13C谱最新氘代试剂(核磁试剂)化学位移表

13C谱最新氘代试剂(核磁试剂)化学位移表
13C谱最新氘代试剂(核磁试剂)化学位移表

13C谱最新氘代试剂(核磁试剂)化学位移表2010-7-17

以上为核磁共振碳谱中氘代试剂及常用溶剂在相应氘代试剂中的化学位移。

核磁溶剂化学位移

测试核磁的样品一般要求比较纯,并且能够溶解在氘代试剂中,这样才能测得高分辨率的图谱。 为不干扰谱图,所用溶剂分子中的氢都应被氘取代,但难免有氢的残余(1%左右),这样就会产生溶剂峰;除了残存的质子峰外,溶剂中有时会有微量的H2O而产生水峰,而且这个H2O峰的位置也会因溶剂的不同而不同;另外,在样品(或制备过程)中,也难免会残留一些杂质,在图谱上就会有杂质峰,应注意识别。 常用氘代溶剂和杂质峰在1H谱中的化学位移单位:ppm 溶剂—CDCl3 (CD3)2CO (CD3)2SO C6D6 CD3CN CD3OH D2O 溶剂峰—7.26 2.05 2.49 7.16 1.94 3.31 4.80 水峰— 1.56 2.84 3.33 0.40 2.13 4.87 — 乙酸— 2.10 1.96 1.91 1.55 1.96 1.99 2.08 丙酮— 2.17 2.09 2.09 1.55 2.08 2.15 2.22 乙腈— 2.10 2.05 2.07 1.55 1.96 2.03 2.06 苯—7.36 7.36 7.37 7.15 7.37 7.33 — 叔丁醇CH3 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH —— 4.19 1.55 2.18 —— 叔丁基甲醚 CCH3 1.19 1.13 1.11 1.07 1.14 1.15 1.21 OCH3 3.22 3.13 3.08 3.04 3.13 3.20 3.22 氯仿—7.26 8.02 8.32 6.15 7.58 7.90 — 环己烷— 1.43 1.43 1.40 1.40 1.44 1.45 — 1,2-二氯甲烷 3.73 3.87 3.90 2.90 3.81 3.78 — 二氯甲烷— 5.30 5.63 5.76 4.27 5.44 5.49 — 乙醚 CH3(t) 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2(q) 3.48 3.41 3.38 3.26 3.42 3.49 3.56 二甲基甲酰胺 CH 8.02 7.96 7.95 7.63 7.92 7.79 7.92 CH3 2.96 2.94 2.89 2.36 2.89 2.99 3.01 CH3 2.88 2.78 2.73 1.86 2.77 2.86 2.85 二甲基亚砜— 2.62 2.52 2.54 1.68 2.50 2.65 2.71 二氧杂环— 3.71 3.59 3.57 3.35 3.60 3.66 3.75

核磁氘代试剂的化学位移

CIL NMR Solvent Data Chart The 1H spectra of the residual protons and 13C spectra were obtained on a Varian Gemini 200spectrometer at 295°K. The NMR solvents used to acquire these spectra contain a maximum of 0.05% and 1.0% TMS (v/v) respectively. Since deuterium has a spin of 1, triplets arising from coupling to deuterium have the intensity ratio of 1:1:1. ‘m’ denotes a broad peak with some fine structures. It should be noted that chemical shifts can be dependent on solvent, concentration and temperature. Approximate values only, may vary with pH, concentration and temperature. Melting and boiling points are those of the corresponding unlabeled compound (except for D 2O). These temperature limits can be used as a guide to determine the useful liquid range of the solvents. Information gathered from the Merck Index – Eleventh Edition. Cambridge Isotope Laboratories, Inc. 50Frontage Road, Andover, MA 01810-5413usa ph : 800.322.1174 (n.america )ph:978.749.8000fax:978.749.2768 web:https://www.360docs.net/doc/d32055471.html, email:cilsales@https://www.360docs.net/doc/d32055471.html, (n. america ) email:intlsales@https://www.360docs.net/doc/d32055471.html, (international ) S Budavari, M.J. O’Neil, A. Smith, P .E. Heckelman, The Merck Index , an Encyclopedia of Chemicals, Drugs, and Biologicals - Eleventh Edition , Merck Co., Inc. Rahway, NJ, 1989. More Solvents, More Sizes,More Solutions

