氯碱工业,工业制硫酸

氯碱工业,工业制硫酸
氯碱工业,工业制硫酸

氯碱工业

氯碱工业:

1.离子交换膜法电解制碱的主要生产流程可以简单表示如下图所示:

电解法制碱的主要原料是饱和食盐水,由于粗盐水中含有泥沙,精制食盐水时经常进行以下措施 (1)过滤海水

(2)加入过量氢氧化钠,去除钙、镁离子,过滤 Ca 2++2OH -=Ca(OH)2(微溶) Mg 2++2OH -=Mg(OH)2↓

(3)加入过量氯化钡,去除硫酸根离子,过滤 Ba 2++SO 42-=BaSO 4↓

(4)加入过量碳酸钠,去除钙离子、过量钡离子,过滤 Ca 2++CO 32-=CaCO 3↓ Ba 2++CO 32-=BaCO 3↓

(5)加入适量盐酸,去除过量碳酸根离子 2H ++CO 32-=CO 2↑+H 2O (6)加热驱除二氧化碳

(7)送入离子交换塔,进一步去除钙、镁离子 (8)电解 2NaCl+2H 2O

H 2↑+Cl 2↑+2NaOH 离子交换膜法制碱技术,具有设备占地面积

小、能连续生产、生产能力大、产品质量高、能适应电流波动、能耗低、污染小等优点,是氯碱工业发展的方向。

2.以氯碱工业为基础的化工生产

NaOH、Cl

2和H

2

都是重要的化工生产原料,可以进一步加工成多种化工产品,广泛用于各

工业。所以氯碱工业及相关产品几乎涉及国民经济及人民生活的各个领域。

由电解槽流出的阴极液中含有30%的NaOH,称为液碱,液碱经蒸发、结晶可以得到固碱。阴极区的另一产物湿氢气经冷却、洗涤、压缩后被送往氢气贮柜。阳极区产物湿氯气经冷却、干燥、净化、压缩后可得到液氯。

2NaOH+Cl

2=NaCl+NaClO+H

2

O H2O+Cl

2

=HCl+HClO H

2

+Cl

2

=2HCl 2NaOH+CO

2

=Na

2

CO

3

(苏

打)+H

2O NaOH+CO

2

=NaHCO

3

(小苏打)

随着人们环境保护意识的增强,对以氯碱工业为基础的化工生产过程中所造成的污染及

其产品对环境造成的影响越来越重视。

工业制硫酸

工业制硫酸的方法:

(1)硫铁矿制酸硫铁矿在沸腾焙烧炉内通空气燃烧产生SO

2

气体,经余热锅炉回收热量后,依次通过旋风除尘和电除尘进行干法除尘。随后,炉气再通过洗涤、冷却、除雾等一系列的净化操作进入干燥塔。干燥后的炉气用主鼓风机压送至一转一吸或两转两吸制酸装置内制取硫酸。其反应如下:

(2)硫磺制酸反应时生成的热传递给进入接触室的需要预热的浓和气体并冷却反应后生

成的气体(即热交换过程)熔融硫磺在焚硫炉内用干燥空气燃烧产生SO

2

气体,经余热锅炉回收燃烧热后进入“一转一吸”或“两转两吸”制酸系统制取硫酸。其反应如下:

(3)冶炼烟气制酸主要利用有色金属铜、铅、锌、镍、钴等硫化矿在熔炼过程中产生的

SO

2

烟气进行制酸。

其工艺流程除焙烧系统随有色金属硫化矿的焙烧工艺不同而有异外,其制酸工艺与沸腾炉炉气制酸相同。

硫酸的生产流程:

(1)原料工段原料处理能力要满足生产周转,与硫酸生产能力相匹配,能够满足焙烧工艺的进料工况条件结合矿源及工程,应着重考虑如下问题原料的卸车及转运方式、矿库的贮存能力(库容)、干燥及含尘尾气处理、块矿的破碎及筛分等。原料工段设置应尽量少进行固体物料的交叉,流程越简单越好。

