软开关技术
第8章 软开关技术
第7章 软开关技术
准谐振型变换电路: 准谐振开关的基本结构形式
Cr Lr S VD L S Cr VD Cr 1 Lr L S Cr 2 Lr L VD
a)
b)
c)
图 7-4 准谐振电路的基本开关单元 a)零电压开关准谐振电路的基本开关单元 b)零电流开关准谐振电路的基本开关单元 c)零电压开关多谐振电路的基本开关单元
将谐振电感及其辅助开关电路改为并联:
主开关通态时,Lr中不流过负载电流,仅在“开通”与“关断” 时启动辅助开关电路,造成主开关管的零电压或零电流条件。
第7章 软开关技术
零转换PWM电路 零转换PWM电路可分为:
零电压转换PWM电路
Zero-Voltage-Transition PWM Converter—ZVT PWM ;
第7章 软开关技术
零转换PWM电路 特点: 辅助谐振网络不在主功率通道中,使主开关器件在软开关工作 时,不增加过高的电压或电流应力;
辅助谐振网络不需处理很大的环流能量,可减小电路的导通
损耗; 由于辅助谐振网络的位置使其不受输入电压和输出负载的影 响,电路可在很宽的输入电压范围内从零负载到满负载都能工作 在软开关状态。
第7章 软开关技术
7.1 软开关的基本概念
7.1.1 硬开关与软开关 实际器件的开关转换存在一个开关过程,典型过程如下:
开通损耗Pon
关断损耗Poff
“硬开关”是指器件的开关过程是在其电压或电流不为零的 状态下进行的。 即:电压不为零时开通,电流不为零时关断。
第7章 软开关技术
如能延缓开关器件的电流上升率和电流上升率: 则电压、电流交叠区减少,开通关断损耗将大大减少。
3 零开关PWM变换电路
软开关技术
t 0以前等效电路 S导通,VD反偏(iS为VDS与S电流之和) 导通, 反偏 反偏( 电流之和) 导通 电流之和 L为恒流源 为恒流源
7.2零电压开关准谐振电路( 7.2零电压开关准谐振电路(3) 零电压开关准谐振电路
在t1~t2时段等效电路 S关断 ,VDs反偏,VD导通,谐振开始 反偏, 导通 导通, 关断 反偏 uCr继续上升, iLr 下降 继续上升,
t2:iLr=0, uCr 最大
7.2零电压开关准谐振电路( 7.2零电压开关准谐振电路(5) 零电压开关准谐振电路
在t2~t3段等效电路 S关断,VDs反偏,VD导通 关断, 反偏, 导通 关断 反偏 iLr 反向上升,uCr下降 反向上升, t3: uCr=ui,uLr=0,iLr最大
一般会给电路造成总损耗增加、关断过电 压增大等负面影响,因此是得不偿失的。
零电流开通 电感电流,初始保持0不突变 电感电流,初始保持 不突变
零电压关断 电容电压,初始保持0不突变 电容电压,初始保持 不突变
7.2零电压开关准谐振电路( 7.2零电压开关准谐振电路(1) 零电压开关准谐振电路
总体思路:S 以“准软开关”(零电 压关断),产生谐振,使得两端出现 零电压后(其实是与其反并联的二级 管导通,出现很小的负管压降),给S 开通信号,实现零电压开通:“软开 关” 准谐振:仅谐振了半个周期) 准谐振:仅谐振了半个周期)
第7章 软开关技术
电力电子装置高频化 优点: 滤波器、 变压器体积和重量减小, 优点 : 滤波器 、 变压器体积和重量减小 , 电力电子 装置小型化、 轻量化。 装置小型化、 轻量化。 缺点:开关损耗增加,电磁干扰增大。 缺点:开关损耗增加,电磁干扰增大。
《软开关技术》课件
03
CHAPTER
软开关技术在不同领域的应 用
电力电子领域
软开关技术介绍
在电力电子领域,软开关技术是一种用于控制开关电源的先进技术。它通过在开关过程中引入谐振原 理,实现了开关器件的零电压或零电流开通与关断,从而减小了开关损耗和电磁干扰,提高了电源的 效率。
应用实例