常见氘代溶剂和杂质在氢谱中的峰

常用氘代溶剂和杂质峰在1H谱中的化学位移 测试核磁的样品一般要求比较纯,并且能够溶解在氘代试剂中,这样才能测得高分辨率的图谱。 为不干扰谱图,所用溶剂分子中的氢都应被氘取代,但难免有氢的残余(1%左右),这样就会产生溶剂峰;除了残存的质子峰外,溶剂中有时会有微量的H2O而产生水峰,而且这个H2O峰的位置也会因溶剂的不同而不同;另外,在样品(或制备过程)中,也难免会残留一些杂质,在图谱上就会有杂质峰,应注意识别。以下给出了一些常见溶剂峰和杂质峰的化学位移: 常用氘代溶剂和杂质峰在1H谱中的化学位移单位:ppm 溶剂CDCl3 (CD3)2CO (CD3)2SO C6D6 CD3CN CD3OH D2O 溶剂峰7.26 2.05 2.49 7.16 1.94 3.31 4.80 水峰 1.56 2.84 3.33 0.40 2.13 4.87 — 乙酸 2.10 1.96 1.91 1.55 1.96 1.99 2.08 丙酮 2.17 2.09 2.09 1.55 2.08 2.15 2.22 乙腈 2.10 2.05 2.07 1.55 1.96 2.03 2.06 苯7.36 7.36 7.37 7.15 7.37 7.33 — 叔丁醇CH3 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH —— 4.19 1.55 2.18 —— 叔丁基甲醚 CCH3 1.19 1.13 1.11 1.07 1.14 1.15 1.21 OCH3 3.22 3.13 3.08 3.04 3.13 3.20 3.22 氯仿7.26 8.02 8.32 6.15 7.58 7.90 — 环己烷 1.43 1.43 1.40 1.40 1.44 1.45 — 1,2-二氯甲烷 3.73 3.87 3.90 2.90 3.81 3.78 — 二氯甲烷 5.30 5.63 5.76 4.27 5.44 5.49 — 乙醚 CH3(t) 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2(q) 3.48 3.41 3.38 3.26 3.42 3.49 3.56 二甲基甲酰胺CH 8.02 7.96 7.95 7.63 7.92 7.79 7.92 CH3 2.96 2.94 2.89 2.36 2.89 2.99 3.01 CH3 2.88 2.78 2.73 1.86 2.77 2.86 2.85 二甲基亚砜 2.62 2.52 2.54 1.68 2.50 2.65 2.71 二氧杂环 3.71 3.59 3.57 3.35 3.60 3.66 3.75

核磁共振氢谱(1H-NMR)

第二章核磁共振氢谱(1H-NMR) §1 概述 基本情况 1H 天然丰度:99.9844%, I=1/2, γ=26.752(107radT-1S-1) 共振频率:42.577 MHz/T δ: 0~20ppm §2 化学位移 1.影响δ值的因素 A.电子效应 (1)诱导效应 a电负性 电负性强的取代基使氢核外电子云密度降低,其共振吸收向低场位移,δ值增大 b.多取代有加和性 c.诱导效应通过成键电子传递,随着与电负性取代基距离的增大,诱导效应的影响逐渐减弱,通常相隔3个以上碳的影响可以忽略不计 (2).共轭效应 氮、氧等杂原子可与双键、苯环共轭。 苯环上的氢被推电子基取代,由于p-π共轭,使苯环电子云密度增大, δ值向高场移动苯环上的氢被吸电子基取代,由于p-π共轭或π-π共轭,使苯环电子云密度降低, δ值向低场移动 (3). 场效应 在某些刚性结构中,一些带杂原子的官能团可通过其电场对邻近氢核施加影响,使其化学