(2)焙烧流程焙烧流程一般为:焙烧炉—废热锅炉—旋风除尘器—电除尘器,也可以不设旋风除尘器。这种流程非常紧凑,但电除尘器需专门设计且操作管理要求较高。为了尽可能使工艺技术和设备制造立足国内,增加装置操作的可靠性,使用国内的电除尘器,则倾向于设置旋风除尘器。一般采用增湿输送的干法排渣,有刮板输送机—冷却滚筒(增湿)一带式输送机流程和冷却滚筒+冷却滚筒(增湿)—带式输送机两种流程,目前设计倾向于使用后一种流程。

(3)净化流程大型硫酸装置选择酸洗净化流程。国内大型装置空塔流程居多,即空塔(增湿塔)—填料冷却塔(稀酸板式换热器)一两级电除雾器。近十多年来我国投产的硫铁矿制酸酸洗净化流程绝大多数使用此流程,亦是比较容易掌握的流程。近年来冶炼烟气制酸选择动力波洗涤器代替空塔居多,国内有关专家认为,动力波洗涤器特别适用于烟气量波动比较大的情况,效果较好,但压降较大,对气量均衡稳定的硫铁矿制酸并无明显优势。

(4)干吸流程干吸流程有塔槽一体化流程、三塔一槽流程、三塔两槽流程和三塔三槽流程。塔槽一体化即干燥塔、一吸塔、二吸塔均不设外部泵槽,由各塔的底部分别存液,循环泵设于塔外的管道上,国内比较典型的为贵州瓮福2×400kt/a硫铁矿制酸装置。塔槽一体化省去了泵槽和很多的管线,使得工艺流程简单、设备布置紧凑,有一定的优越性,但在设计时要考虑泵的密封,特别是一吸循环泵。目前,国内设计多采用三塔两槽流程,又以干燥塔一个循环槽.两吸收塔共用一个循环槽居多。干吸塔普遍使用不锈钢槽管式分酸器及大规格填料,可大幅增加分酸点,降低填料高度,优化塔的操作状况,提高塔的操作效率,塔的顶部装设高效除雾器。

(5)转化流程转化工序基本采用两转两吸流程,国内“2+2”,“3+2”,“3+1”几种流程都有,但目前采用较多的是,“3+1”流程,配套换热流程有ⅢⅠ—ⅣⅡ和ⅣⅠ—ⅢⅡ等,设计选择较多的ⅢⅠ—ⅣⅡ根据系统热平衡计算,可以考虑设置热管省煤器。转化系统的流程和设计参数的选择,实际上是系统的优化问题,需与所用催化剂和所用设备情况综合考虑,应尽量提高一转化的转化率,使尾气排放更容易达到日益严格的环保要求。

(6)生产硫酸流程图

三酸两碱工业制法【仅供参考】

一.硫酸 1.制取二氧化硫(沸腾炉) 燃烧硫或高温处理黄铁矿,制取二氧化硫 S+O2═点燃═SO2 4FeS2+11O2═高温═8SO2+2Fe2O3 2.接触氧化为三氧化硫(接触室) 2SO2+O2═2SO3(用五氧化二钒做催化剂该反应为可逆反应) 3.用98.3%硫酸吸收 SO3+H2SO4═H2S2O7(焦硫酸) 4.加水(吸收塔) H2S2O7+H2O═2H2SO4 主要方程式4FeS2+11O2=2Fe2O3+8SO2 2SO2+O2=2SO3 SO3+H2O=H2SO4 环境污染so2的废气排放导致酸雨 注意事项:在接触氧化阶段,SO2在一定温度(400~500℃)和催化剂存在的条件下,被空气中的O2氧化为SO3。由于在常压下SO2转化为 SO3的转化率已经很高,而且催化剂要求较高的反应温度,所 以一般不采用高压、低温的反应条件。 在三氧化硫的吸收阶段,反应的本质是SO3与H2O化合生成 H2SO4。但由于用H2O吸收SO3会形成不利于吸收的酸雾, 所以工业上用98.3%的硫酸来吸收SO3,然后再稀释成所需浓 度的硫酸。 在制硫酸是,矿石需要粉碎:空气足量:沸腾炉出来的SO2需 经过除尘、洗涤、干燥等:接触式在工作过程中,利用热交换 器原理。 尾气处理:一般采用氨水吸收法。 二.硝酸 原理主要方程式 氨氧化法制硝酸,