在逆变器、直流-直流转换器、不间断电源等电力电子设备中,软开关技术被广泛应用于减小开关损耗 、提高电源效率、降低电磁干扰等方面。
智能电网
在智能电网建设中,软开关技术将发挥重要作用,保障电网的稳定 运行和节能减排。
轨道交通
在轨道交通领域,软开关技术的应用将提升列车运行的稳定性和安 全性。
产业前景
市场规模
随着软开关技术的广泛应用,其 市场规模将不断扩大,吸引更多 企业投入研发和生产。
产业链完善
软开关技术的产业链将逐渐完善 ,形成完整的研发、生产、销售 和服务体系。
降低电磁干扰有助于提高电子设备的性能稳定性,减少对周 围其他设备的干扰,同时也符合现代电子产品绿色环保的要 求。
延长设备寿命
软开关技术能够减小开关过程中产生的应力,从而降低对设备中元器件的损耗, 延长了设备的使用寿命。
设备寿命的延长有助于减少维修和更换成本,同时也减少了电子废弃物的产生, 有利于环境保护。
元器件选择
01
02
03
电力电子器件
如绝缘栅双极晶体管( IGBT)、功率MOSFET等 ,具有高耐压、大电流、 低导通电阻等优点。
无源元件
如电容、电感等,用于实 现能量的储存和转换。
控制电路
用于产生控制信号,调节 开关的导通和关断时间。
电路设计
01
02
电力电子系统的软开关技术应用
电力电子系统的软开关技术应用电力电子系统是现代电力系统中一种重要的组成部分,在能量转换和电力控制方面发挥着关键的作用。
然而,传统的硬开关技术存在着一些问题,如能量损耗大、温升高、开关速度慢等。
为了克服这些问题,软开关技术应运而生。
本文将介绍电力电子系统中软开关技术的应用。
一、软开关技术概述软开关技术是通过控制电流和电压的相位和频率来实现开关过程的一种技术。
相较于硬开关技术,软开关技术具有以下优点:能量损耗小、温升低、开关速度快、抗干扰能力强等。
软开关技术在电力电子系统中得到了广泛的应用和推广。
二、软开关技术在电力电子系统中的应用1. 可逆变器可逆变器是一种电力电子系统,用于将直流电转换为交流电。
传统的硬开关技术在可逆变器中存在能量损耗大、谐波干扰大的问题。
而软开关技术可以有效解决这些问题,提高可逆变器的性能和效率。
2. 无线电频率功率放大器无线电频率功率放大器是一种用于放大和调节无线电频率信号的设备。
传统的硬开关技术在功率放大器中会产生较大的谐波干扰和电磁干扰。
而软开关技术可以通过精确地控制开关时间和频率,减少谐波干扰,并提高功率放大器的效率。
3. 交流输电系统交流输电系统是通过变压器将电能从发电站输送到用户的系统。
传统的硬开关技术在交流输电系统中存在能量损耗大和电流调节精度低的问题。
软开关技术可以通过控制开关的相位和频率,实现电流和电压的精确调节,提高交流输电系统的效率和稳定性。
4. 电动汽车充电系统电动汽车充电系统是将电能传输到电动汽车中进行充电的系统。
传统的硬开关技术在电动汽车充电系统中存在能量损耗大和充电速度慢的问题。
而软开关技术可以减少能量损耗,并通过提高充电器的开关速度,实现快速充电。
三、软开关技术的发展趋势随着电力电子系统的不断进步和发展,软开关技术也在不断发展和完善。
未来,软开关技术将更加智能化和自动化,能够根据实际情况自行调节开关时间和频率,以提高电力电子系统的性能和效率。
此外,软开关技术还有望应用于更多的领域,如光伏发电系统、风力发电系统等。
《软开关技术》课件
混合型软开关电路
结合电压型和电流型电路的特点,实现更高效的软开关。
控制策略
恒定电压控制
保持输出电压恒定,通过调节占空比或频率来实现软 开关。
恒定电流控制
保持输出电流恒定,通过调节占空比或频率来实现软 开关。
恒功率控制
保持输出功率恒定,通过调节占空比或频率来实现软 开关。
软开关技术
CATALOGUE
目 录
• 软开关技术概述 • 软开关技术的优点 • 软开关技术的应用领域 • 软开关技术的实现方式 • 软开关技术的发展趋势 • 软开关技术的前景展望