位移发生变化.这些通过电场发挥的作用称为场效应 (4). 范德华(Van der Waals)效应 在某些刚性结构中,当两个氢核在空间上非常接近,其外层电子云互相排斥使核外电子云不能很好地包围氢核,相当于核外电子云密度降低,δ值向低场移动 B.邻近基团的磁各向异性 某些化学键和基团可对空间不同空间位置上的质子施加不同的影响,即它们的屏蔽作用是有方向性的。磁各向异性产生的屏蔽作用通过空间传递,是远程的。 (1)芳环 在苯环的外周区域感应磁场的方向与外加磁场的方向相同(顺磁屏蔽),苯环质子处于此去屏蔽区,其所受磁场强度为外加磁场和感应磁场之和,δ值向低场移动。 (2)双键 >C=O, >C=C<的屏蔽作用与苯环类似。在其平面的上、下方各有一个锥形屏蔽区 (“+”),其它区域为去屏蔽区。 (3)三键 互相垂直的两个π键轨道电子绕σ键产生环电流,在外加磁场作用下产生与三键平行但方向与外加磁场相反的感应磁场。三键的两端位于屏蔽区(“+”),上、下方为去锥形屏蔽区(“-”)δ值比烯氢小。 (4)单键和环己烷 单键各向异性方向与双键相似,直立键质子的化学位移一般比平伏键小0.05-0.8 C.氢键 氢键的缔合作用减少了质子周围的电子云密度, δ值向低场移动。 氢键质子的δ值变化范围大,与缔合程度密切相关。 分子内氢键,质子的δ值与浓度无关 分子间氢键,质子的δ值与浓度有关,浓度大,缔合程度密切。 D.非结构因素 1.介质因素 2.浓度 3.温度 2.各类质子的化学位移 (1).sp3杂化(饱和烷烃) a.化学位移的范围 δ<-CH3 < CH2 < CH, 0-2ppm 与同碳上有强电子基团(O,N,CL,Br)相连, 或邻位有各项异性基团(=,=O,Ph),δ值上升,<5ppm b.化学位移的计算 1)-CH2- δ(CH2R1R2) =1.25+Σσ δ(CHR1R2R3) =1.50+Σσ

氘代试剂常见问题答疑

常见问题答疑 (1)氘代试剂 / (2)公司情况 (1). 氘代试剂: * 1. 氘代氯仿空白检测, 发现在 0.8 ppm, 1.2 ppm 处有杂质峰? * 2. 氘代氯仿空白检测, 感觉水峰有些大? * 3. 样品检测时, 发现 2.05 ppm 多了丙酮峰? * 4. 氘代试剂如何保存? * 5. 样品有羟基, 检测时没能看见? * 6. 氘代氯仿的溶剂峰为 7.24 还是 7.26, 7.28 ppm? * 7. 氘代丙酮的氢谱与碳谱, 溶剂峰为何出现裂分? * 8. 怎么辨别氘代试剂的氘代度是否足够? * 9. 氘代丙酮 (或氘代二甲亚砜, 氘代乙腈), 有时水峰出现两个峰? * 10. 还有各种问题, 这里没有列出? 氘代试剂: Q/A: * 1. 氘代氯仿空白检测, 发现在 0.8 ppm, 1.2 ppm 处有杂质峰?

这个主要来自塑料的污染. 或许是使用了一次性塑料滴管 (增塑剂的溶解), 或者是放入核磁管后碰触了核磁管帽. 可以很快做个试验证明: 使用玻璃滴管小心将氘代氯仿置入核磁管, 不要碰触核磁帽, 应该不会出现杂质峰. 由此可以证明是配样过程造成的污染. 平时这种污染没有感觉, 只有做空白试验放大后才察觉出来. 因为一般样品加入后, 样品峰足够大, 令这些微量的杂质峰几乎可以忽略. 平时样品的合成后处理也都不是很完美. 因此, 断绝一次性滴管的使用也不是很实际. * 2. 氘代氯仿空白检测, 感觉水峰有些大? 在国际标准中, 氘代氯仿的含水量定为少于0.01 %. 这, 相当于溶剂峰(7.24 ppm 的CHCl3) 的积分值定为10 时, 水峰(1.59 ppm 的H2O) 的积分比值应小于6.69. 在"氘代试剂相关知识" 的报告中, 有一页提到计算公式. 我们提供的氘代试剂, 水峰都低于 5 ppm. 冬天生产灌装的氘代氯仿的水峰, 甚至都小于3. 真正要确定水峰, 也得要求配样过程需要标准.例如, 核磁管以及玻璃滴管从烘箱取出后应该直接置入干燥器中冷气, 以免水汽凝结, 影响检测精确. 对于氘代氯仿, 如果水峰值高于7, 是说明水峰高过国际标准. 不过, 其实也不影响检测. 因为一旦加入样品, 1.59 ppm 的水峰就可以忽略, 甚至会消失不见. 另外, 氘代氯仿和水不相溶, 即使再大的潮气, 氘代氯仿中的水峰值也不会大过30. 如果使用的是瓶装的氘代氯仿, 随着时间可能水峰因吸潮而逐渐变大, 则可以快速的加入几颗分子筛, 很快就可以将水峰压, 甚至到积分 3 以下. 使用分子筛时, 小心不要碰触到手, 以免手上油渍的污染. 总结: 氘代试剂的水峰, 不是什么很大的问题. * 3. 样品检测时, 发现 2.05 ppm 多了丙酮峰? 这个多半是核磁管使用了丙酮清洗, 之后在烘箱中没有去除干净. 可以做些试验: 加入微量丙酮, 该峰增高, 证明是丙酮峰. 使用正常的核磁管, 检测空白氘代试剂, 应该不会发现该峰, 所以不是试剂的问题.

