质粒抽提的原理和方法

质粒抽提的原理和方法
质粒抽提的原理和方法

质粒抽提

所有的质粒抽提方法首先都要考虑如下几点:如何去除RNA,如何将质粒与细菌基因组DNA分开,如何去除蛋白质及其它杂质。

【如何去除RNA】

去除RNA 相对比较简单,首先是使用RNase 消化(抽提中或者抽提后)。经过RNase 消化后,RNA 变得比较小了,其残留对酶切反应几乎没有影响。如果要彻底去除残留得RNA,则需要更烦琐的操作。

【如何将质粒与细菌基因组DNA 分开】

基本上是采用两种办法:一是利用酶/弱去污剂部分裂解细菌,在抽提时只让质粒从细菌中释放出来,而不让基因组DNA 从细菌中出来,从而将质粒和基因组DNA 分开;二是利用NaOH/SDS 完全裂解细菌,让质粒和细菌基因组DNA 都从细菌中出来,再利用质粒和基因组DNA 在变性/复性过程中的不同表现,将质粒与基因组DNA 分开。

【去除蛋白质及其它杂质】

基本上是与去除细菌基因组同时实现的。但是,依据不同的细菌,不同的培养条件,以及操作时的精细程度等,杂质的残留量会不同。所以,通常需要使用苯酚做更进一步的纯化。

经过上面的处理,沉淀下来的质粒基本上可以用于酶切了。如果要用于更高级的实验,如转染,则需要做进一步的纯化,如CsCl 超离心。

【实验前方法/试剂的选择】

首选方法是碱裂解法。如果有问题,或者是大质粒(>15 kb),则用温和的方法SDS 裂解法。详细情况见“分子克隆”。试剂盒几乎都使用碱裂解法,所以都有一个通病,抽提大质粒时效果不好。

【关于碱裂解法】

质粒抽提最常用的方法是碱裂解法,它具有得率高,适用面广,快速,纯度高等特点。关于碱裂解法的原理,复旦大学生化与分子生物学实验室的网站有一篇专论,大家可以去看一下。这是一篇美文,非常有趣。文中提到了一个与几乎所有能查到的资料不同的观点,也是非常有启发的。

当然,碱裂解法也有缺陷:容易导致不可逆的变性;不适合大质粒的抽提。碱裂解法是很剧烈的方法,质粒在碱性条件下会变性,时间一长,这种变性就成为不可逆的了(电泳时在超螺旋前面一点点,如果有一条带,就是此变性的质粒。)。所以,要降低不可逆的变性,就要控制好碱裂解的时间。(似乎可以做这么一个推理:在碱性条件下,质粒的两条链从一点或者几个点开始分开,随着时间的延长,直到完全分开。理论上讲,完全分开的两条链要很快地配对复性,成功率肯定不可能是100%的,而没有完全分开的两条链却完全可能100% 配对复性。) 碱裂解法不适合大质粒的抽提,原因也是因为该方法太剧烈,使超螺旋比例较低。文献推荐的抽提大质粒的方法是温和得多的方法,缺点是得率要低一些。现在得问题是,大质粒的拷贝数本来就低,如果抽提方法得率再不高的话,抽提起来就很费力了。

如果注意到在碱裂解法中,超螺旋比例随着碱裂解时间的延长而降低,随着粘稠度的增加而减低这个现象,完全可以使用碱裂解法来抽提大质粒的:增加试剂的使用量,使加入NaOH/SDS 液后,溶液在 1 分钟内就能变得很清澈;立即加入中和试剂。这个实验我们没有做过,但QIAGEN 抽提大质粒用的就是碱裂解法。

【质粒抽提的8 大窍门】

1:摇菌时间- 过夜培养是一个普遍接受的概念,而且适合大部分情况。如果出现了问题,调整培养时间会有帮助:Nick 多,则增加培养时间;酶切出现问题,则减少培养时间。

2:起始菌体量- 大家习惯说“从多少ml 菌液中抽提质粒”,但一定要养成每次都观察菌体量的习惯,因为质粒毕竟是在菌体中,而且,抽提质粒所用的试剂量,都只与菌体量有关。

3:菌体的彻底悬浮- 如果没有彻底悬浮菌体,则残留的菌体团块在溶液II 加入后,变成一个外围几乎彻底裂解,往里不完全裂解,中间没有裂解的团块。这个团块在溶液III 加入后,会有一部分蛋白质继续存在于溶液中,成为蛋白质残留的最大根源。

4:使用相对过量的试剂- 这是适合所有核酸抽提的建议。试剂相对过量的好处是:稳定性好,纯度高,操作更简单。如果认为这样不经济,就少用一点菌体。

5:裂解时间- 加入溶液II 后,混匀,体系最好能立即变得清澈。体系如果变得清澈了,马上加入溶液III 中和。如果体系不马上变清澈,下次少用一点菌液,或者多用一点溶液。如今的质粒设计得越来越复杂了,奇怪的现象也越来越多,而所有的奇怪现象,多与裂解时间有关。

6:中和的操作- 在 1.5ml 离心管中加入溶液III 后,先颠倒两次,使管底朝上,用指头弹击管底数次,再颠倒混匀。效果非常好。

7:中和后的离心去蛋白- 一定要将蛋白质彻底离心下去。如果发现离心后仍然有蛋白质漂浮在液面,继续离心的效果并不好;而将上清倒入另外一个离心管中,再离心,效果要好许多。

【降低RNA 残留的方法】

RNA 的去除,首先是使用RNase 消化。在溶液I 中加入高浓度的RNase A (100ug/ml),或者用含25ug RNase A/ml TE 溶解抽提好的质粒,都可以降低RNA 残留,但都不能彻底去除。幸运的是,RNA 的残留并不影响酶切等最常用的用途。如果想彻底去除RNA 残留,可以用试剂盒,或者使用对 4 个碱基都作用的RNase。