工业制法原料:NH3 ,水,空气. 主要反应为:4NH3 + 5O2 =催化剂+强热= 4NO + 6H2O [氧化炉中];反应条件:800度高温,催化剂铂铑合金作用下) 2NO + O2 = 2NO2 [冷却器中]; 3NO2 + H2O = 2HNO3 + NO [吸收塔]; 4NO2 + O2 + 2H2O == 4HNO3 [吸收塔]。 三盐酸 原理主要方程 工业上生产盐酸的主要方法是使氯气跟氢气直接化合, 然后用水吸收生成的氯化氢气体。氯化氢是在合成塔里合成的。 H2+Cl2=2HCl(反应条件:点燃) 然后用水吸收 在合成塔内完成 环境污染 在氯气和氢气的反应过程中,有毒的氯气被过量的氢气所包围,使氯气得到充分反应,防止了对空气的污染。在生产上,往往采取使另一种原料过量的方法使有害的、价格较昂贵的原料充分反应 四纯碱制法 原理主要方程式 侯氏制碱法又名联合制碱法 (1)NH3+H2O+CO2=NH4HCO3 (2)NH4HCO3+NaCl=NH4Cl+NaHCO3↓ (3)2NaHCO3(加热)=Na2CO3+H2O+CO2↑ 即:①NaCl(饱和)+NH3+H2O+CO2=NH4Cl+NaHCO3↓ ②2NaHCO3(加热)=Na2CO3+H2O+CO2 五烧碱制法 原理主要方程式 (1)过滤海水 (2)加入过量氢氧化钠,去除钙、镁离子,过滤 Ca2++2OH-==== Ca(OH)2↓(Ca(OH)2微溶,可出现浑浊现象) Mg2++2OH-==== Mg(OH)2↓ (3)利用反渗透膜法生产技术出去盐水中的SO4 2- (4)加入过量碳酸钠,去除钙离子、过量钡离子,过滤 Ca2++ CO32-==== CaCO3↓ Ba2++ CO32-==== BaCO3↓ (5)加入适量盐酸,去除过量碳酸根离子 2H+ +CO32-==== CO2↑ + H2O

硫酸的工业制法

硫酸的工业制法 硫酸 硫酸盐 一、硫酸的工业制法——接触法 2、尾气的吸收,可用氨水吸收 2NH 3 + H 2O + SO 2 = (NH 4)2SO 3 NH 3 + H 2O + SO 2 = NH 4HSO 3 将生成物用稀硫酸处理后,可制得化肥(NH 4)2SO 4,并回收了SO 2。 3、生产简要流程 4、有关物质纯度、转化率、产率的计算 物质的纯度 不纯物中所含纯物质的质量 不纯物质的总质量 100% 5、多步递进反应的关系式计算法 遇有多步递进反应(即前一步反应的产物就是后一步反应的反应物)的计算时,可用关系式法一步求解。此种方法的关键,是根据各步反应的化学方程式,找出起始原料与最终产物之间的物质的量之比,列出相应的关系式,然后按常规方法求解。 二、浓硫酸的特性 硫酸的化学性质跟它的浓度有密切的关系。稀硫酸具有酸类的通性(H +的性质),而浓硫酸中存在大量未电离的硫酸分子,因而浓硫酸除具有酸类的通性外,还具有吸水性、脱水性和强氧化性等特性。 1、浓硫酸的吸水性。 浓硫酸具有吸收附着在物质表面或内部的湿存水和吸收结晶水的性能。其原因是硫酸分子极易与水分子化合成一系列稳定的水合物:H 2SO 4·nH 2O (n = 1,2,4,6,8)。同时放出大量的热。这些水合物很稳定。利用浓H 2SO 4的吸水性,可以做干燥剂。浓H 2SO 4能干燥