NMR常见溶剂峰和水峰

常数,H2O和交换了D的HOD上的1H产生的即水峰的化学位移 氯仿:小、中小、中等极性 DMSO:芳香系统(日光下自然显色、紫外荧光)。对于酚羟基能够出峰。芳香化合物还是芳香甙,都为首选。 吡啶:极性大的,特别是皂甙 对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大的化合物可采用氘代丙酮、重水等。 针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)、氘代吡啶(用于难溶的酸性或芳香化合物)等。丙酮:中等极性 甲醇:极性大 氯仿—甲醇: 石:乙 5;1小极性 石:丙 2:1——1:1中等极性 氯仿:甲醇6:1极性以上含有一个糖 2:1 含有两个糖 含有糖的三萜皂甙:一般用吡啶

常见溶剂的化学位移 常见溶剂的1H在不同氘代溶剂中的化学位移值 常见溶剂的化学位移 常见溶剂的13C在不同氘代溶剂中的化学位移值

核磁知识(NMR) 一:样品量的选择 氢谱,氟谱,碳谱至少需要5mg. 1H-1H COSY, 1H-1H NOESY, 1H-13C HMBC, 1H-13C HSQC需要10-15mg. 碳谱需要30mg. 二:如何选择氘代溶剂 常用氘代溶剂: CDCl3, DMSO, D2O, CD3OD.特殊氘代溶剂: CD3COCD3, C6D6, CD3CN。 极性较大的化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O和CD3OD。CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。Solvent 化学位移(ppm) 水峰位移(ppm) CDCl3 ? ? ? ? DMSO? ? ? ? ? ? ? ? CD3OD? ? ? ? ? ? ? ? D2O? ? ? ? ? ? ? ? CD3COCD3? ? ? ? ? ? ? ?