【降低gDNA 残留的方法】

gDNA 的残留问题,必须在抽提过程中解决,否则,就只能用胶回收方法处理了。gDNA 越大,越难于复性,也就越容易被去除;所以,一定要尽可能不打断gDNA。裂解体系越粘稠,gDNA 越容易被扯断;操作手法越重,gDNA 也越容易被打断。温和操作,使用相对过剩的试剂,是降低gDNA 残留的最好方法。

【降低蛋白质残留的方法】

蛋白质的去除,主要是靠不溶解的K-SDS-蛋白质复合物的形成。虽然将中和后的体系置于4C 一段时间,可以形成更多的该不溶复合物,从而使蛋白质残留更少,但实践证明这样做并不是必须的,除非是大量抽提。只要加入溶液I 后的悬浮,加入溶液II 后的裂解及加入溶液III 后的中和是均匀彻底的,蛋白质的残留就应该在可以满足实验要求的水平;而只有溶液的用量足够,甚至过剩,才能确保裂解和中和是彻底的。当然,试剂盒及苯酚的使用,是可以更进一步降低蛋白质的残留的。

【降低质粒Nick 的方法】

细菌收获时间,菌株的选择,抽提操作的剧烈程度是影响Nick 的三个主要因素。细菌收获过早,质粒还在复制过程中,Nick 的比例较高;过晚,细菌开始死亡,杂质会比较多。如果使用胞内酶含量很高的宿主菌,会出现较高比例的Nick。加入溶液II 及加入溶液III 的混匀操作,也可以导致一些Nick,但影响不会比前两者大。

【降低变性超螺旋的方法】

理论上,用碱裂解法抽提质粒,变性超螺旋的出现是不可避免的。之所以大家没有非常在意,一是因为它的存在似乎对酶反应没有任何影响,二是因为它的含量并不一定高到被用电泳观察到。抽提使用相对过剩的溶液,在加入溶液II 后,体系能在 1 分钟内变澄清,再快速加入溶液III,这样基本上能将变性超螺旋的出现控制在电泳看不见的水平。(变性超螺旋电泳时比正常超螺旋跑得快一点点。) 【关于质粒多聚体】

QIAGEN 提供了一个没有进一步解释的观察:从有些宿主菌中抽提质粒(pT Z19),电泳能发现很多条带;但使用单酶切后,仍然变成一条带,大小正好是线性单质粒的大小。根据这一观察,可以推理如下:那些大的条带(质粒多聚体)是由完整的单质粒“粘”在一起形成的,而不是我的一条链与你的一条链复性在一起;第二,这种“粘”只是部分的,否则酶切会有问题;第三,这种“粘”是脆弱的,线性后的刚性足以打破它。如果是这样,质粒多聚体的出现与质粒的结构及序列有关,可以不管它(也管不了),因为它不影响酶切,或者说,即使质粒多聚体切不动,也不会影响太大。总之,碰到这种情况,不要简单地认为有问题,而是应该一步一步往下做,但一定要做完一步,检测一次,看一看结果与预期的吻合程度。

【提高得率的方法】

利用氯霉素抑制染色体的复制,而不抑制质粒的复制这一特点,在低拷贝质粒的培养过程中添加氯霉素可以大大提高得率。

从质粒抽提谈起

--------复旦大学生化与分子生物学实验室

碱裂解法从大肠杆菌制备质粒,是从事分子生物学研究的实验室每天都要用的常规技术。可是我收研究生十几年了,几乎毫无例外的是我那些给人感觉什么都知道的优秀

学生却对碱法质粒抽提的原理知之甚少。追其原因,我想大概是因为《分子克隆》里面只讲实验操作步骤,而没有对原理进行详细的论述。这是导致我的学生误入歧途的主要原因。后来我发现其实是整个中国的相关领域的研究生水平都差不多,甚至有很多“老师”也是这个状态。这就不得不让人感到悲哀了。我想这恐怕和我们的文化有点关系。中国人崇尚读书,“学而优则仕”的观念深入人心。经常听到的是父母对他们的独苗说,你只要专心读好书就可以了。所以这读书的定义就是将教课书上的东西记住,考试的时候能拿高分……这就是现代科学没有在中国萌发的根本原因。如果中国文化在这一点上不发生变化,那么科学是不能在中国真正扎根的,它只能蜕化成新的“八股学”。生命科学是实验科学,它讲究动手。如果实验科学只要看看书就可以了,那我想问有哪位神仙看看书就会骑自行车了?或者听听体育老师的讲解就会滑冰了?可是光动手不思考,不就成了一个工匠?一个合格的生命科学研究者,需要在这两方面完善自己。一个杰出的科学工作者,是一个熟知科学原理并善于应用的“艺术家”。每个曾经用碱法抽提过质粒的同学,希望你看本文后能有所思考,让中国的未来有希望。

为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:

溶液I:50 mM葡萄糖/ 25 mM Tris-Cl / 10 mM EDTA,pH 8.0;

溶液II,0.2 N NaOH / 1% SDS;

溶液III,3 M 醋酸钾/ 2 M 醋酸。

让我们先来看看溶液I的作用。任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液,是再自然不过的了。那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I中葡萄糖是可缺的。那么EDTA呢?大家知道EDTA 是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。

轮到溶液II了。这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4 N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS 当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。很多人对NaOH 的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA也会断裂。基因组DNA 的断裂会带来麻烦,后面我再详细说明。

