水推波逐澜,迅猛上涨,达到高潮;过后一些时间,上涨的海水又自行退去,留下一片沙滩,出现低潮。如此循环重复,永不停息。海水的这种运动现象就是潮汐。“潮”指白天海水上涨,“汐”指晚上海水上涨,不过通常我们往往将潮和汐都叫做“潮”。潮汐的时间,在理论上应该与月球的上中天或下中天的时刻相符合,但实际上常常推迟。发生高潮和月球上中天相差的时间叫高潮间隙。但各地的高潮间隙又大不相同。如:威海是10时50分,烟台是10时25分,龙口是10时20分,足见地理位置的不同,而导致高潮间隙的差目。高潮时和低潮时的大概计算法:高潮时=(日差)0?8×(阴历日子)7-16(上半月-下半月-1,16)+高潮间隙,低潮时=高潮时-6时12分,如计算威海阴历初五的潮时如下:高潮时=0.8)×(5-1)+10:50′=3:12′+10:50′=14:02′(即为第二个高潮)14:02′-12:24′=1:38′(即为第一个高潮)低潮时=14:02′-6:12′=7:50′(即为第一个低潮)以上这样的算法固然)准确,但很繁琐,很难开口就说出来,我们经过多年的海上实践,验证,摸索出一种很有规律的简易计算法。其方法是阴历日子(上半月-3,下半月-18)x0.8,即为当日的高潮潮时。如计算威海阴历初五的潮时如下:高潮时=(5-3)×0.8=1:36′(即第一个高潮)。低潮时=1:36′+6:12′=7:48′(则则第一个低潮)。如计算威海阴历量五的潮时:高潮时=(25-18)×0.8=5:36′(则是第一个高潮)。低潮时=5:36′+6:12′=11:48′(则是第一个低潮)潮流也叫潮

潮汐推算

潮汐推算 潮汐的发生和太阳,月球都有关系,也和我国传统农历对应。在农历每月的初一即朔点时刻处太阳和月球在地球的一侧,所以就有了最大的引潮力,所以会引起“大潮”,在农历每月的十五或十六附近,太阳和月亮在地球的两侧,太阳和月球的引潮力你推我拉也会引起“大潮”;在月相为上弦和下弦时,即农历的初八和二十三时,太阳引潮力和月球引潮力互相抵消了一部分所以就发生了“小潮”,故农谚中有“初一十五涨大潮,初八二十三到处见海滩”之说。另外在第天也有涨潮发生,由于月球每天在天球上东移13度多,合计为50 分钟左右,即每天月亮上中天时刻(为1太阴日=24时50分)约推迟50分钟左右,(下中天也会发生潮水每天一般都有两次潮水)故每天涨潮的时刻也推迟50分钟左右。我国劳动人民在千百年来总结经验出来许多的算潮方法(推潮汐时刻)如八分算潮法就是其中的一例:简明公式为: 高潮时=0.8h×[农历日期-1(或16)]+高潮间隙 上式可算得一天中的一个高潮时,对于正规半日潮海区,将其数值加或减12时25分(或为了计算的方便可加或减12时24分)即可得出另一个高潮时。若将其数值加或减6时12 分即可得低潮出现的时刻——低潮时。但由于,月球和太阳的运动的复杂性,大潮可能有时推迟一天或几天,一太阴日间的高潮也往往落后于月球上中天或下中天时刻一小时或几小时,有的地方一太阴日就发生一次潮汐。故每天的涨潮退潮时间都不一样,间隔也不同。 潮汐能是以位能的形态出现的海洋能,是指海水潮涨和潮落形成的水的势能。海水涨落的潮汐现象是由地球和天体运动以及它们之间的相互作用而引起的。在海洋中,月球的引力使地球的向月面和背月面的水位升高。由于地球的旋转,这种水位的上升以周期为12小时25分和振幅小于1m的深海波浪形式由东向西传播。太阳引力的作用与此相似,但是作用力小些,其周期为12小时。当太阳、月球和地球在一条直线上时,就产生大潮(spring tides);当它们成直角时,就产生小潮(neap tides)。除了半日周期潮和月周期潮的变化外,地球和月球的旋转运动还产生许多其他的周期性循环,其周期可以从几天到数年。同时地表的海水又受到地球运动离心力的作用,月球引力和离心力的合力正是引起海水涨落的引潮力。 除月球、太阳外,其他天体对地球同样会产生引潮力。虽然太阳的质量比月球大得多,但太阳离地球的距离也比月球与地球之间的距离大得多,所以其引潮力还不到月球引潮力的一半。其他天体或因远离地球,或因质量太小所产生的引潮力微不足道。根据平衡潮理论,如果地球完全由等深海水覆盖,用万有引力计算,月球所产生的最大引潮力可使海水面升高0.563m,太阳引潮力的作用为0.246m,夏威夷等大洋处观测的潮差约1m,与平衡潮理论比较接近,近海实际的潮差却比上述计算值大得多。如我国杭州湾的最大潮差达8.93m,北美加拿大芬地湾最大潮差更达19.6m。这种实际与计算的差别目前尚无确切的解释。一般认为当海洋潮汐波冲击大陆架和海岸线时,通过上升、收聚和共振等运动,使潮差增大。潮汐能的能量与潮量和潮差成正比。或者说,与潮差的平方和水库的面积成正比。和水力发电相比,潮汐能的能量密度很低,相当于微水头发电的水平。世界上潮差的较大值约为13~15m,但一般说来,平均潮差在3m以上就有实际应用价值。