常见杂质溶剂在氘代试剂中的化学位移

1H NMR Data proton mult CDCl3(CD3)2CO (CD3)2SO C6D6 CD3CN CD3OD D2O solvent residual peak 7.26 2.05 2.50 7.16 1.94 3.31 4.79 H2O s 1.56 2.84a 3.33a 0.40 2.13 4.87 acetic acid CH3 s 2.10 1.96 1.91 1.55 1.96 1.99 2.08 acetone CH3 s 2.17 2.09 2.09 1.55 2.08 2.15 2.22 acetonitrile CH3 s 2.10 2.05 2.07 1.55 1.96 2.03 2.06 benzene CH s 7.36 7.36 7.37 7.15 7.37 7.33 tert-butyl alcohol CH3 s 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH c s 4.19 1.55 2.18 tert-butyl methyl ether CCH3 s 1.19 1.13 1.11 1.07 1.14 1.15 1.21 OCH3s 3.22 3.13 3.08 3.04 3.13 3.20 3.22 BHT b ArH s 6.98 6.96 6.87 7.05 6.97 6.92 OH c s 5.01 6.65 4.79 5.20 ArCH3 s 2.27 2.22 2.18 2.24 2.22 2.21 ArC(CH3)3 s 1.43 1.41 1.36 1.38 1.39 1.40 chloroform CH s 7.26 8.02 8.32 6.15 7.58 7.90 cyclohexane CH2 s 1.43 1.43 1.40 1.40 1.44 1.45 1,2-dichloroethane CH2 s 3.73 3.87 3.90 2.90 3.81 3.78 dichloromethane CH2 s 5.30 5.63 5.76 4.27 5.44 5.49 diethyl ether CH3 t, 7 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2 q, 7 3.48 3.41 3.38 3.26 3.42 3.49 3.56 diglyme CH2 m 3.65 3.56 3.51 3.46 3.53 3.61 3.67 CH2 m 3.57 3.47 3.38 3.34 3.45 3.58 3.61 OCH3s 3.39 3.28 3.24 3.11 3.29 3.35 3.37 1,2-dimethoxyethane CH3 s 3.40 3.28 3.24 3.12 3.28 3.35 3.37 CH2 s 3.55 3.46 3.43 3.33 3.45 3.52 3.60 dimethylacetamide CH3CO s 2.09 1.97 1.96 1.60 1.97 2.07 2.08 NCH3 s 3.02 3.00 2.94 2.57 2.96 3.31 3.06 NCH3 s 2.94 2.83 2.78 2.05 2.83 2.92 2.90 dimethylformamide CH s 8.02 7.96 7.95 7.63 7.92 7.97 7.92 CH3 s 2.96 2.94 2.89 2.36 2.89 2.99 3.01 CH3 s 2.88 2.78 2.73 1.86 2.77 2.86 2.85 dimethyl sulfoxide CH3 s 2.62 2.52 2.54 1.68 2.50 2.65 2.71 dioxane CH2 s 3.71 3.59 3.57 3.35 3.60 3.66 3.75 ethanol CH3 t, 7 1.25 1.12 1.06 0.96 1.12 1.19 1.17 CH2 q, 7d 3.72 3.57 3.44 3.34 3.54 3.60 3.65 OH s c,d 1.32 3.39 4.63 2.47 ethyl acetate CH3CO s 2.05 1.97 1.99 1.65 1.97 2.01 2.07 C H2CH3 q, 7 4.12 4.05 4.03 3.89 4.06 4.09 4.14 CH2C H3t, 7 1.26 1.20 1.17 0.92 1.20 1.24 1.24 ethyl methyl ketone CH3CO s 2.14 2.07 2.07 1.58 2.06 2.12 2.19 C H2CH3 q, 7 2.46 2.45 2.43 1.81 2.43 2.50 3.18 CH2C H3t, 7 1.06 0.96 0.91 0.85 0.96 1.01 1.26 ethylene glycol CH s e 3.76 3.28 3.34 3.41 3.51 3.59 3.65“grease” f CH3 m 0.86 0.87 0.92 0.86 0.88 CH2 br s 1.26 1.29 1.36 1.27 1.29 n-hexane CH3 t 0.88 0.88 0.86 0.89 0.89 0.90 CH2 m 1.26 1.28 1.25 1.24 1.28 1.29 HMPA g CH3 d, 9.5 2.65 2.59 2.53 2.40 2.57 2.64 2.61 methanol CH3 s h 3.49 3.31 3.16 3.07 3.28 3.34 3.34 OH s c,h 1.09 3.12 4.01 2.16 nitromethane CH3 s 4.33 4.43 4.42 2.94 4.31 4.34 4.40 n-pentane CH3 t, 7 0.88 0.88 0.86 0.87 0.89 0.90 CH2 m 1.27 1.27 1.27 1.23 1.29 1.29 2-propanol CH3 d, 6 1.22 1.10 1.04 0.95 1.09 1.50 1.17 CH sep, 6 4.04 3.90 3.78 3.67 3.87 3.92 4.02 pyridine CH(2) m 8.62 8.58 8.58 8.53 8.57 8.53 8.52 CH(3) m 7.29 7.35 7.39 6.66 7.33 7.44 7.45 CH(4) m 7.68 7.76 7.79 6.98 7.73 7.85 7.87 silicone grease i CH3 s 0.07 0.13 0.29 0.08 0.10 tetrahydrofuran CH2 m 1.85 1.79 1.76 1.40 1.80 1.87 1.88 CH2O m 3.76 3.63 3.60 3.57 3.64 3.71 3.74 toluene CH3 s 2.36 2.32 2.30 2.11 2.33 2.32 CH(o/p) m 7.17 7.1-7.27.18 7.02 7.1-7.37.16 CH(m) m 7.25 7.1-7.27.25 7.13 7.1-7.37.16 triethylamine CH3 t,7 1.03 0.96 0.93 0.96 0.96 1.05 0.99 CH2 q, 7 2.53 2.45 2.43 2.40 2.45 2.58 2.57