每个人都知道,溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本

质。最容易产生的误解是,当SDS碰到酸性后发生的沉淀。如果你这样怀疑,往1%的SDS溶液中加如2 M的醋酸溶液看看就知道不是这么回事了。大量沉淀的出现,显然与SDS的加入有关系。如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的纳离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。这个过程不难想象,因为基因组DNA太长了,长长的DNA 自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。那么2 M的醋酸又是为什么而加的呢?是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和之。基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被PDS 共沉淀了。所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入,琼脂糖电泳可以观察到一条浓浓的总DNA条。很多人误认为是溶液III加入后基因组DNA无法快速复性就被沉淀了,这是天大的误会,因为变性的也好复性的也好,DNA分子在中性溶液中都是溶解的。NaOH本来是为了溶解细胞而用的,DNA分子的变性其实是个副产物,与它是不是沉淀下来其实没有关系。溶液III 加入并混合均匀后在冰上放置,目的是为了PDS沉淀更充分一点。不要以为PDS沉淀的形成就能将所有的蛋白质沉淀了,其实还有很多蛋白质不能被沉淀,因此要用酚/氯仿/异戊醇进行抽提,然后进行酒精沉淀才能得到质量稳定的质粒DNA,不然时间一长就会因为混入的DNase而发生降解。这里用25/24/1的酚/氯仿/异戊醇是有很多道理的,这里做个全面的介绍。酚(Phenol)对蛋白质的变性作用远大于氯仿,按道理应该用酚来最大程度将蛋白质抽提掉,但是水饱和酚的比重略比水重,碰到高浓度的盐溶液(比如4M的异硫氰酸胍),离心后酚相会跑到上层,不利于含质粒的水相的回收;但加入氯仿后可以增加比重,使得酚/氯仿始终在下层,方便水相的回收;还有一点,酚与水有很大的互溶性,如果单独用酚抽提后会有大量的酚溶解到水相中,而酚会抑制很多酶反应(比如限制性酶切反应),应此如果单独用酚抽提后一定要用氯仿抽提一次将水相中的酚去除,而用酚/氯仿的混合液进行抽提,跑到水相中的酚则少得多,微量的酚在乙醇沉淀时就会被除干净而不必担心酶切等反应不能正常进行。至于异戊醇的添加,其作用主要是为了让离心后上下层的界面更加清晰,也方便了水相的回收。回收后的水相含有足够多的盐,因此只要加入2倍体积的乙醇,在室温放置几分钟后离心就可以将质粒DNA沉淀出来。这时候如果放到-20℃,时间一长反而会导致大量盐的沉淀,这点不同于普通的DNA酒精沉淀回收,所以不要过分小心了。高浓度的盐会水合大量的水分子,因此DNA分子之间就容易形成氢键而发生沉淀。如果感觉发生了盐的沉淀,就用70%的乙醇多洗几次,每次在室温放置一个小时以上,并用tip将沉淀打碎,就能得到好的样品。得到的质粒样品一般用含RNase(50 ug/ml)的TE缓冲液进行溶解,不然大量未降解的RNA会干扰电泳结果的。琼脂糖电泳进行鉴定质粒DNA时,多数情况下你能看到三条带,但千万不要认为你看到的是超螺旋、线性和开环这三条带。碱法抽提得到质粒样品中不含线性DNA,不信的话你用EcoRI来线性化质粒后再进行琼脂糖电泳,就会看到线性质粒DNA的位置与这三条带的位置不一样。其实这三条带以电泳速度的快慢而

排序,分别是超螺旋、开环和复制中间体(即没有复制完全的两个质粒连在了一起)。如果你不小心在溶液II加入后过度振荡,会有第四条带,这条带泳动得较慢,远离这三条带,是20-100 kb的大肠杆菌基因组DNA的片断。非常偶然的是,有时候抽提到的质粒会有7-10条带,这是由于特殊的DNA序列导致了不同程度的超螺旋(超螺旋的圈数不同)所致。这里暂不深究。

实验一 碱法提取质粒DNA

实验一碱法提取质粒DNA 一、目的 掌握微量移液器、高速离心机等的正确使用 掌握碱法提取质粒DNA的原理和方法。 二、原理 从细菌中分离质粒DNA的方法都包括3个基本步骤:培养细菌使质粒扩增;收集和裂解细胞;分离和纯化质粒DNA。从大肠杆菌中抽提质粒DNA的方法很多,可以在实验中根据不同的需要采用不同的方法,碱变性法因其抽提效果好,收得率高,获得的DNA可用于酶切、连接与转化,因而被各实验室广泛采用。碱变性法抽提质粒DNA的基本原理是根据染色体DNA和质粒DNA分子量的巨大差异而达到分离的。首先用含一定浓度葡萄糖的缓冲液(溶液Ⅰ)悬浮菌体,再加入溶液II(NaOH、SDS)后,碱性环境下菌体的细胞壁裂解,而使质粒缓慢释放出来,并且碱性条件使DNA的氢键断裂,宿主染色体双螺旋结构解开而变性,而闭合环状的质粒DNA的两条链不会完全分离,当加入溶液III中和后,宿主染色体DNA相对分子质量大,还没来得及复性,就在冰冷的条件下与SDS、蛋白质、高分子量的RNA等缠绕在一起而沉淀下来,而质粒DNA由于能够迅速配对恢复原来的构型而溶解在上清液中。然后用酚、氯仿多次抽提进一步纯化质粒DNA 。氯仿可使蛋白变性并有助于液相与有机相的分开,异戊醇则可起消除抽提过程中出现的泡沫。再用两倍体积的无水乙醇洗涤沉淀,以去除残留的氯仿。最后用75%乙醇溶液洗涤沉淀,以去除残留的盐离子。最后获得的质粒DNA储存在TE溶液中,-20℃保存。用于下一步凝胶电泳鉴定。 三、仪器设备、材料与试剂 仪器设备 恒温培养箱恒温摇床台式离心机高压灭菌锅制冰机电子天平pH计 量筒(10 mL,100 mL,500 mL,1 000 mL)烧杯(50 mL,100 mL,500 mL,1 000 mL)一次性手套无粉乳胶手套(光明牌,大、中、小三种号码) 玻璃棒称量勺微量移液器(1 000 μL,200 μL,20 μL)酒精灯灭菌的1.5 mL 离心管(eppendorf管)灭菌吸头(1 000 μL,200 μL),相应的吸头盒吸水纸