潮汐学

1. 潮汐静力理论的基本思想是什么?潮汐静力理论的贡献是什么? 假定: (1)地球为一个圆球,其表面完全被等深的海水所覆盖,不考虑陆地的存在; (2)海水没有粘性,也没有惯性,海面能随时与等势面重叠; (3)海水不受地转偏向力和海底摩擦力的作用。 在这些假定下,海面在月球引潮力的作用下离开原来的平衡位置作相应的上升或下降,直到在重力和引潮力的共同作用下,达到新的平衡位置为止。因此海面便产生形变,也就是说,考虑引潮力后的海面变成了椭球形,称之为潮汐椭球,并且它的长轴恒指向月球。 由于地球的自转,地球的表面相对于椭球形的海面运动,这就造成了地球表面上的固定点发生周期性的涨落而形成潮汐。这就是平衡潮理论的基本思想。 贡献:1)潮汐静力理论是建立在客观存在的引潮力之上; 2)根据潮汐静力理论导出的潮高公式所揭示出的潮汐变化周期与实际基本相符; 3)由潮高公式计算出来的最大可能潮差为78cm , 这一数值与实际大洋的潮差相近。 2. 潮汐动力理论的基本思想是什么?潮汐动力理论的贡献是什么? 基本思想:潮汐动力学理论是从动力学观点出发,来研究海水在引潮力作用下产生潮汐的过程。此理论认为:对于海水运动来说,只有水平引潮力才是重要的,而引潮力的铅直分量(铅直引潮力)和重力相比非常小,因此铅直引潮力所产生的作用只是使重力加速度产生极微小的变化,故不重要。还认为海洋潮汐实际上指的是海水在月球和太阳水平引潮力作用下的一种潮波运动。海洋潮波在传播过程中,除了受引潮力作用之外,还受到海陆分布、海底地形(如水深)、地转偏向力(即科氏力)以及摩擦力等因素的影响。 贡献:1)解释了潮流现象; 2)解释了无潮点和旋转潮波系统; 3)解释了潮差大于平衡潮理论潮差的现象; 4)解释了浅水潮波的产生。 3. 什么是月球引潮力?月球引潮力如何计算?由引潮力公式可以得到什么结论? 地球上的物体,其所受到的月球的引力,与因地球绕地-月公共质心平动所产生的惯性力的合力,是该物体所受的月球引潮力。 根据万有引力定律,地球上任一地点单位质量的物体所受的月球引力为2x KM f m =,方向都指向月球中心,彼此不平行,x 为所考虑的质点至月球中心的距离。这个力的大小随着质点所在位置的不同而变化。地球绕地月公共质心公转平动的结果,使得地球(表面或内部)各质点都受到大小相等、方向相同的公转惯性离心力的作用。此公转惯性离心力的方向相同且与从月球中心至地球中心联线的方向相同(即方向都背离月球),大小为2 D KM f c =,式中M 为月球的质量,K 是万有引力常数,D 为月地中心距离。 月球引力与地月公转产生的惯性离心力的合力即为月球引潮力,即→→+c m f f 。 得到的结论: 1)由于地月日的周期性运动,产生了周期性的引潮力变化,引起了周期性的潮汐现象; 2)由于地月日的周期性运动的复杂性,引起了周期复杂的潮汐现象; 3)引潮力与天体质量成正比,与天体和地球距离的立方成反比。