核磁共振氢谱专项练习答案

核磁共振氢谱专项练习及答案 (一)判断题(正确的在括号内填“√”号;错误的在括号内填“×”号。) 1.核磁共振波谱法与红外吸收光谱法一样,都是基于吸收电磁辐射的分析法。( ) 2.质量数为奇数,核电荷数为偶数的原子核,其自旋量子数为零。( ) 3.自旋量子数I=1的原子核在静磁场中,相对于外磁场,可能有两种取向。( ) 4.氢质子在二甲基亚砜中的化学位移比在氯仿中要小。( ) 5.核磁共振波谱仪的磁场越强,其分辨率越高。( ) 6.核磁共振波谱中对于OCH3、CCH3和NCH3,NCH3的质子的化学位移最大。( ) 7.在核磁共振波谱中,耦合质子的谱线裂分数目取决于邻近氢核的个数。( ) 8.化合物CH3CH2OCH(CH3)2的1H NMR中,各质子信号的面积比为9:2:1。( ) 9.核磁共振波谱中出现的多重峰是由于邻近核的核自旋相互作用。( ) 10.化合物Cl2CH—CH2Cl的核磁共振波谱中,H的精细结构为三重峰。( ) 11.苯环和双键氢质子的共振频率出现在低场是由于π电子的磁各向异性效应。( ) 12.氢键对质子的化学位移影响较大,所以活泼氢的化学位移在一定范围内变化。( ) 13.不同的原子核产生共振条件不同,发生共振所必需的磁场强度(B0)和射频频率(v)不同。( ) 14.(CH3)4Si分子中1H核共振频率处于高场,比所有有机化合物中的1H核都高。( ) 15.羟基的化学位移随氢键的强度变化而移动,氢键越强,δ值就越小。( ) 答案 (一)判断题 1.√ 2.× 3.× 4.× 5.√ 6.× 7.√ 8.× 9.√ l0.√ 11.√ l2.√l3.√ l4.× l5.× (二)选择题(单项选择) 1.氢谱主要通过信号的特征提供分子结构的信息,以下选项中不是信号特征的是( )。 A.峰的位置; B.峰的裂分;C.峰高;D.积分线高度。 2.以下关于“核自旋弛豫”的表述中,错误的是( )。 A.没有弛豫,就不会产生核磁共振; B.谱线宽度与弛豫时间成反比; C.通过弛豫,维持高能态核的微弱多数;D.弛豫分为纵向弛豫和横向弛豫两种。 3.具有以下自旋量子数的原子核中,目前研究最多用途最广的是( )。 A.I=1/2;B.I=0;C.I=1;D.I>1。 4.下列化合物中的质子,化学位移最小的是( )。 A.CH3Br;B.CH4;C.CH3I;D.CH3F。 5.进行已知成分的有机混合物的定量分析,宜采用( )。 A.极谱法;B.色谱法;C.红外光谱法;D.核磁共振法。 6.CH3CH2COOH在核磁共振波谱图上有几组峰?最低场信号有几个氢?( ) A.3(1H);B.6(1H);C.3(3H);D.6(2H)。 7.下面化合物中在核磁共振谱中出现单峰的是( 九 A.CH3CH2C1;B.CH3CH20H;C.CH3CH3;D.CH3CH(CH3)2。 8.下列4种化合物中,哪个标有*号的质子有最大的化学位移?( )

核磁共振氢谱总结

第3章核磁共振氢谱 核磁共振(nuclear magnetic resonance, NMR)是近十几年来发展起来的新技术,它与元素分析、组外光谱、红外光谱、质谱等方法配合,已成为化合物结构测定的有力工具。目前核磁共振已经深入到化学学科的各个领域,广泛应用越有机化学、生物化学、药物化学、罗和化学、无机化学、高分子化学、环境化学食品化学及与化学相关的各个学科,并对这些学科的发展起着极大的推动作用。 核磁共振测定过程中不破坏样品,仪分样品可测多种数据;不但可以测定纯物质,也可以测定彼此型号不重叠的混合物样品;不但可以测定有机物,现在许多无机物的分子结构也能用核磁共振技术进行测定。 3.1 核磁共振的基本原理 3.1.1 原子核的磁矩 原子核是带正电的粒子,若其进行自旋运动将能产生磁极矩,但并不是所有的原子核都能产生自旋,只有那些中子数和质子数均为奇数,或中子数和质子数之一为奇数的原子核才能产生自旋。如1H、13C、15N、19F、31P……、119Sn等。这些能够自旋的原子核进行自旋运动时能产生磁极矩,原子核的自旋运动与自旋量子数I相关,I=0的原子核没有自旋运动。只有I≠0的原子核有自旋运动。 原子核由中子和质子所组成,因此有相应的质量数和电荷数。很多种同位素的原子核都具有磁矩,这样的原子核可称为磁性核,是核磁共振的研究对象。原子核的磁矩取决于原子核的自旋角动量P,其大小为: 式中:I为原子核的自旋量子数。h为普朗克常数。 原子核可按I的数值分为以下三类: (1)中子数、质子数均为偶数,则I=0,如12C、16O、32S等。此类原子核不能用核磁共振法进行测定。 (2)中子数与质子数其一为偶数,另一为奇数,则I为半整数,如 I=1/2:1H、13C、15N、19F、31P、37Se等; I=3/2:7Li、9Be、11B、33S、35Cl、37Cl等; I=5/2:17O、25Mg、27Al、55Mn等; 以及I=7/2、9/2等。 (3)中子数、质子数均为奇数,则I为整数,如2H(D)、6Li、14N等I=1;58Co,I=2;10B,I=3。 (2)、(3)类原子核是核磁共振研究的对象。其中,I=1/2的原子核,其电荷均匀分布于原子核表面,这样的原子核不具有四极矩,其核磁共振的谱线窄,最宜于核磁共振检测。凡I值非零的原子核即具有自旋角动量P,也就具有磁矩μ,μ与P之间的关系为: γ称为磁旋比,是原子核的重要属性。 3.1.2 自旋核在次场中的取向和能级 质子核磁距在外加磁场中空间量子化,有2I + 1种可能的空间取向,这些磁量子数m的值只能取I, I-1......-I, -I+1,共有2I + 1种可能的值,如下图所示:

NMR常见溶剂峰和水峰

13C的耦合常数,H2O和交换了D的HOD上的1H产生的即水峰的化学位移 氯仿:小、中小、中等极性 DMSO:芳香系统(日光下自然显色、紫外荧光)。对于酚羟基能够出峰。芳香化合物还是芳香甙,都为首选。 吡啶:极性大的,特别是皂甙 对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大的化合物可采用氘代丙酮、重水等。 针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)、氘代吡啶(用于难溶的酸性或芳香化合物)等。 丙酮:中等极性 甲醇:极性大 氯仿—甲醇: 石:乙5;1小极性 石:丙2:1——1:1中等极性 氯仿:甲醇6:1极性以上含有一个糖 2:1含有两个糖 含有糖的三萜皂甙:一般用吡啶

常见溶剂的化学位移 常见溶剂的1H在不同氘代溶剂中的化学位移值 常见溶剂的化学位移 13

核磁知识(NMR) 一:样品量的选择 氢谱,氟谱,碳谱至少需要,1H-1HNOESY,1H-13CHMBC,1H-13CHSQC需要10-15mg.碳谱需要30mg. 二:如何选择氘代溶剂 常用氘代溶剂:CDCl3,DMSO,D2O,CD3OD.特殊氘代溶剂:CD3COCD3,C6D6,CD3CN。 极性较大的化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O和CD3OD。 CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。 Solvent化学位移(ppm)水峰位移(ppm) CDCl3? DMSO? CD3OD? D2O? CD3COCD3

核磁共振氢谱中的几个重要参数

2.1核磁共振氢谱中的几个重要参数 1、化学位移 (1)影响化学位移的主要因素: a.诱导效应。 电负性取代基降低氢核外电子云密度,其共振吸收向低场位移,δ值增大,如 CH 3F CH 3 OH CH 3 Cl CH 3 Br CH 3 I CH 4 TMS δ(ppm) 4.06 3.40 3.05 2.68 2.16 0.23 0 X电负性 4.0 3.5 3.0 2.8 2.5 2.1 1.6 对于X-CH<Y Z 型化合物,X、Y、Z基对>CH-δ值的影响具有加合性,可用 shoolery公式估算,式中0.23为CH 4的δ,C i 值见下表。 例如:BrCH2Cl(括号内为实测值) δ=0.23+2.33+2.53=5.09ppm(5.16ppm) 利用此公式,计算值与实测值误差通常小于0.6ppm,但有时可达1pmm。 值得注意的是,诱导效应是通过成键电子传递的,随着与电负性取代基距离的增大,诱导效应的影响逐渐减弱,通常相隔3个碳以上的影响可以忽略不计。例如:

b.磁各向异性效应。 上面所述的质子周围的电子云密度,能阐明大多数有机化合物的化学位移值。但是还存在用这一因素不能解释的事实:如纯液态下的乙炔质子与乙烯质子相比,前者在高场共振;相反苯的质子又在低场下发生共振。这些现象可用磁各向异性效应解释。 当分子中某些基团的电子云排布不是球形对称时,即磁各向异性时,它对邻近的H核就附加一个各向异性磁场,使某些位置上核受屏蔽,而另一些位置上的核受去屏蔽,这一现象称为各向异性效应。在氢谱中,这种邻近基团的磁各向异性的影响十分重要。现举例说明一下: 叁键的磁各向异性效应:如乙炔分子呈直线型,叁键轴向的周围电子云是对称分布的。乙炔质子处于屏蔽区,使质子的δ值向高场移动。