质粒DNA的提取及检测实验报告

题目:质粒DNA的提取及检测 一.实验目的: 1.学习碱裂解法提取质粒的原理和方法; 2.学习DNA琼脂糖凝胶电泳的原理和方法。 二.实验原理 1. 质粒 (Plasmid): 一种染色体外的稳定遗传因子,大小从1-200kb不等,为双链、闭环的DNA分子,并以超螺旋状态存在于宿主细胞中。主要发现于细菌、放线菌和真菌细胞中,常常编码一些对宿主有利的酶的基因,这些基因的表型包括抗生素抗性,产生抗生素、限制酶、修饰酶等。 2.载体(Vector): 要把一个有用的外源基因通过基因工程手段,转化到细胞中去进行繁殖和表达,需要运载工具,携带外源基因进入受体细胞的这种工具就叫载体。目前除了大肠杆菌中的质粒、λ噬菌体、M13噬菌体、噬菌粒外,还有酵母人工染色体载体以及动、植物病毒载体等。 3.分离质粒DNA: (1)培养细菌使质粒扩增; (2)收集和碱裂解细菌; (3)分离和纯化质粒DNA。 4.碱裂解法 (1)溶液Ⅰ:50mmol/L葡萄糖,10mmol/EDTA-Na,25mmol/LTris-HCl 作用:分散细胞,螯合金属离子使酶失活,防止DNA的降解

(2)溶液Ⅱ:L NaOH,2% SDS,临用前1:1配制 作用:细胞在NaOH和SDS溶液中裂解时,蛋白质与染色体DNA发生变性 (3)溶液Ⅲ:5mol/L 醋酸钾60ml,冰醋酸,双蒸水 作用:酸性条件上质粒DNA复性,留在上清液。大肠杆菌DNA和蛋白质-SDS复合物等发生沉淀。 5.电泳 带电荷的物质,在电场中的趋向运动称为电泳。DNA的琼脂糖凝胶电泳可以分离长度为200bp至近50kb的DNA分子。DNA的迁移率(U)的对数与凝胶浓度(T)之间存在反平行线 性关系。因此,要有效地分离不同大小的DNA片段,选用适当的琼脂糖凝胶浓度是非常重要的。 6.提取质粒 在质粒提取的过程中,由于操作原因,提取的质粒可能有三种:线性DNA、开环DNA 、 闭环超螺旋DNA 。当提取的质粒DNA电泳时,同一质粒 DNA泳动速度:闭环超螺旋〉线状〉 开环。但有时也有也会出现相反情况,因为与琼脂糖浓度、电流强度、离子强度及核酸染料 含量有关。 三.实验材料及设备 1.实验材料: (1)含质粒pUC18大肠杆菌,塑料离心管,EP管架,微量取液器和取液器吸头,常用玻璃器皿(如三角瓶、量筒、试剂瓶等); (2)提取的pUC18,琼脂糖,锥形瓶,一次性手套,胶铲,封口膜,剪刀,取液器吸头。实验设备:

质粒DNA的提取及其琼脂糖凝胶电泳实验报告及思考题

1.实验目的: (1)通过本次实验学习和掌握碱裂解法提取质粒; (2)通过本次实验学习琼脂糖凝胶电泳检测DNA的方法和技术; 2.实验材料及用品 (1)实验仪器(apparatus): 恒温培养箱(Constant temperature incubator)、恒温摇床(Constant temperature shaking table)、高速离心机(High speed centrifuge)、漩涡振荡器(V ortex mixer)、超净工作台(Bechtop)、高压灭菌锅(Autoclave)、微量加样器(Pipettes)、烧杯(beaker)、量筒(graduated cylinder)、玻璃棒(stir bar)、微波炉(microwave)、天平(Pan balance)、电泳梳子(comb)、电泳槽(electrophoresis tank)、电泳器(Electro-phoresis System)、紫外灯(Ultraviolet transilluminator ) 3)、材料与试剂(Reagents): ①溶液I(Solution Ⅰ): 50mmol/L 葡萄糖;25mmol/L 三羟基甲基氨基甲烷(Tris)Tris-HCl(pH8.0);10mmol/L 乙二胺四乙酸(EDTA)pH8.0 溶液I可成批配制,每瓶约100ml,10磅高压蒸气灭菌15分钟,贮存于4℃。 ②溶液Ⅱ(Solution Ⅱ):新鲜配制,等体积混合 0.2mol/L NaOH(临用前用10mol/L贮存液现用现稀释);1% SDS (可用10%贮存液稀释配制)注意:SDS易产生气泡,不要剧烈搅拌。 ③溶液III (Solution Ⅲ,100mL):加上后混匀会形成絮状沉淀 60mL 5mol/L KAc, 11.5mL 冰醋酸, 28.5mL H2O (该溶液钾离子浓度为3mol/L,醋酸根离子浓度为5mol/L) ④TE液缓冲液:10 mmol/L Tris-HCl(pH8.0);1 mmol/L EDTA(pH8.0) ⑤70% 乙醇; ⑥平衡酚:氯仿1:1: 将量取25 ml Tris-HCl(pH8.0)平衡苯酚,加入24 ml 氯仿和 1 ml 异戊醇,充分混合后,移入棕色玻璃瓶中,4℃保存。 ⑦LB培养基: 胰化蛋白胨10g 酵母提取物5g NaCl 15g pH 7.0 ⑧琼脂糖(Agarose); ⑨1 liter(升)5×TBE备用溶液(stock solution): 54g tris base,27.5g 硼酸(boric acid),20ml 0.5 mol/L EDTA , pH 8.0; ⑩6×凝胶加样缓冲液:

(完整word版)质粒抽提原理

为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:溶液I,50 mM葡萄糖/ 25 mM Tris-Cl / 10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH / 1% SDS;溶液III,3 M 醋酸钾/ 2 M 醋酸。 让我们先来看看溶液I的作用。任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl 溶液,是再自然不过的了。那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I中葡萄糖是可缺的。那么EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。 轮到溶液II了。这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4 N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。用了不新鲜的0.4N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA也会断裂。基因组DNA的断裂会带来麻烦,后面我再详细说明。 每个人都知道,溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。最容易产生的误解是,当SDS 碰到酸性后发生的沉淀。如果你这样怀疑,往1%的SDS溶液中加如2 M的醋酸溶液看看就知道不是这么回事了。大量沉淀的出现,显然与SDS的加入有关系。如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS 溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的纳离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。那么2 M的醋酸又是为什么而加的呢?是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和之。基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被PDS共沉淀了。所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入,琼脂糖电泳可以观察到一条浓浓的总DNA条带。很多人误认为是溶液III加入后基因组DNA无法快速复性就被沉淀了,这是天大的误会,因为变性的也好复性的也好,DNA分子在中性溶液中都是溶解的。NaOH本来是为了溶解细胞而用的,DNA分子的变性其实是个副产物,与它是不是沉淀下来其实没有关系。溶液III加入并混合均匀后在冰上放置,目的是为了PDS沉淀更充分一点。 不要以为PDS沉淀的形成就能将所有的蛋白质沉淀了,其实还有很多蛋白质不能被沉淀,因此要用酚/氯仿/异戊醇进行抽提,然后进行酒精沉淀才能得到质量稳定的质粒DNA,不然时间一长就会因为混入的DNase而发生降解。用25/24/1