潮 汐 时 间 表

潮汐时间表(阴历日期) 初一、十六:满潮:10.36、23.00。干潮:4.24、16.48。大活汛 初二、十七:满潮:11.24、23.48。干潮:5.12、17.36。大活汛 初三、十八:满潮; 12.12、24.36。干潮:6.00、18.24。最大活汛初四、十九:满潮:1.24、 13.00。干潮:6.48、19.12。大活汛 初五、二十:满潮: 2.12、13.48。干潮;7.36、20.00。大活汛 初六、二十一:满潮:3.00、14.26。干潮:8.24、20.48。中活汛初七、二十二:满潮:3.48、15.24。干潮:9.12、21.36。中活汛初八、二十三:满潮:4.36、16.12。干潮:10.00、22.24。小死讯初九、二十四:满潮:5.24、17.00。干潮:10.48、23.12。最小** 初十、二十五:满潮:6.12、17.48。干潮:11.36、24.00。小死讯十一、二十六:满潮:7.00、18.36。干潮:12.24、0.48。小死讯十二、二十七:满潮:7.48、19.24。干潮:1.36、13.12。中死讯十三、二十八:满潮:8.36、20.12。干潮:2.24、14.00。中活汛十四、二十九:满潮:9.24、21.00。干潮:3.12、14.48。大活汛十五、三十:满潮:10.12、21.48。干潮:4.00、15.36。大活汛 潮汐的变化规律: 由于太阳与月亮对地球的引力作用,我国大部分沿海地区均有一昼夜各出现海水涨落两次的潮汐现象。每月的农历初一至初五(或农历十六至二十)为大潮汐(当地人称“大活汛”);农历初六至十二(或农历二十一至农历二十五)为小潮汐(当地人称“死汛”);而初九或二十四为最小潮(当地人称“死汛底”)。每天的潮汐时间均后延45分钟左右,如此周而复始.希望到海边去玩的朋友做参考,这样会使您玩的更愉快!

中国沿海潮汐类型分布特点

中国沿海潮汐类型分布特点 吴俊彦,肖京国,成 俊,张亚彪 (海军出版社,天津 300450) 摘要:根据掌握的700多个潮站的潮汐资料,对中国沿海潮港的潮汐类型进行了系统分析、计算和统计,探讨了中国沿海潮汐类型的分布特点,并结合中国海区潮波系统的传播方式说明了该统计结果的合理性。 关键词:潮汐性质;潮波系统;统计分析;分布规律 1 引 言 中国海区的潮汐现象比较复杂,潮汐性质因地而异,变化比较急剧。针对中国海区潮汐现象的特点,尤其是潮汐性质的分布特点虽然有过不少研究,但由于实测资料比较缺乏,许多研究只限于局部地区或者采用某些数值模拟方法进行海区理论推测,利用实测资料进行系统分析中国沿海潮汐性质的研究相对较少。随着时间的推移,沿岸地形及河口形态都发生了很大变化,部分潮港的潮汐性质也随之改变。为了反映我国沿海潮汐性质分布规律的现势性、准确性和完整性,本文根据700多个潮站的潮汐资料及相关研究成果,对中国沿海各潮港的潮汐性质进行了重新计算,并结合中国海区的潮波系统的传播方式,探讨了中国沿海潮汐性质的分布规律。 2 潮汐性质的分类 我国沿海潮港潮汐性质的划分主要以F1= (H K1+H O1)/H M2的值来判断,其中H K1、H O1、H M2分别为分潮K1、O1、M2的振幅。根据F1值的大小将潮港分为以下3种潮汐类型: (1)半日潮港(0