01
CATALOGUE
软开关技术概述
软开关技术的定义
软开关技术是指在电力电子变换器中 ,利用控制技术实现功率开关管的零 电压开通和零电流关断的一种新型开 关技术。
01
通过调节脉冲宽度来控制开关的导通和关断时间,实现软开关
。
脉冲频率调制(PFM)
02
通过调节脉冲频率来控制开关的导通和关断时间,实现软开关
。
脉冲相位调制(PPM)
03
通过调节脉冲相位来控制开关的导通和关断时间,实现软开关
。
电路拓扑结构
电压型软开关电路
通过在开关管两端并联电容来实现软开关。
电流型软开关电路
高效率的电源能够减小散热需求,降低散热成本,同时减小电源体积和重 量,提高电源的便携性和可靠性。
降低电磁干扰
01
软开关技术能够减小开关过程 中电压和电流的突变,从而降 低电磁干扰(EMI)。
02
降低电磁干扰有助于提高电子 设备的电磁兼容性(EMC),使 其在复杂电磁环境中稳定工作 。
03
降低电磁干扰还可以减小对周 围电子设备的干扰,提高整个 系统的稳定性。
电力电子课件西安交大第8章软开关技术
03
软开关技术能够提高装置的抗电磁干扰能力,保证装置 在复杂电磁环境下的稳定运行。
04 软开关技术的实际应用案例
基于软开关技术的电源设计
开关电源
软开关技术应用于开关电源中,能够降低开关损耗,提高电源效 率,减小体积和重量。
不间断电源
在UPS(不间断电源)中应用软开关技术,可以改善输出电压的波 形,提高供电质量。
谢谢聆听
伺服系统
伺服系统中应用软开关技术,可以减 小系统体积和重量,提高伺服系统的 动态性能和稳定性。
基于软开关技术的电力电子变压器
1 2 3
固态变压器
软开关技术在固态变压器中得到广泛应用,能够 实现高效、灵活的电能转换和传输。
分布式电源系统
在分布式电源系统中,软开关技术可以提高电力 电子变压器的转换效率和可靠性,减小系统的体 积和重量。
适用于中大功率的电源转换,具有较高的输 出电压和较低的效率。
02
01
半桥式
适用于中大功率的电源转换,具有较低的输 出电压和较高的效率。
04
03
软开关技术的控制策略
恒频控制
保持开关频率恒定,通过改变占空比来调节输出 电压或电流的大小。
变频控制
改变开关频率,通过调节占空比来保持输出电压 或电流的大小恒定。
分布式电源系统
软开关技术为分布式电源系统提供高效、可靠的并网控制策略,提 高系统的稳定性和可靠性。
基于软开关技术的电机驱动系统
电机控制器
电动汽车驱动系统
软开关技术应用于电机控制器中,能 够减小电机启动电流和转矩脉动,提 高电机的控制精度和动态响应性能。
在电动汽车驱动系统中应用软开关技 术,能够提高驱动系统的效率和可靠 性,延长电动汽车的续航里程。
电力电子技术第6章.软开关技术
图6-5给出了前三种软开关电路的基本开关单元,谐振直流 环节的电路见图6-10。
图6-5 准谐振电路的基本开关单元
2、零开关PWM电路
零开关PWM变换电路是在准谐振变换电路基础上,增加了 辅助开关而形成的。辅助开关用于控制谐振的开始时刻,使谐 振仅发生于开关过程前后,这样,电路就可以采用恒频控制方 式即PWM控制方式。零开关PWM电路可分为:
图6-6 零开关PWM电路的基本开关单元
3、零转换PWM电路
准谐振变换器的谐振电感和谐振电容一直参与工作;零开关 PWM变换器的谐振元件虽不一直工作,但谐振电感却串在主回 路中,损耗较大。为克服这些缺陷,提出了零转换PWM变换器。 虽这类变换器也采用对谐振时刻进行控制来实现PWM控制,但 与零开关变换器相比具有更突出的优点:
要 实 现 软 开 关 的 PWM 控制,只需控制Lr与Cr的 谐振时刻。其方法是:要 么在适当时刻先短接谐振 电感,在需要谐振的时刻 再断开;要么在适当时刻 先断开谐振电容,在需要 谐振的时刻再接通。由此 得到不同形式的零开关 PWM 电 路 的 基 本 开关 单 元, 如图 6-6 所 示,其 中 S1为辅助开关。