高纯度质粒小量快速提取试剂盒操作方法及步骤说明书

杭州昊鑫生物科技股份有限公司 htpp://https://www.360docs.net/doc/d31398698.html, HighPure Plasmid Mini Kit 高纯质粒小量快速提取试剂盒 目录号:PL03 试剂盒组成、储存、稳定性: 试剂盒组成保存 50次 (PL0301) 100次 (PL0302) 200次 (PL0303) 平衡液室温5ml 10ml 20ml RNaseA(10mg/ml)-20℃150μl 250μl 500μl 溶液P1 4℃15 ml 25 ml 50 ml 溶液P2 室温15 ml 25 ml 50 ml 溶液P3 室温20 ml 35 ml 70 ml 去蛋白液PE 室温16ml 31.5 ml 63 ml 第一次使用前按说明加指定量乙醇 漂洗液WB 室温15 ml 25ml 50ml 第一次使用前按说明加指定量乙醇 洗脱缓冲液EB 室温10ml 15ml 20ml 吸附柱AC 室温50个100个200个 收集管(2ml)室温50个100个200个 本试剂盒在室温储存12个月不影响使用效果。 储存事项: 1.第一次使用时,将试剂盒所带的全部RNase A加入溶液P1后(终浓度100ug/ml) 置于2-8℃保存。如果溶液P1中RNase A失活,提取的质粒可能会有微量RNA 残留,在溶液P1中补加RNase A即可。 2.环境温度低时溶液P2中SDS可能会析出浑浊或者沉淀,可在37℃水浴加热几分 钟,即可恢复澄清,不要剧烈摇晃,以免形成过量的泡沫。 3.避免试剂长时间暴露于空气中产生挥发、氧化、pH值变化,各溶液使用后应及时 盖紧盖子。 产品介绍:

本试剂盒采用改进SDS-碱裂解法裂解细胞,离心吸附柱内的硅基质膜在高盐、低pH值状态下选择性地结合溶液中的质粒DNA,再通过去蛋白液和漂洗液将杂质和其它细菌成分去除,最后低盐、高pH值的洗脱缓冲液将纯净质粒DNA从硅基质膜上洗脱。 产品特点: 1.离心吸附柱内硅基质膜全部采用进口世界著名公司特制吸附膜,柱与柱之间吸附 量差异极小,可重复性好。克服了国产试剂盒膜质量不稳定的弊端。 2.独有的去蛋白液配方,可以高效去除残留的核酸酶,即使是核酸酶含量丰富的菌 株如JM系列、HB101也可以轻松去除。有效防止了质粒被核酸酶降解。 3.快速、方便,不需要使用有毒的苯酚、氯仿等试剂,也不需要乙醇沉淀。获得的 质粒产量高、纯度好,可以直接用于酶切、转化、PCR、体外转录、测序等各种分子生物学实验。 注意事项 1. 所有的离心步骤均在室温完成,使用转速可以达到13,000rpm的传统台式离心机, 如Eppendorf 5415C 或者类似离心机。 2. 提取质粒的量与细菌培养浓度、质粒拷贝数等因素有关。一般高拷贝质粒,建议 接种单菌落于1.5-4.5 ml加合适抗生素的LB培养基,过夜培养14-16个小时,可提取出多达20μg的纯净质粒。如果所提质粒为低拷贝质粒或大于10kb的大质粒,应适当加大菌体使用量,使用5-10 ml过夜培养物,同时按比例增加P1、P2、P3的用量,其它步骤相同。 3. 得到的质粒DNA可用琼脂糖凝胶电泳和紫外分光光度计检测浓度与纯度。OD260 值为1相当于大约50μg/ml DNA。电泳可能为单一条带,也可能为2条或者多条DNA条带,这主要是不同程度的超螺旋构象质粒泳动位置不一造成,与提取物培养时间长短、提取时操作剧烈程度等有关。本公司产品正常操作情况下基本超螺旋可以超过90%。 4. 质粒DNA确切分子大小,必须酶切线性化后,对比DNA分子量Marker才可以知 道。处于环状或者超螺旋状态的的质粒,泳动位置不确定,无法通过电泳知道其确切大小。 5. 洗脱液EB不含有螯合剂EDTA,不影响下游酶切、连接等反应。也可以使用水洗 脱,但应该确保pH大于7.5,pH过低影响洗脱效率。用水洗脱质粒应该保存在-

质粒DNA提取方法与原理

质粒提取的原理、操作步骤、各溶液的作用 细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。 碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和 SDS溶液中裂解时,蛋白质与DNA 发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。 纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 一、试剂准备 1. 溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。1M Tris-HCl (pH 8.0)1 2.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。在10 lbf/in2高压灭菌15min ,贮存于4℃。 任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液。50 mM葡萄糖最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I中葡萄糖是可缺的。EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达 10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。 NaOH也使DNA变性,但只是个副产物,在溶液3加入后其中的醋酸和NaOH中和,质粒DNA恢复活性 2. 溶液Ⅱ:0.2N NaOH,1% SDS。2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。使用前临时配置。 这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向 micelle(微囊)结构的相变化所导致。用了不新鲜的0.4 N NaOH,即便是有SDS 也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为 SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS 呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA也会断裂。基因组 DNA 的断裂会带来麻烦。 3.溶液Ⅲ:醋酸钾(KAc)缓冲液,pH 4.8。5M KAc 300ml,冰醋酸 57.5ml,加ddH2O至500ml。4℃保存备用。 溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。最容易产生的误解是,当SDS碰到酸性后发生的沉淀。如果你这样怀疑,往1%的 SDS溶液中加如2M的醋酸溶液看看就知道不是这么回事了。大量沉淀的出现,显然与SDS的加入有关系。如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是