H 2、O 2、CO 等中性气体,也能干燥SO 2、Cl 2、CO 2、HCl 、HF 等酸性气体;但不能干燥NH 3等碱性气体,也不能干燥HBr 、HI 、H 2S 等有强还原性的气体。 2、浓硫酸的脱水性。 浓硫酸能把纸张、木材、蔗糖等有机物中的氢、氧元素,按水分子里的氢、氧原子个数比(2∶ 1)脱出,使其碳化。如: C 12H 22O 11 浓 H SO 24?→??? 12C + 11H 2O 蔗糖 3、浓硫酸的氧化性。 硫酸分子中S 6 +有较强的得电子能力,故浓硫酸有较强的氧化性,加热时其氧化性增强。 (1)与金属的反应:在加热的条件下,绝大部分金属(除Pt 、Au 外)能被浓H 2SO 4氧化到高价态,同时H 2SO 4被还原成SO 2(一般情况下),反应中没有氢气生成。 Cu + 2H 2SO 4 (浓) CuSO 4 + SO 2 ↑ + 2H 2O Hg + 2H 2SO 4 (浓) HgSO 4 + SO 2 ↑ + 2H 2O Zn + 2H 2SO 4 (浓) ZnSO 4 + SO 2 ↑ + 2H 2O (2)常温时浓H 2SO 4使铁、铝钝化。加热时铁、铝可与浓硫酸剧烈反应。 2Fe + 6H 2SO 4 (浓) Fe 2 (SO 4)3 + 3SO 2 ↑ + 6H 2O 2Al + 6H 2SO 4 (浓) Al 2(SO 4)3 + 3SO 2 ↑ + 6H 2O (3)与非金属的反应 C + 2H 2SO 4 ( 浓) 2SO 2 ↑ + CO 2 ↑+ 2H 2O S + 2H 2SO 4 (浓) 3SO 2 ↑ + 2H 2O 2P + 5H 2SO 4(浓) 2H 3PO 4 + 5SO 2 ↑ + 2H 2O (4)与具有还原性的化合物反应 H 2S + H 2SO 4 (浓) = S + SO 2 ↑ + 2H 2O 2HBr + H 2SO 4 (浓) = Br 2 ↑ + SO 2 ↑ + 2H 2O 8HI + H 2SO 4(浓) = 4I 2 + H 2S ↑ + 4H 2O 5、硫酸的性质与作用的联系。 (1)硫酸的酸性实际上就是硫酸中H +的性质 Zn + H 2SO 4 (稀) = ZnSO 4 + H 2 ↑ CuO + H 2SO 4 = CuSO 4 + H 2O 2NaOH + H 2SO 4 = Na 2SO 4 + H 2O (2)硫酸可与弱酸盐反应,表现出硫酸的强酸性。 FeS + H 2SO 4 (稀) = FeSO 4 + H 2S ↑

3.1硫酸工业制备

第一节接触法制硫酸 ●教学目标 1.了解接触法制硫酸的化学原理、原料、生产流程和典型设备。 2.通过二氧化硫接触氧化条件的讨论,复习巩固关于化学反应速率和化学平衡的知识,训练学生应用理论知识分析和解决问题的能力。 一、反应原理 1.S+O2===SO2 3.SO3+H2O===H2SO4 现阶段我国硫酸的生产原料以黄铁矿(主要成分为FeS2)为主,部分工厂用有色金属冶炼厂的烟气、矿产硫黄或从石油、天然气脱硫获得硫黄作原料。 4FeS2+11O2 高温 =====2Fe2O3+8SO2 如以石膏为原料的第一步反应就是:2CaSO4+C ? ====2CaO+2SO2↑+CO2 二、工业制硫酸的生产流程。 工业上制硫酸主要经过以下几个途径: 1、以黄铁矿为原料制取SO2的设备叫沸腾炉。 沸腾炉示意图 矿石粉碎成细小的矿粒,是为了增大与空气的接触面积,通入强大的空气流为使矿粒燃烧得更充分,从而提高原料的利用率。 [设问]黄铁矿经过充分燃烧,以燃烧炉里出来的气体叫做“炉气”。但这种炉气往往不能直接用于制取SO3,这是为什么呢? 这是因为炉气中常含有很多杂质,如N2,水蒸气,还有砷、硒的化合物及矿尘等。这些杂质有些是对生产不利的,如砷硒的化合物、矿尘能够使下一步氧化时的催化剂中毒,水蒸气对设备也有不良影响,因此炉气必须经过净化、干燥处理。