潮汐与海浪的成因

潮汐

【词目名称】潮汐; 【词目拼音】cháoxī 【基本解释】 ①由于月亮和太阳的引力而产生的周期性运动。 ②特指海潮。 【引证解释】 在月球和太阳引力作用下,海洋水面周期性的涨落现象。在白天的称潮,夜间的称汐,总称“潮汐”。一般每日涨落两次,也有涨落一次的。外海潮波沿江河上溯,又使的江河下游发生潮汐。北齐颜之推《颜氏家训·归心》:“潮汐去还,谁所节度?”宋苏辙《和子瞻雪浪斋》:“门前石岸立精铁,潮汐洗尽莓苔昏。”明刘基《江行杂诗》之七:“坤灵不放厚地裂,应有潮汐通扶桑。”叶圣陶《穷愁》:“赌窟既破,全市喧传,群来聚视博徒何如人,市嚣乃如潮汐。” 2概述 海水有一种周期性的涨落现象:到了一定时间,海水推波助澜,海水迅猛上涨,海水的这种运动现象就是潮汐。 随着人们对潮汐现象的不断观察,对潮汐现象的真正原因逐渐有了认识。我国古代天文学家余靖(字安道)在他著的《海潮图序》一书中说:“潮之涨落,海非增减,盖月之所临,则之往从之”。哲学家王充在《论衡》中写道:“涛之起也,随月盛衰。”指出了潮汐跟月亮有关系。到了17世纪80年代,英国科学家牛顿发现了万有引力定律之后,提出了“潮汐是由于月亮和太阳对海水的吸引力引起”的假设,科学地解释了产生潮汐的原因。 潮汐是所有海洋现象中较先引起人们注意的海水运动现象,它与人类的关系非常密切。海港工程,航运交通,军事活动,渔、盐、水产业,近海环境研究与污染治理,都与潮汐现象密切相关。尤其是,永不休止的海面垂直涨落运动蕴藏着极为巨大的能量,这一能量的开发利用也引起人们的兴趣。 定义分类 由于日、月引潮力的作用,使地球的岩石圈、水圈和大气圈中分别产生的周期性的运动和变化,总称潮汐。作为完整的潮汐科学,其研究对象应将地潮、海潮和气潮作为一个统一的整体,但由于海潮现象十分明显,且与人们的生活、经济活动、交通运输等关系密切,因而习惯上将潮汐(tide)一词狭义理解为海洋潮汐。固体地球在日、月引潮力作用下引起的弹性—塑性形变,称固体潮汐,简称固体潮或地潮。

潮汐波浪原理

潮汐波浪原理 一.潮汐运动 潮汐现象是指海水在天体(主要是月球和太阳)引潮力作用下所产生的周期性运动,习惯上把海面垂直方向涨落称为潮汐,而海水在水平方向的流动称为潮流。是沿海地区的一种自然现象,古代称白天的潮汐为“潮”,晚上的称为“汐”,合称为“潮汐”。 凡是到过海边的人们,都会看到海水有一种周期性的涨落现象:到了一定时间,海水推波助澜,迅猛上涨,达到高潮;过后一些时间,上涨的海水又自行退去,留下一片沙滩,出现低潮。如此循环重复,永不停息。海水的这种运动现象就是潮汐。 由于日、月引潮力的作用,使地球的岩石圈、水圈和大气圈中分别产生的周期性的运动和变化,总称潮汐。作为完整的潮汐科学,其研究对象应将地潮、海潮和气潮作为一个统一的整体,但由于海潮现象十分明显,且与人们的生活、经济活动、交通运输等关系密切,因而习惯上将潮汐(tide)一词狭义理解为海洋潮汐。固体地球在日、月引