第6章 软开关技术
6.1 软开关的基本概念 1、硬开关及其缺点
变流电路中的电力电子开关不是理想器件。开通时,开关 管的电压不是立即降到零,同时它的电流也不是立即上升到 负载电流,有一个上升时间。在这段时间里,开关元件承受 的电压和流过的电流有一个交叠区,会产生开关损耗,称之 为开通损耗,其波形如图6-1(a)所示。同样,在开关关断 时,开关管的电流也有一个下降过程,电压也有一个上升时 间,电压和电流的交叠产生的开关损耗称之为关断损耗,其 波形如图6-1(b)所示。开关器件在开关过程中产生的开通 损耗和关断损耗,统称为开关损耗。具有这种开关过程的开 关称为硬开关。
电力电子技术软开关技术课件
电力电子技术软开关技术课件
7.2 软开关电路的分类
2)零开关PWM电路
引入了辅助开关来控制谐振的开始时 刻,使谐振仅发生于开关过程前后。
零开关PWM电路可以分为:
• 零电压开关PWM电路(Zero-VoltageSwitching PWM Converter—ZVS PWM)
• 零电流开关PWM电路(Zero-CurrentSwitching PWM Converter—ZCS PWM)
b)软开关的关断过程
图7-2 软开关的开关过程
电力电子技术软开关技术课件
7.1.2 零电压开关和零电流开关
• 零电压开通
– 开关开通前其两端电压为零——开通时不会产生损耗和噪声。
• 零电流关断
– 开关关断前其电流为零——关断时不会产生损耗和噪声。
• 零电压关断
– 与开关并联的电容能延缓开关关断后电压上升的速率,从而 降低关断损耗。
uLr
O
t
时处于通态,每个开关关
iLr
断到另一个开关开通都要
O
t
经过一定的死区时间。
uT1
O
t
uR
O
iL
t
O
t
iVD1
O iVD2
t
图 7-14 移相全桥零电压开电关力P电W子M技电术路软开关技术课图件O 7-1t58t9移t0 相t1全t2 t3t桥4 t5 电t路6 t7 t的8t9 t理0 想化波t 形
电路中的整流或逆变环节工 作在软开关的条件下。
图 7-11 谐振直流环电路原理图
• 由于电压型逆变器的负载通 常为感性,而且在谐振过程 中逆变电路的开关状态是不 变的,因此分析时可将电路 等效。
-软开关技术(soft technique)
(7-5) (7-6)
Poff f s
toff 0
t on t ri t fv
Ploss
toff trv t fi
1 VD I 0 f s (ton toff ) 2
线路电感 Lσ≠ 0 时开通、关断过程
VT
图7.11
安全工作区
Lσ=0时,开通轨迹ABC,关断轨迹 CBA Lσ≠ 0时,开通轨迹AQEC,关断轨 迹CBHPA Lσ改善了开通轨迹,恶化了关断轨 迹
开关状态2:t1<t<t2
T1断态,Vcr=VT1=VD。iL经D2、T2 续流,Io经D0续流。Toff=t2-t1可控, 用以调控输出电压。
8.3.1 零电压开通脉冲宽度调制(ZVS PW 变换器工作原理(续4)
开关状态3:t2<t<t3
t=t2时,关断T2, Lr 、 Cr谐振半 个周期到t3, t=t3时 Vcr=VT1=VD, iL达到负最大值。
t
VD
D
rT IO iD
T
iT
rT
iD
(a) 电路
t
t 0 t1 vT (v CE ) t2 t3 t4 t5 t6 t7 t8 t t10 9
iT
电压限制线
R E
I CM
N C
VD
vT
电流限制线 10us功率限制线
vT
t
td PT t ri
IO
B
t fv
t on PT vT iT
ts
t rv t fi
第8章
谐振开关型变换器 --软开关技术(soft-switch)
1
现代电力电子的发展------高频化
什么是电力电子中的软开关技术?