问题:1.N2对硫酸生产没有用处,为什么不除去? 2.工业生产上为什么要控制条件使SO2、O2处于上述比例呢? [答案]1.N2对硫酸的生产没有用处,但也没有不利之处,若要除去,势必会增加生产成本,从综合经济效益分析没有除去的必要。 2.这样的比例是增大反应物中廉价的氧气的浓度,而提高另一种反应物二氧化硫的转化率,从而有利于SO2的进一步氧化。 三、生产设备及工艺流程 2.接触室 根据化学反应原理,二氧化硫的氧化是在催化剂存在条件下进行的,目前工业生产上采用的是钒催化剂。二氧化硫同氧气在钒催化剂表面上与其接触时发生反应,所以,工业上将这种生产硫酸的方法叫做接触法制硫酸。 二氧化硫发生催化氧化的热化学方程式为: [提问]SO2的接触氧化在什么条件下反应可提高SO2的转化率? SO2的氧化为一可逆反应。根据勒夏特列原理,加压、降温有利于SO2转化率的提高。 实际生产中反应条件:常压下400℃~500℃。为什么?? 二氧化硫在接触室里是如何氧化成三氧化硫的呢? 经过净化、干燥的炉气,通过接触室中部的热交换器被预热到400℃~500℃,通过上层催化剂被第一次氧化,因为二氧化硫的催化氧化是放热反应,随着反应的进行,反应环境的温度会不断升高,这不利于三氧化硫的生成。接触室中部安装的热交换器正是把反应生成的热传递给接触室里需要预热的炉气,同时降低反应后生成气体的温度,使之通过下层催化剂被第二次氧化。这是提高可逆反应转化率的一种非常有效的方法。 3.吸收塔 二氧化硫在接触室里经过催化氧化后得到的气体含三氧化硫一般不超过10%,其余为N2、O2及少量二氧化硫气体。这时进入硫酸生产的第三阶段,即成酸阶段。其反应的热化学方程式为: SO3(g)+H2O(l)===H2SO4(l);ΔH=-130.3 kJ/mol 从反应原理上看,硫酸是由三氧化硫跟水化合制得的。事实上,工业上却是用98.3%的浓H2SO4来吸收SO3的,为什么要这样操作呢?

硫酸硫酸盐和硫酸的工业制法

硫酸 硫酸盐和硫酸的工业制法 一、硫酸的工业制法——接触法 22、尾气的吸收,可用氨水吸收 2NH 3 + H 2O + SO 2 = (NH 4)2SO 3 NH 3 + H 2O + SO 2 = NH 4HSO 3 将生成物用稀硫酸处理后,可制得化肥(NH 4)2SO 4,并回收了SO 2。 3、生产简要流程 4、有关物质纯度、转化率、产率的计算 物质的纯度 不纯物中所含纯物质的质量 不纯物质的总质量 ?100% 5、多步递进反应的关系式计算法 遇有多步递进反应(即前一步反应的产物就是后一步反应的反应物)的计算时,可用关系式法一步求解。此种方法的关键,是根据各步反应的化学方程式,找出起始原料与最终产物之间的物质的量之比,列出相应的关系式,然后按常规方法求解。 二、浓硫酸的特性 硫酸的化学性质跟它的浓度有密切的关系。稀硫酸具有酸类的通性(H +的性质),而浓硫酸中存在大量未电离的硫酸分子,因而浓硫酸除具有酸类的通性外,还具有吸水性、脱水性和强氧化性等特性。 1、浓硫酸的吸水性 浓硫酸具有吸收附着在物质表面或内部的湿存水和吸收结晶水的性能。其原因是硫酸分子极易与水分子化合成一系列稳定的水合物:H 2SO 4·nH 2O (n = 1,2,4,6,8)。同时放出大量的热。这些水合物很稳定。利用浓H 2SO 4的吸水性,可以做干燥剂。浓H 2SO 4能干燥H 2、O 2、CO 等中性气体,也能干燥SO 2、Cl 2、CO 2、HCl 、HF 等酸性气体;但不能干燥NH 3等碱性气体,也不能干燥HBr 、HI 、H 2S 等有强还原性的气体。 2、浓硫酸的脱水性 浓硫酸能把纸张、木材、蔗糖等有机物中的氢、氧元素,按水分子里的氢、氧原子个数比(2∶ 1)脱出,使其碳化。如: C 12H 22O 11 浓 H SO 24?→??? 12C + 11H 2O (蔗糖) 3、浓硫酸的氧化性 硫酸分子中S 6 +有较强的得电子能力,故浓硫酸有较强的氧化性,加热时其氧化性增强。 (1)与金属的反应:在加热的条件下,绝大部分金属(除Pt 、Au 外)能被浓H 2SO 4氧化到高价态,同时H 2SO 4被还原成SO 2(一般情况下),反应中没有氢气生成。