潮力作用下引起的弹性—塑性形变,称固体潮汐,简称固体潮或地潮;海水在日、月引潮力作用下引起的海面周期性的升降、涨落与进退,称海洋潮汐,简称海潮;大气各要素(如气压场、大气风场、地球磁场等)受引潮力的作用而产生的周期性变化(如8、12、24小时)称大气潮汐,简称气潮。其中由太阳引起的大气潮汐称太阳潮,由月球引起的称太阴潮。 形成原因: 月球引力和离心力的合力是引起海水涨落的引潮力。地潮、海潮和气潮的原动力都是日、月对地球各处引力不同而引起的,三者之间互有影响。因月球距地球比太阳近,月球与太阳引潮力之比为11:5,对海洋而言,太阴潮比太阳潮显著。大洋底部地壳的弹性—塑性潮汐形变,会引起相应的海潮,即对海潮来说,存在着地潮效应的影响;而海潮引起的海水质量的迁移,改变着地壳所承受的负载,使地壳发生可复的变曲。气潮在海潮之上,它作用于海面上引起其附加的振动,使海潮的变化更趋复杂。

潮汐

科技名词定义 中文名称: 潮汐 英文名称: tide 定义1: 在天体引潮力作用下产生的海面周期性涨落现象。 所属学科: 海洋科技(一级学科) ;海洋科学(二级学科) ;物理海洋学(三级学科) 定义2: 海水受月球和太阳等天体的引力作用而发生的周期性升降现象。 所属学科: 水产学(一级学科) ;水产基础科学(二级学科) 定义3: 海水在月球和太阳引潮力等外力作用下产生的周期性运动。 所属学科: 水利科技(一级学科) ;水力学、河流动力学、海岸动力学(二级学科) ;海岸动力学(水利)(三级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片 潮汐现象是指海水在天体(主要是月球和太阳)引潮力作用下所产生的周期性运动,习惯上把海面垂直方向涨落称为潮汐,而海水在水平方向的流动称为潮流。是沿海地区的一种自然现象,古代称白天的潮汐为“潮”,晚上的称为“汐”,合称为“潮汐”。 目录[隐藏] 潮汐概述 定义与分类 形成原因 潮汐推算 咸潮 潮汐能 开发利用 世界名潮 潮汐概述 定义与分类 形成原因 潮汐推算 咸潮 潮汐能 开发利用 世界名潮 扩展

潮汐 拼音:cháo xī [编辑本段] 潮汐概述 凡是到过海边的人们,都会看到海水有一种周期性的涨落现象:到了一定时间,海水推波助澜,迅猛上涨,达到高潮;过后一些时间,上涨的海水又自行退去,留下一片沙滩,出现低潮。如此循环重复,永不停息。海水的这种运动现象就是潮汐。 随着人们对潮汐现象的不断观察,对潮汐现象的真正原因逐渐有了认识。我国古代余道安在他著的《海潮图序》一书中说:“潮之涨落,海非增减,盖月之所临,则之往从之”。哲学家王充在《论衡》中写道:“涛之起也,随月盛衰。”指出了潮汐跟月亮有关系。到了17世纪80年代,英国科学家牛顿发现了万有引力定律之后,提出了潮汐是由于月亮和太阳对海水的吸引力引起的假设,科学地解释了产生潮汐的原因。 潮汐是所有海洋现象中较先引起人们注意的海水运动现象,它与人类的关系非常密切。海港工程,航运交通,军事活动,渔、盐、水产业,近海环境研究与污染治理,都与潮汐现象密切相关。尤其是,永不休止的海面垂直涨落运动蕴藏着极为巨大的能量,这一能量的开发利用也引起人们的兴趣。 [编辑本段] 定义与分类 由于日、月引潮力的作用,使地球的岩石圈、水圈和大气圈中分别产生的周期性的运动和变化,总称潮汐。作为完整的潮汐科学,其研究对象应将地潮、海潮和气潮作为一个统一的整体,但由于海潮现象十分明显,且与人们的生活、经济活动、交通运输等关系密切,因而习惯上将潮汐(tide)一词狭义理解为海洋潮汐。固体地球在日、月引潮力作用下引起的弹性—塑性形变,称固体潮汐,简称固体潮或地潮; 海水在日、月引潮力作用下引起的海面周期性的升降、涨落与进退,称海洋潮汐,简称海潮; 大气各要素(如气压场、大气风场、地球磁场等)受引潮力的作用而产生的周期性变化(如8、12、24小时)称大气潮汐,简称气潮。 其中由太阳引起的大气潮汐称太阳潮,由月球引起的称太阴潮。 [编辑本段] 形成原因 月球引力和离心力的合力是引起海水涨落的引潮力。地潮、海潮和气潮的原动力都是日、月对地球各处引力不同而引起的,三者之间互有影响。因月球距地球比太阳近,月球与太阳引潮力之比为11:5,对海洋而言,太阴潮比太阳潮显著。大洋底部地壳的弹性—塑性潮汐形变,会引起相应的海潮,即对海潮来说,存在着地潮效应的影响;而海潮引起的海水质量的迁移,改变着地壳所承受的负载,使地壳发生可复的变曲。气潮在海潮之上,它作用于海面上引起其附加的振动,使海潮的变化更趋复杂。