质粒抽提原理和详细操作步骤

质粒抽提,实验室必备技能之一 质粒 质粒存在于许多细菌以及酵母菌等生物中,是细胞染色体外能够自主复制的很小的环状DNA 分子。 质粒抽提 从细菌中分离质粒DNA的方法包括3个基本步骤:培养细菌使质粒扩增;收集和裂解细菌;分离和纯化质粒DNA。采用强碱液、加热或溶菌酶(主要针对革兰氏阳性细菌)可以破坏菌体细胞壁,十二烷基磺酸钠(SDS)和 TritonX-100(一般很少使用)可使细胞膜裂解。经溶菌酶和SDS或 Triton X-100处理后,细菌染色体DNA会缠绕附着在细胞碎片上,同时由于细菌染色体DNA比质粒大得多,易受机械力和核酸酶等的作用而被切断成不同大小的线性片段。当用强热或酸、碱处理时,细菌的线性染色体DNA变性,而共价闭合环状DNA(Covalently closed circular DNA,简称cccDNA)的两条链不会相互分开。当外界条件恢复正常时,线状染色体DNA片段难以复性,而是与变性的蛋白质和细胞碎片缠绕在一起,而质粒DNA双链又恢复原状,重新形成天然的超螺旋分子,并以溶解状态存在于液相中。 质粒抽提最常用的方法是碱裂解法,它具有得率高、适用面广、快速和纯度高等特点。当然,碱裂解法也有缺陷:容易导致不可逆的变性。要降低不可逆的变性,就要控制好碱裂解的时间。 碱裂解法抽提质粒需要用到以下三种溶液 溶液Ⅰ 50 mmol/L 葡萄糖,25 mmol/L Tris-Cl(pH 8.0),10 mmol/L EDTA(pH 8.0),在15 psi 压力下蒸汽灭菌15 min,4℃保存。 溶液Ⅱ 0.2 mmol/L NaOH(从10 mmol/L 贮存液中现用现稀释),10 g/L SDS(室温保存)。 溶液Ⅲ

【珍藏版】质粒提取中的原理

1.溶液I—溶菌液: 溶菌酶:它是糖苷水解酶,能水解菌体细胞壁的主要化学成分肽聚糖中的β-1,4糖苷键,因而具有溶菌的作用。当溶液中pH小于8时,溶菌酶作用受到抑制。 葡萄糖:增加溶液的粘度,维持渗透压,防止DNA受机械剪切力作用而降解。 EDTA:(1)螯合Mg2+、Ca2+等金属离子,抑制脱氧核糖核酸酶对DNA的降解作用(DNa se作用时需要一定的金属离子作辅基);(2)EDTA的存在,有利于溶菌酶的作用,因为溶菌酶的反应要求有较低的离子强度的环境。 2.溶液II-NaOH-SDS液: NaOH:核酸在pH大于5,小于9的溶液中,是稳定的。但当pH>12或pH<3时,就会引起双链之间氢键的解离而变性。在溶液II中的NaOH浓度为0.2mo1/L,加抽提液时,该系统的pH就高达12.6,因而促使染色体DNA与质粒DNA的变性。 SDS:SDS是离子型表面活性剂。它主要功能有:(1)溶解细胞膜上的脂质与蛋白,因而溶解膜蛋白而破坏细胞膜。(2)解聚细胞中的核蛋白。(3)SDS能与蛋白质结合成为R-O-SO3-…R+-蛋白质的复合物,使蛋白质变性而沉淀下来。但是SDS能抑制核糖核酸酶的作用,所以在以后的提取过程中,必须把它去除干净,防止在下一步操作中(用RNase去除RNA时)受到干扰。 3. 溶液III--3mol/L NaAc(pH 4.8)溶液: NaAc的水溶液呈碱性,为了调节pH至4.8,必须加入大量的冰醋酸。所以该溶液实际上是Na Ac-HAc的缓冲液。用pH4.8的NaAc溶液是为了把pH12.6的抽提液,调回pH至中性,使变性的质粒DNA能够复性,并能稳定存在。而高盐的3mol/L NaAc有利于变性的大分子染色体DNA、RNA以及SDS-蛋白复合物凝聚而沉淀之。前者是因为中和核酸上的电荷,减少相斥力而