(完整word版)硫酸的工业制法—接触法

硫酸的工业制法—接触法 一、素质教育目标 (一)知识教学点 1.初步掌握接触法制硫酸的化学反应原理。 2.了解接触法制硫酸的生产过程及典型设备。 3.认识环境保护的重要性,了解防止环境污染的初步知识。 4.初步掌握多步反应的计算规律。 (二)能力训练点 1.培养学生自学能力、语言表达能力和总结归纳知识的能力。 2.培养学生化学计算的技能。 (三)德育渗透点 1.通过多媒体教学,培养学生学习工业化学的兴趣。 2.通过设置问题,激发学生探索新知识的欲望,培养学生的进取精神3.培养学生实事求是,具体问题具体分析的科学品质。 4.对学生进行环境保护的教育。、教学重点、难点、疑点及解决办法1.重点 (1)接触法制硫酸的化学反应原理。 (2)多步反应的计算方法。 2.难点工业生产中的多步化学反应计算。 3 ?疑点

(1)吸收SO3为什么不用水,而用98.3%的浓硫酸? (2)在工业生产中为什么可将中间产物的损失率看成是原料的损失率呢? 4 ?解决办法 (1)重点的解决办法 在接触法制硫酸的化学反应原理中,重点之重点是制取二氧化硫的反应原 理: 4Fe$+ 11O^^-2Fe2O3+ 8SO2 ①强调“FeS的名称及色态 ②指出FeS^中硫的化合价为-1价。 ③从氧化还原角度全面分析上述反应 (谁被氧、被还原?谁是氧化剂、还原剂?谁是氧化产物,还原产物?标出电子转移方向及总数)。 (2)难点的解决办法 ①搞清计算中涉及到的转化率、利用率、产率、损失率、纯度等概念并正确处理它们之间的关系。 ②根据元素的守恒原则或多步反应的化学方程式,推导出起始原料与最终产物之间的定量关系式。 (3)疑点的解决办法 ①计算机模拟工业生产中分别用98.3%的浓硫酸和水来吸收SO3的不同情景,形象、具体地说明了用水做吸收剂时,易形成酸雾,减慢吸收速度,不利于SO3的吸收,所以工业上是采用98.3%的浓硫酸来吸收SO3的。 ②通过分步计算,推导验证中间产物的损失率=原料的损失率。 三、课时安排 2 课时