什么是电力电子中的软开关技术?在当今的电力电子领域,软开关技术正扮演着越来越重要的角色。
那么,究竟什么是软开关技术呢?要理解软开关技术,我们首先得从电力电子电路中的开关说起。
在传统的电力电子电路中,开关的开通和关断过程往往不是理想的。
当开关开通时,电流会从零逐渐上升;而当开关关断时,电压会从零逐渐上升。
这种非理想的开关过程会导致开关损耗的产生。
开关损耗主要包括导通损耗和开关过程中的损耗。
导通损耗是由于开关在导通状态下存在一定的电阻,电流通过时会产生功率损耗。
而开关过程中的损耗则更为复杂,在开关开通和关断的瞬间,电压和电流会有重叠的时间段,这期间会产生较大的功率损耗,并且还会引起电磁干扰等问题。
为了降低这些损耗,提高电力电子装置的效率和性能,软开关技术应运而生。
软开关技术的核心思想是让开关在电压或电流为零的时候进行开通或关断,从而减少甚至消除开关过程中的损耗。
具体来说,软开关技术可以分为零电压开关(Zero Voltage Switching,ZVS)和零电流开关(Zero Current Switching,ZCS)两种类型。
零电压开关是指在开关开通前,其两端的电压已经降为零,这样在开通瞬间就不会有电压和电流的重叠,从而大大降低了开通损耗。
实现零电压开关的常见方法是在开关两端并联一个电容,利用电路中的电感和电容的谐振,使得开关两端的电压在开通前降为零。
零电流开关则是在开关关断前,通过电路的设计让流过开关的电流先降为零,从而避免了关断时电压和电流的重叠,降低了关断损耗。
通常通过在开关支路串联电感来实现零电流关断。
软开关技术的实现需要依靠合理的电路拓扑结构和控制策略。
常见的软开关电路有准谐振电路、零开关 PWM 电路和零转换 PWM 电路等。
准谐振电路是最早出现的软开关电路之一,它利用电感和电容的谐振来实现软开关,但存在着电压和电流应力大、工作频率不固定等缺点。
零开关 PWM 电路在准谐振电路的基础上进行了改进,通过引入辅助开关,实现了恒定频率的控制,同时降低了电压和电流应力。
电机控制软开关技术要求
电机控制软开关技术要求
电机控制软开关技术是一种用于控制电机的技术,其主要目的是实现电机的高效、可靠和精确控制。
以下是一些常见的电机控制软开关技术要求:
1. 效率和能耗:软开关技术应能够提高电机的效率,降低能耗。
通过优化开关动作,可以减少开关损耗,提高能量转换效率。
2. 噪声和振动:软开关技术应能够减少电机运行过程中的噪声和振动。
通过平滑的开关动作,可以降低电磁干扰和机械振动,提高电机的运行平稳性。
3. 可靠性和寿命:软开关技术应具有高可靠性和长寿命。
它应该能够承受电机运行过程中的电应力、热应力和机械应力,并具有良好的耐久性。
4. 控制精度和响应速度:软开关技术应能够提供高精度的电机控制,确保电机的转速、转矩和位置等参数能够准确地控制和调节。
同时,响应速度也是一个重要的要求,能够快速响应控制信号。
5. 兼容性和可扩展性:软开关技术应与现有的电机控制系统和硬件兼容,并具有一定的可扩展性,以便适应不同类型和规格的电机。
6. 保护功能:软开关技术应具备适当的保护功能,如过流保护、短路保护、过热保护等,以确保电机和控制系统的安全运行。
7. 调试和监测:软开关技术应提供方便的调试和监测手段,以便对电机的运行状态进行实时监测和故障诊断。
这些要求是电机控制软开关技术的一般准则,具体的技术要求可能会根据应用场景和特定需求而有所不同。
在选择和应用电机控制软开关技术时,应根据实际情况进行评估和选择,以满足特定的控制要求。
请注意,这只是一些常见的要求,具体的电机控制软开关技术可能会有其他特定的要求。
第7章 软开关技术
图7-4准谐振电路的基本开关单元 (a)零电压开关准谐振单元 (b)零电流开关准谐振单元 (c)零电压开关多谐振关单元
2.零开关PWM电路 零开关PWM电路可以分为:零电压开关PWM 电路和零电流开关PWM电路。这两种电路的基本开 关单元如图7-5所示。 3.零转换PWM电路 零转换PWM电路可以分为:零电压转换PWM 电路和零电流转换PWM电路。这两种电路的基本开 关单元如图7-6所示。