质粒提取有关问题及注意点

质粒提取常见问题解析 涂布棒在酒精蘸一下,然后烧一下,能不能保证把所用的菌烧死? 参考见解:涂布棒可以在酒精中保藏,但是酒精不能即时杀菌。蘸了酒精后再烧一小会,烧的是酒精而不是涂布棒。建议涂布棒还是干烧较长时间后,冷却了再涂。同时作多个转化时,应用几个涂布棒免得交叉污染。 原先测序鉴定没有问题的细菌,37℃摇菌后发现质粒大小或序列出现异常? 参考见解:这种情况出现的几率较小,常出现在较大质粒或比较特殊的序列中。解决办法: 1、降低培养温度,在20~25℃下培养,或室温培养可明显减少发生概率。 2、使用一些特殊菌株,如Sure菌株,它缺失了一些重组酶,如rec类等,使得质粒复制更加稳定。 3、质粒抽提有一个酶切不完全的原因就是溶液Ⅱ中的NaOH浓度过高造成的,请大家注意一下! 【有两种方法可以在提质粒前判断菌生长是否正常: 1、利用你的嗅觉。只要平时做实验仔细点就能闻出大肠杆菌的气味,新鲜的大肠杆菌是略带一点刺鼻的气味,但不至于反感。而在泥水状的菌液中你只要一凑过去就感觉到其臭无比或者没有气味,可以和正常菌液对照。 2、肉眼观察活化菌株。对于生长不正常的菌液进行划板验证或者稀释到浓度足够低涂板,第二天观察单克隆生长情况,LB平板生长的DH5A正常形态在37℃16h后直径在1mm左右,颜色偏白,半透明状,湿润的圆形菌斑,如果观察到生长过快,颜色又是泛黄的话基本上不正常了。】 未提出质粒或质粒得率较低,如何解决? 参考见解: 1、大肠杆菌老化:涂布平板培养后,重新挑选新菌落进行液体培养。 2、质粒拷贝数低:由于使用低拷贝数载体引起的质粒DNA提取量低,可更换具有相同功能的高拷贝数载体。 3、菌体中无质粒:有些质粒本身不能在某些菌种中稳定存在,经多次转接后有可能造成质粒丢失。例如,柯斯质粒在大肠杆菌中长期保存不稳定,因此不要频繁转接,每次接种时应接种单菌落。另外,检查筛选用抗生素使用浓度是否正确。 4、碱裂解不充分:使用过多菌体培养液,会导致菌体裂解不充分,可减少菌体用量或增加溶液的用量。对低拷贝数质粒,提取时可加大菌体用量并加倍使用溶液,可以有助于增加质粒提取量和提高质粒质量。 5、溶液使用不当:溶液2和3在温度较低时可能出现浑浊,应置于37℃保温片刻直至溶解为清亮的溶液,才能使用。 6、吸附柱过载:不同产品中吸附柱吸附能力不同,如果需要提取的质粒量很大,请分多次提取。若用富集培养基,例如TB或2×YT,菌液体积必须减少;若质粒是非常高的拷贝数或宿主菌具有很高的生长率,则需减少LB培养液体积。 7、质粒未全部溶解(尤其质粒较大时) :洗脱溶解质粒时,可适当加温或延长溶解时间。 8、乙醇残留:漂洗液洗涤后应离心尽量去除残留液体,再加入洗脱缓冲液。 9、洗脱液加入位置不正确:洗脱液应加在硅胶膜中心部位以确保洗脱液会完全覆盖硅胶膜的表面达到最大洗脱效率。 10、洗脱液不合适:DNA只在低盐溶液中才能被洗脱,如洗脱缓冲液EB(10mM Tris-HCl, 1mM EDTA,pH8.5)或水。洗脱效率还取决于pH值,最大洗脱效率在pH7.0-8.5间。当用水洗脱时确保其pH值在此范围内,如果pH过低可能导致洗脱量低。洗脱时将灭菌蒸馏水或洗脱缓冲液加热至60℃后使用,有利于提高洗脱效率。

质粒提取的原理、操作步骤、各溶液的作用

质粒提取的原理、操作步骤、各溶液的作用 (2010-11-11 17:19:05) 转载▼ 分类:Biology 标签: 质粒 溶液 无水乙醇 大肠杆菌 杂谈 细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质粒DNA的提取,下面主要介绍碱裂解法提取质粒DNA的方法。 碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH 和SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。 纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 碱裂解法:此方法适用于小量质粒DNA的提取,提取的质粒DNA可直接用于酶切、PCR扩增、银染序列分析。方法如下: 1、接1%含质粒的大肠杆菌细胞于2ml LB培养基。 2、37℃振荡培养过夜。 3、取1.5ml菌体于Ep管,以4000rpm离心3min,弃上清液。 4、加0.lml溶液I(1%葡萄糖,50mM/L EDTA pH8.0,25mM/L Tris-HCl pH8.0)充分混合。 5、加入0.2ml溶液II(0.2 mM/L NaOH,1%SDS),轻轻翻转混匀,置于冰浴 5 min . 6、加入0.15m1预冷溶液III(5 mol/L KAc,pH4.8),轻轻翻转混匀,置于冰浴5 min .

质粒提取的原理、操作步骤、各溶液的作用

细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA 分子。目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH 和 SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。 纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 一、试剂准备 1. 溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。1M Tris-HCl[t1] (pH 8.0)1 2.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。在10 lbf/in2高压灭菌15min ,贮存于4℃。 任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液。50 mM葡萄糖最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I 中葡萄糖是可缺的。EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I 中加入高达 10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。 NaOH也使DNA变性,但只是个副产物,在溶液3加入后其中的醋酸和NaOH中和,质粒DNA恢复活性 2. 溶液Ⅱ:0.2N NaOH,1% SDS。2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。使用前临时配置[t2]。 这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向 micelle(微囊)结构的相变化所导致。用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为 SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基

质粒抽提试剂盒基本原理

质粒抽提试剂盒基本原理 碱裂解法从大肠杆菌中制备质粒,是每个分子生物学实验室都要用到的常规技术,但是大家对碱法抽提质粒的原理知之甚少。 一、碱法抽提质粒用到的三种溶液及硅酸纤维膜(超滤柱) 溶液I:50 mM葡萄糖 / 25 mM Tris-Cl / 10 mM EDTA,pH 8.0; 溶液II:0.2 N NaOH / 1% SDS; 溶液III:3 M 醋酸钾/ 2 M 醋酸/75%酒精。 二、溶液I中各成分的作用葡萄糖是使悬浮后的大肠杆菌不会快速沉积到管子的底部,因此有些试剂厂商的溶液I没有葡萄糖成分;EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,其主要目的是为了螯合二价金属离子从而达到抑制DNase的活性。 三、溶液II中各成分的作用NaOH主要是为了溶解细胞,释放DNA,因为在强碱性的情况下,细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的变化;但NaOH 发生反应,形成碳酸钠,降低了NaOH的碱性,所以必须用新鲜的NaOH。SDS 易和空气中的CO 2 与NaOH联用,其目的是为了增强NaOH的强碱性,同时SDS能很好地结合蛋白,产生沉淀。这一步要记住两点:第一,时间不能过长,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA会断裂。 四、溶液III中各成分的作用溶液III中的醋酸钾是为了使钾离子置换SDS中的纳离子而形成了PDS,因为十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是不溶水的,同时一个SDS分子平均结合两个氨基酸,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了。2 M的醋酸是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和。基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被 PDS共沉淀了,所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA 混入,琼脂糖电泳可以观察到一条浓浓的总DNA条带。75%酒精主要是为了清洗盐份和抑制Dnase;同时溶液III的强酸性也是为了使DNA更好地结合在硅酸纤维膜上