温州沿海潮汐时间表

补充回答:

瓯江潮汐时间表----浙江温州 教大家一个公式,误差不会太大,当然,离瓯江口远点的会稍微晚一些:平潮时间=(农历-3)*0.8,如:农历初十的平潮时间大约是:7*0.8=5.6,即5点(与17时)36分左右,初三、十八中午(半夜)平潮。 瓯江潮汐时间表----浙江温州 教大家一个公式,误差不会太大,当然,离瓯江口远点的会稍微晚一些:平潮时间=(农历-3)*0.8,如:农历初十的平潮时间大约是:7*0.8=5.6,即5点(与17时)36分左右,初三、十八中午(半夜)平潮。

十六)即朔点时刻处太阳和月球在地球的一侧,所以就有了最大的引潮力,所以会引起“大潮”。在月相为上弦和下弦时,即农历的初八和二十三时,太阳引潮力和月球引潮力互相抵消了一部分所以就发生了“小潮”。故日照农谚中有“初一、十五涨大潮;初八、二十三,到处见海滩”和“初一十五明(天亮)了满,紧干慢干晌了天;初八二十三,一天两(早晚)个干”之说。由于月球每天在天球上东移13度多,合计为50分钟左右,即每天月亮上中天时刻(为1太阴日=24时50分)约推迟50分钟左右,(下中天也会发生潮水每天一般都有两次潮水)故每天涨潮的时刻也推迟50分钟左右。 日照潮汐表: 农历上半月,即初一至十五,上午是当天的日子×0.8;下午是当天的日子×0.8+24。假如今天是初九,那么上午涨潮的时间是9x0.8=7.2 。即是7时12分。下午涨潮的时间是9×0.8+24=晚7时36分。下半月只要将农历当天的日子减去15,再按照前面的公式计算就可以了。 由于月亮每天升起来的时间比前一天晚48分钟,所以潮汐的涨落每天也推迟48分钟。 日照沿海赶海拾贝的时间,大约落潮时间后两小时至涨潮时间后一个半小时。 例:初一十六赶海拾贝的时间是:白天9:00——14:42 夜间21:24——3:06(转载)