工业制硫酸

工业制硫酸 1.原料:主要有硫铁矿、(或者硫磺)、空气、有色金属冶炼的烟气、石膏等。 2.生产流程 (1)SO 2的制取 (设备:沸腾炉) ①原料为硫黄:S +O 2 =====点燃SO 2, ②原料为硫铁矿:4FeS +11O 2=====高温 8SO 2+2Fe 2O 3。 (2)SO 2的催化氧化 (设备:接触室): 2SO 2+O 22SO 3 (3)SO 3的吸收 (设备:吸收塔): SO 3+H 2O===H 2SO 4。注意:工业上用98%的浓硫酸吸收SO 3 ,这样可避免形成酸雾并提高吸收效率。 3.三废的利用 (1)尾气吸收 废气中的SO 2用氨水吸收,生成的(NH 4)2SO 4作化肥,SO 2循环使用。 SO 2+2NH 3+H 2O===(NH 4)2SO 3或SO 2+NH 3+H 2O===NH 4HSO 3 (NH 4)2SO 3+H 2SO 4===(NH 4)2SO 4+SO 2↑+H 2O 或2NH 4HSO 3+H 2SO 4===(NH 4)2SO 4+2SO 2↑+2H 2O (2)污水处理 废水可用Ca(OH)2中和,发生反应为SO 2+Ca(OH)2===CaSO 3↓+H 2O 。 (3)废渣的处理 作水泥或用于建筑材料;回收有色金属等综合利用。 4.反应条件: 2SO 2+O 22SO 3 放热 可逆反应(低温、高压会提升转化率) 转化率、控制条件的成本、实际可能性。 即选:400℃~500℃,常压,五氧化二钒 (V 2O 5 )作催化剂。 5.以黄铁矿为原料生产硫酸的工艺流程图如下: 人工固氮技术——合成氨 1.反应原理 N 2+3H 22NH 3 ΔH <0 反应特点:(1)该反应为可逆反应。(2)正反应为气体体积减小的反应。(3)正反应为放热反应。 2.条件的选择 结合反应的三个特点及实际生产中的动力,材料设备,成本等因素,得出合成氨的适宜条件是:(1)压强:20MPa ~50MPa ; (2)温度:500℃ ; (3)催化剂:铁触媒 ;(4)循环操作:反应混合气通过冷凝器,使氨液化并分离出来,N 2、H 2再通过循环压缩机送入合成塔。 3.生产流程 (1)造气 ①N 2:可用分离液态空气获得。 催化剂 催化剂 催化剂 高温高压

工业制备硫酸方法的演变

工业制备硫酸方法的演变 一、铅室法(1764---1900) 1、铅室法的基本原理是利用高级氮氧化物(主要是三氧化二氮)使二氧化硫氧化并生成硫酸:SO2+N2O3+H2O—→H2SO4+2NO 生成的一氧化氮又迅速氧化成高级氮氧化物:2NO+O2—→2NO2 NO+NO2—→N2O3 因此,在理论上,氮氧化物 仅起着传递氧的作用,本身并无 消耗。 2、衰败的原因 用铅室法制得的硫酸浓度 低而且往往含有很多杂质,用途 受到限制,这也是铅室法被淘汰 的重要因素(见硫酸工业发展 史)。 二、接触法制硫酸(1831---2011,现在很少用了) 1、接触法制硫酸的原料是黄铁矿。废气的吸收用到了生石灰。 2、接触法制硫酸可以分成三个阶段:造气、接触氧化、三氧化硫的吸收。 造气所用的设备是沸腾炉,进入燃烧炉的应该是硫磺或者是经过粉碎的黄铁矿和空气,反应方程为 S(s)+O2 (g)==点燃==SO2(g) ΔH= -297kJ/mol FeS2(s)+11/4 O2(g)==高温==1/2 Fe2O3(g)+2SO2(g) ΔH=-853kJ/mol 从燃烧炉出来的气体叫做炉气.除去杂质和矿尘的目的是防止催化剂中毒,进行干燥的原因是防止水蒸气与二氧化硫形成酸对设备的腐蚀和在接触室里对催化氧化的不良影响。 净化、干燥的炉气进入接触室与催化剂接触发生反应,反应方程式为 SO2(g)+1/2O2(g) ==催化剂== SO3(g);ΔH=98.3kJ/mol (反应条件为400摄氏度到500摄氏度,五氧化二钒做催化剂.) 3、吸收三氧化硫是在吸收塔中进行的,踏中堆有瓷环.一般用98.3%硫酸吸收三氧化硫,形成硫酸,然后在稀释成所需浓度的硫酸。