质粒DNA的碱裂解法提取与纯化

质粒DNA的碱裂解法提取与纯化概述 细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种 质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。(Q往圣科技3452125268提供免费基因慢病毒包装)质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。(Q往圣科技3452125268提供Science的CRISPR/cas9免费质粒加慢病毒包装)碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA 不变性而呈絮状,离心时可沉淀下来。(Q往圣科技3452125268提供12万种Science的CRISPR/cas9免费质粒加慢病毒包装)纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA 酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 一、试剂准备(Q往圣科技3452125268提供Science的CRISPR/cas9免费质粒加慢病毒包装) 1.溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。1M Tris-HCl(pH 8.0)1 2.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH 2 O至500ml。在10 lbf/in2高压灭菌15min ,贮存于4℃。 2.溶液Ⅱ:0.2N NaOH,1% SDS。2N NaOH 1ml,10%SDS 1ml,加ddH 2 O至10ml。使用前临时配置。Q往圣科技3452125268提供12万种Science的CRISPR/cas9免费质粒加慢病毒包装 3.溶液Ⅲ:醋酸钾(KAc)缓冲液,pH 4.8。5M KAc 300ml,冰醋酸 57.5ml, 加ddH 2 O至500ml。4℃保存备用。(Q往圣科技3452125268提供Science的CRISPR/cas9免费基因慢病毒包装)4.TE:10mM Tris-HCl(pH 8.0),1mM EDTA(pH 8.0)。1M Tris-HCl(pH 8.0)1ml,0.5M EDTA(pH 8.0)0.2ml,加ddH 2 O至100ml。15 lbf/in2高压湿热灭菌20min,4℃保存备用。 5.苯酚/氯仿/异戊醇(25:24:1) 6.乙醇(无水乙醇、70%乙醇) 7. 5×TBE:Tris 碱54g,硼酸27.5g,EDTA-Na 2·2H 2 O 4.65g,加ddH 2 O 至 1000ml。15 lbf/in2高压湿热灭菌20min,4℃保存备用。8.溴化乙锭(EB):10mg/ml

碱裂解法提质粒原理详解

从质粒提取谈起 (2009-12-22 11:18:37) 转载 标 分类:积累小常识 签: 杂 谈 从质粒提取谈起 为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:溶液I,50 mM 葡萄糖/ 25 mM Tris-Cl / 10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH / 1% SDS;溶液III,3 M醋酸钾/ 2 M醋酸。 让我们先来看看溶液I的作用。任何生物化学反应,首先要控制好溶液的p H,因此用适当浓度的和适当pH值的Tris-Cl溶液,是再自然不过的了。那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I中葡萄糖是可缺的。那么EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达10 mM的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA.如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。 轮到溶液II了。这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生

OMEGA小提试剂盒提取质粒步骤(无内毒)

OMEGA小提试剂盒提取质粒步骤(中文翻译版) 1、将携带目的质粒的大肠杆菌接种于含10~15ul基础培养基/氨苄西林培养介质的50ml培养瓶中。 2、室温下500×g离心10min。 3、弃去上清,剩余沉淀物中加入500ul的SolutionⅠ/RNase A,彻底混匀。 4、将混悬液移至新的2ml离心管中,加入500ul SolutionⅡ,轻柔彻底混匀,可得清亮的细菌裂解物,室温下孵育2min(混匀时用力过大,可破碎出染色体DNA,使目的质粒纯度下降)。 5、向4中液体加入250ul预冷的Buffer N3,轻柔、彻底混匀,直到出现白色絮状沉淀,4℃≥12000×g离心10min(可室温,最好4℃)(Buffer应彻底混匀,若混合物粘稠呈棕色或呈球状,应多混匀几次以中和溶液,溶液的彻底中和对于获得好的产出是必要的)。 6、小心吸取并将上清液转移进新的1.5ml离心管1:0.1的比例向上清液中加入ETR Solution 混匀溶液并于冰上孵育10min,孵育过程中颠倒几次以混匀(加入ETR Solution后,细菌裂解物将出现浑浊,但冰上孵育后将变澄清)(勿用2ml离心管收集上清,因为2ml离心管中有太多液体时,ETR Solution将悬浮于溶液中)。 7、将6中液体于42℃孵育5min,溶液将再次变浑。室温下12000×g离心3min,ETR Solution 将于离心管底部形成蓝色层。 8、将上层水相转移入新的2ml离心管中,按1:0.5的比例加入无水乙醇(室温,96~100%),轻柔混匀,室温下孵育1~2min。 9、将8中的溶液取700ul到柱子中,组装收集管,室温下1000×g离心1min,弃去收集管中通过柱子的液体,柱子和收集管重复利用。 10、重复9中步骤,直到收集的细菌裂解物全部用完。 11、将500ul Buffer HB加入柱子中,室温下1000×g离心1min,弃去收集管中废液(目的:将残存的蛋白污染物除去,是获得高质量DNA所必需的)。 12、向柱子中加入混有乙醇的700ulDNA Wash Buffer,室温下1000×g离心1min,弃去收集管中液体。 13、重复12中的步骤。 14、弃去收集管中液体,空管在最大转速(≥13000×g)离心3min以干燥柱子(对于移除柱子中残留的乙醇是必须的)。 15、将柱子放入新的 1.5ml离心管中,直接向柱子中的白色网状物上加入Endotoxin-Free Elution Buffer 80~100ul(依终产物浓度而定,可每次30ul×2次),室温下放置2min,≥13000×g离心1min,以洗提DNA(将提取约70~85%柱子中收集的DNA,可再重复一次以提取完全,但因再次加入洗提液,会使终产物浓度下降)。 声明:文档为自己翻译后逐字打出来的,有不妥之处望各位同行不吝赐教,以方便大家实验参考,谢谢。

相关文档
最新文档