7.3.1零电压开关准谐振电路
以降压型零电压开关准谐振电路为例分析其工 作原理,电路图、波形图及等效电路图如图7-7 所 示。图中S为功率开关元件,Lr、Cr为谐振电感和电 容。假定L和C无穷大,则L和C可以等效为电流源和 电压源。零电压开关准谐振电路的工作过程可分为 四个阶段:
图7-7 降压型零电压开关准谐振电路 (a)电路图(b)波形图(c)等效电路图
7.3.2谐振直流环
谐振直流环是适用于变频电路。在AC-DC-AC 变换电路中存在中间直流环节,DC-AC逆变电路中 的功率器件在恒定直流电压下以硬开关工作。加入 谐振直流环后,为逆变电路功率器件提供了软开关 的条件。 图7-8为用于电压型逆变器的谐振直流环原理图、 等效电路及波形图。Lr、Cr为谐振电感和电容,S为 功率开关元件,分析时认为负载电流恒定为I0。
图7-5 零开关PWM电路的基本开关单元 (a)零电压开关PWM单元 (b)零电流开关PWM单元
图7-6零转换PWM电路的基本开关单元 (a)零电压转换PWM单元 (b)零电流转换PWM单元
7.3软开关技术的实现
软开关中使电压或电流为零,目前均用储能元件 LC构成谐振电路来实现,从而消除开关过程中的电 压电流交叉重叠,所以软开关技术也称为谐振开关 技术。 运用软开关技术构成的软开关电路类型较多,本 节将对四种典型的软开关电路进行详细的分析。 • 7.3.1零电压开关准谐振电路 • 7.3.2谐振直流环 • 7.3.3移相全桥型零电压开关PWM 电路 • 7.3.4 零电压转换PWM电路
开关电源 软开关技术
06
详细描述
软开关技术能够降低开关电源内部的热损耗, 减少器件的温升,从而延长开关电源的使用寿 命。
软开关技术在DC/DC转换中的应用
总结词
高效率、高功率密度
详细描述
软开关技术在DC/DC转换中 能够实现高效率、高功率密 度的输出,尤其在高压、大 电流的电源应用中具有显著
优势。
总结词
降低噪声、减小振动
未来软开关技术将进一步向集成化和智能化方向发展,实现更小体积、
更高可靠性和智能化的电源设计。
03
多功能化和定制化趋势
随着电子设备功能的多样化,对电源的需求也越来越多样化,软开关技
术将进一步实现多功能化和定制化设计,以满足不同领域和不同应用场
景的需求。
05
结论
总结软开关技术在开关电源中的重要地位
软开关技术能够降低开关损耗,提高电源效率,减小散热需求,从而减小电源体积 和重量,提高电源的可靠性和稳定性。
工作原理
开关电源通过将输入直流电压转换为 高频交流电压,再通过整流和滤波电 路,将高频交流电压转换为直流输出 电压。
开关电源的分类与特点
分类
根据工作频率、电路结构、控制 方式等不同,开关电源可分为多 种类型,如恒压式、恒流式、脉 冲宽度调制式等。
特点
开关电源具有效率高、体积小、 重量轻、动态响应快等优点,广 泛应用于电子设备、通信设备、 电力设备等领域。
03
软开关技术在开关电源 中的应用
软开关技术在AC/DC转换中的应用
总结词
提高效率、降低损耗
01
02
详细描述
软开关技术在AC/DC转换中应用广泛,通过 降低开关损耗、提高转换效率,有效解决了 传统硬开关模式下的能效问题。
软开关的概念
软开关的概念软开关是一种基于软件的开关技术,它是通过在计算机系统中使用软件控制来实现开关操作的。
相比传统的硬件开关,软开关具有更高的灵活性和可扩展性,可以为系统带来更多的功能和便利性。
在本文中,我们将详细介绍软开关的概念、原理、应用和发展前景。
一、软开关的概念软开关是指通过软件控制来实现开闭状态的开关。
它可以在计算机系统和电子设备中使用,用于控制电路的开关操作。
与传统的硬开关相比,软开关具有更高的灵活性和可扩展性,可以根据需求进行动态配置和调整。
二、软开关的原理软开关是通过软件控制硬件电路来实现开关操作的。
在计算机系统中,软开关通常通过使用操作系统的API或驱动程序来实现。
当需要打开或关闭特定的电路时,软开关会发送相应的软件指令给操作系统,然后由操作系统将指令传递给硬件电路驱动程序或固件,最终实现开关操作。
三、软开关的应用软开关在计算机系统和电子设备中有着广泛的应用。