NMR中常用氘代试剂及化学位移

常见溶剂的化学位移 常见溶剂的1H在不同氘代溶剂中的化学位移值 氘 代 溶 剂 mult. CDCl3(CD3)2CO(CD3)2SO C6D6CD3CN CD3OD D2O C5D5N 残余溶剂峰7.26 2.05 2.507.16 1.94 3.31 4.797.20 7.57 8.72 水峰brs 1.56 2.84 3.330.40 2.13 4.87 4.79 4.96 CHCl3s7.268.028.32 6.157.587.90 (CH3)2CO s 2.17 2.09 2.09 1.55 2.08 2.15 2.22 (CH3)2SO s 2.62 2.52 2.54 1.68 2.50 2.65 2.71 C6H6s7.367.367.377.157.377.33 CH3CN s 2.10 2.05 2.07 1.55 1.96 2.03 2.06 CH3OH CH 3 ,s OH,s 3.49 1.09 3.31 3.12 3.16 4.01 3.07 3.28 2.16 3.34 3.34 C5H5N CH(2),m CH(3),m CH(4),m 8.62 7.29 7.68 8.58 7.35 7.76 8.58 7.39 7.79 8.53 6.66 6.98 8.57 7.33 7.73 8.53 7.44 7.85 8.52 7.45 7.87 8.72 7.20 7.57 CH3COOC2H5CH3,s CH2,q CH3,t 2.05 4.12 1.26 1.97 4.05 1.20 1.99 4.03 1.17 1.65 3.89 0.92 1.97 4.06 1.20 2.01 4.09 1.24 2.07 4.14 1.24 CH2Cl2s 5.30 5.63 5.76 4.27 5.44 5.49 n-hexane CH3,t CH2,m 0.88 1.26 0.88 1.28 0.86 1.25 0.89 1.24 0.89 1.28 0.90 1.29 C2H5OH CH3,t CH2,q 1.25 3.72 1.12 3.57 1.06 3.44 0.96 3.34 1.12 3.54 1.19 3.60 1.17 3.65

第六期 做核磁的时候为何要加氘代试剂

第六期做核磁的时候为何要加氘代试剂 2014-02-25蒋竞波谱分析 第6期做核磁的时候为何要加氘代试剂 1)用一句话来回答氘代试剂的作用,那就是为了准确的锁场,化合物中H共振频率是与仪器里面的磁场强度相关的函数,通常我们指的400 M 核磁仪器,对应的磁场强度时9.4T,这里的400M是在这个强度下H核的共振频率,另外化合物的共振频率还会轻微的受到化合物的化学环境影响,比如同样在 9.4T的磁场强度下面,CH3OH,里面的 CH3的在核磁谱图上是出峰子啊3.6左右,而CHCl3中的氢出峰在 7.26左右,两个峰在化学位移上好像差别挺大,差不多 4个 ppm,转化为频率的差别就是 4 ppm* 400M= 1600 HZ,相对于400M的这个共振频率,这个量是非常小的只占到百万分之4. 2)核磁里面的磁场强度之所以需要去非常准确的锁定,核心原因是,我们测试化合物里面的H的共振频率都是几乎完全一样的,在9.4T的

磁场强度下几乎都是 400 M核磁,为了要准确区分由于化合物化学结构的差异,造成的核磁共振频率的变化,那么一定要在非常均匀稳定的磁场环境下,才能获得测试这个微小差异的可能, 3)举例说明这个工作机制,比如我们使用氘代甲醇做溶剂,那核磁仪器有一个通道就可以用来接收氘核的频率信号,氘代甲醇的氘在9.4T 的磁场强度下,其共振信号是一个常数,如果由于仪器超导原因(偶然因素),磁场发生微小的变化,那检测器检测到的氘的频率信号就会跟着发生一个微小变化, 仪器这个时候会自动启动匀场线圈(这个就是大学里面学的罗线圈,不是超导体,可以产生微小磁场),来维持磁场强度稳定在9.4T,这样就确保在在一个HNMR整个测试过程当中,都是在一致的磁场强度,以及准确的磁场强度获得的数据, 4)为何做核磁的时候我们需要准确的登记所用氘代试剂的种类呢?这个原因其实和上面第二点里面说的理论是一致的,虽然不同氘核的共振频率是基本一样的,但是还是会受到化学结构的一些影响,不同氘代试剂的试剂共振频率都是不一样的,如果登记错误的氘代试剂,会造成整个谱图的化学位移,一起平移几个ppm单位,这对于氢谱来说是不能允许的,因为99%的化合物的H的化学位移都在0-20 ppm这个区间。

相关文档
最新文档