工业制硫酸

目录 一.硫酸简介................................................................................................. - 1 - 1.1 硫酸的应用 ....................................................................................... - 1 - 1.2 硫酸的发展过程................................................................................. - 1 - 1.2.1 早期的硫酸生产 ........................................................................ - 1 - 1.2.2硝化法的兴衰............................................................................ - 2 - 1.2.3 接触法 .................................................................................... - 2 - 1.2.4 近现代发展.............................................................................. - 3 - 1.2.5硫酸工业简史............................................................................ - 3 - 1.2.6 中国硫酸工业的发展................................................................. - 4 -二.硫酸的工业制备 ....................................................................................... - 4 - 2.1 接触法制硫酸..................................................................................... - 4 - 2.2 SO2气体的制取 .................................................................................. - 7 - 2.4 SO3的吸收转化工序.......................................................................... - 8 - 2.5废渣及废气处理................................................................................ - 10 - 2.5.1硫酸渣.................................................................................... - 10 - 2.5.2硫酸渣处理 ............................................................................. - 11 - 2.5.3尾气中的二氧化硫回收............................................................. - 16 -

工业制硫酸

●备课资料 一、接触法制硫酸的五个“三” 1.三阶段:利用的原料为黄铁矿(FeS2)和空气,反应中其分三个阶段,二氧化硫的制取、二氧化硫氧化成三氧化硫、三氧化硫的吸收和硫酸的生成。 2.三原理:(三方程): ①4FeS2+11O2 高温 2Fe2O3+8SO2 ③SO3+H2O===H2SO4 3.三设备: 结合三个阶段,有三种设备:沸腾炉(为使硫铁矿充分和迅速地燃烧,把硫铁矿粉碎成细小的矿粒后,放在特制的炉子里燃烧。当燃烧的时候,从炉底通入强大的空气流,把矿粒吹得在炉内一定空间里剧烈沸腾,好像“沸腾的液体”一样,因此,此种炉子称沸腾炉);接触室(把生成的SO2和O2混合气体加热到一定温度400~500℃,通入装有催化剂的接触室,因为催化剂又称触媒,所以该设备称接触室);吸收塔(通过接触室出来的SO3直接送入吸收塔,以便形成硫酸。SO3和H2O直接化合制得硫酸,但在吸收塔里不是直接用水来吸收SO3,因为用水作吸收剂时,容易形成酸雾并放出大量的热,吸收速度慢,不利于吸收SO3。在吸收塔中,是用98.3%的浓硫酸来吸收SO3的)。 4.三原理 热交换原理(把在反应中放出的热量传递给原料,使之预热,主要在接触室中体现);逆流生产原理(反应物固体从上往下运动、气体从下往上运动,逆向进料,充分反应);连续生产原理(自开工之日起到炉子报废止不得停工,连续生产)。 5.三净化 除去炉气中含有的水及砷、硒的化合物、矿尘等。净化时通过三种装置:除尘室、洗涤塔、干燥塔。 二、生产硫酸的原料 生产硫酸所用原料主要有:硫、硫铁矿、硫酸盐和含硫工业废物。 硫硫是生产硫酸所用的主要原料之一。用硫作原料时由于杂质少,所以生产比较简单,基建费、操作费比用其他原料要低得多。在资本主义国家以硫为原料的硫酸产量已超过60%(美国占82%)。以日本为例,从1971年才开始用硫作原料,至1977年,以硫为原料的硫酸产量已达16%以上。我国过去很少用硫作原料,1957年仅1.8%,1982年达到16%。近年来,由于硫铁矿的大量开采和采用冶金废气,从国外进口的硫已逐年减少,1986年仅占4%。 硫铁矿硫铁矿也是生产硫酸所用的主要原料。我国、西德、苏联都用它作主要原料。在我国用硫铁矿生产的硫酸约占总产量的70%。硫铁矿有三种:普通硫铁矿、浮选硫铁矿和含煤硫铁矿。普通硫铁矿呈金黄色,有金属光泽,含硫25~52%,铁35~44%。其余是杂质如铜、锌、铅、砷、镍、钴、碲等的硫化物,钙、镁的硫酸盐、碳酸盐以及石英等。生产硫酸用的硫铁矿含硫一般不少于30%。广东云浮硫铁矿是我国最大的矿山,硫铁矿含硫约37%。浮选硫铁矿是浮选铜或锌的硫化物矿所选出的废物,所以又称尾砂,其含硫量一般为30~40%。含煤硫铁矿是采煤或选煤时得到的废物,一般含硫35~40%,含碳10~20%。 为了提高使用硫铁矿的经济效益,许多国家都在矿山进行选矿,使矿石含硫量达到50%。

相关文档
最新文档