潮汐

潮汐 由于日、月引潮力的作用,使地球的岩石圈、水圈和大气圈中分别 产生的周期性的运动和变化的总称。固体地球在日、月引潮力作用 下引起的弹性—塑性形变,称固体潮汐,简称固体潮或地潮;海水 在日、月引潮力作用下引起的海面周期性的升降、涨落与进退,称 海洋潮汐,简称海潮;大气各要素(如气压场、大气风场、地球磁 场等)受引潮力的作用而产生的周期性变化(如8、12、24小时) 称大气潮汐,简称气潮。其中由太阳引起的大气潮汐称太阳潮,由 月球引起的称太阴潮。因月球距地球比太阳近,月球与太阳引潮力之比为11:5,对海洋而言,太阴潮比太阳潮显著。地潮、海潮和气潮的原动力都是日、月对地球各处引力不同而引起的,三者之间互有影响。大洋底部地壳的弹性—塑性潮汐形变,会引起相应的海潮,即对海潮来说,存在着地潮效应的影响;而海潮引起的海水质量的迁移,改变着地壳所承受的负载,使地壳发生可复的变曲。气潮在海潮之上,它作用于海面上引起其附加的振动,使海潮的变化更趋复杂。作为完整的潮汐科学,其研究对象应将地潮、海潮和气潮作为一个统一的整体,但由于海潮现象十分明显,且与人们的生活、经济活动、交通运输等关系密切,因而习惯上将潮汐一词狭义理解为海洋潮汐。 潮汐能是以位能形态出现的海洋能,是指海水潮涨和潮落形成的水的势能。海水涨落的潮汐现象是由地球和天体运动以及它们之间的相互作用而引起的。在海洋中,月球的引力使地球的向月面和背月面的水位升高。由于地球的旋转,这种水位的上升以周期为12小时25分和振幅小于1m的深海波浪形式由东向西传播。太阳引力的作用与此相似,但是作用力小些,其周期为12小时。当太阳、月球和地球在一条直线上时,就产生大潮;当它们成直角时,就产生小潮。除了半日周期潮和月周期潮的变化外,地球和月球的旋转运动还产生许多其他的周期性循环,其周期可以从几天到数年。同时地表的海水又受到地球运动离心力的作用,月球引力和离心力的合力正是引起海水涨落的引潮力。除月球、太阳外,其他天体对地球同样会产生引潮力。虽然太阳的质量比月球大得多,但太阳离地球的距离也比月球与地球之间的距离大得多,所以其引潮力还不到月球引潮力的一半。其他天体或因远离地球,或因质量太小所产生的引潮力微不足道。如果用万有引力计算,月球所产生的最大引潮力可使海水面升高0.563m,太阳引潮力的作用为O.246m,但实际的潮差却比上述计算值大得多。如我国杭州湾的最大潮差达8.93m,北美加拿大芬地湾最大潮差更达19.6m。这种实际与计算的差别目前尚无确切的解释。一般认为当海洋潮汐波冲击大陆架和海岸线时,通过上升、收聚和共振等运动,使潮差增大。潮汐能的能量与潮量和潮差成正比。或者说,与潮差的平方和水库的面积成正比。和水力发电相比,潮汐能的能量密度很低,相当于微水头发电的水平。世界上潮差的较大值约为13~15m,但一般说来,平均潮差在3m以上就有实际应用价值。 潮汐是因地而异的,不同的地区常有不同的潮汐系统,它们都是从深海潮波获取能量,但具有各自独特的特征。尽管潮汐很复杂,但对任何地方的潮汐都可以进行准确预报。海洋潮汐从地球的旋转中获得能量,并在吸收能量过程中使地球旋转减慢。但是这种地球旋转的减慢在人的一生中是几乎觉察不出来的,而且也并不会由于潮汐能的开发利用而加快。这种能量通过浅海区和海岸区的磨擦,以1.7TW的速率消散。只有出现大潮,能量集中时,并且在地理条件适于建造潮汐电站的地方,从潮汐中提取能量才有可能。虽然这样的场所并不是到处都有,但世界各国已选定了相当数量的适宜开发潮汐能的站址。据最新的估算,有开发潜力的潮汐能量每年约200TW·h。 全世界潮汐能的理论蕴藏量约为3 ×109kw。我国海岸线曲折,全长约1.8×104km,沿海还有6000多个大小岛屿,组成1.4×104km的海岸线,漫长的海岸蕴藏着十分丰富的潮汐能资源。我国潮汐能的理论蕴藏量达1.1×108kw,其中浙江、福建两省蕴藏量最大,约占全国的80.9%,但这都是理论估算值,实际可利用

相关文档
最新文档