以下是一些软开关的常见应用场景。
1.计算机网络:软开关可以用于实现网络设备的动态配置和管理。
通过软件控制网络设备的开关状态,可以实现网络的灵活管理和优化。
例如,软开关可以用于实现虚拟局域网(VLAN)的划分和管理,以及流量控制和路由优化等功能。
2.云计算和虚拟化:软开关是云计算和虚拟化技术的重要组成部分。
通过软件控制物理服务器和虚拟机的开关状态,可以实现资源的动态分配和管理。
软开关可以用于实现虚拟机的启动和关闭操作,以及虚拟机之间的网络通信和数据传输。
3.电力系统:软开关在电力系统中也有着重要的应用。
通过软件控制电力设备的开关状态,可以实现电力系统的远程监控和控制。
软开关可以用于实现电网的动态配置和故障隔离,以及电力设备的保护和控制。
4.智能家居:软开关是智能家居系统中的核心技术之一。
通过软件控制家庭设备的开关状态,可以实现智能家居系统的自动化控制和管理。
软开关可以用于实现家庭电器的远程操控和定时控制,以及实现家庭安防和能源管理等功能。
《软开关技术 》课件
基于电容的软开关技术
电容器:用于存储电能,实现 电能的平滑过渡
开关原理:通过改变电容器的 充放电状态,实现开关功能
应用领域:广泛应用于电力电 பைடு நூலகம்、新能源等领域
优点:开关速度快、损耗低、 可靠性高
基于变压器的软开关技术
原理:通过控制变 压器的初级和次级 绕组,实现电压和 电流的平滑过渡
优点:可以实现高 功率因数、低谐波、 高效率等优点
硬开关技术:开关的切换过程是瞬间完成的,开关损耗较大
软开关技术:开关的导通时间可以控制,可以实现更精确的电流控制
硬开关技术:开关的切换过程无法控制,电流控制精度较低
软开关技术:开关的导通时间可以控制,可以实现更稳定的电压输出
硬开关技术:开关的切换过程无法控制,电压输出稳定性较差
软开关技术在电力电子领域的应用优势
软开关技术的实现方式
零电压开关 (ZVS):在开 关管两端电压为 零时进行开关操 作,实现零电压 开关。
零电流开关 (ZCS):在开 关管电流为零时 进行开关操作, 实现零电流开关。
谐振开关:利用 谐振电路实现开 关管的开关操作, 提高开关效率。
软开关技术在电 力电子设备中的 应用:如逆变器、 整流器、直流电 源等。
软开关技术的分类
零电压开关(ZVS)
零电流开关(ZCS)
零电压零电流开关 (ZVZCS)
谐振开关(RCS)
软开关技术在电力电 子领域的应用
软开关技术的应用场景
电动汽车:如电机驱动、电 池管理系统等
电力系统:如高压直流输电、 柔性交流输电等
电力电子设备:如开关电源、 逆变器、电机驱动等
太阳能和风能发电系统:如 逆变器、功率调节器等
04 软开关技术的优势
电力电子技术ppt课件第8章软开关技术
20/29
8.3.3 移相全桥型零电压开关PWM电路
在一个开关周期TS内,共有12种开关模式,分析半周期6个开关模式。
TS/2
21/29
8.3.3 移相全桥型零电压开关PWM电路
* * t0之前:主开关管V1,V4导通。初级电流流经V1、变压器初级绕组、谐 振电感Lr、V4。整流二极管DR1导通,DR2截止,初级向次级供电。
t 这一时D=0,S才可以开通。
☞t5~t6时段:S为通态,iLr线性上升,直
t
到t6时刻,iLr=IL,VD关断。 ☞t4到t6时段电流iLr的变化率为
O
t 0 t1 t2 t 3 t4 t5 t6
t t0
图8-9 零电压开关准谐振电路的理想化波形
■在很多情况下,不再指出开通或关断,仅称零电压开关 和零电流开关。
5/29
8.2 软开关电路的分类
■软开关电路的分类 ◆根据电路中主要的开关元件是零电压开通还是 零电流关断,可以将软开关电路分成零电压电路 和零电流电路两大类,个别电路中,有些开关是 零电压开通的,另一些开关是零电流关断的。
◆根据软开关技术发展的历程可以将软开关电路 分成准谐振电路、零开关PWM电路和零转换 PWM电路。
引言
■现代电力电子装置的发展趋势是小型化、轻量化,同时 对装置的效率和电磁兼容性也提出了更高的要求。
■电力电子电路的高频化 ◆可以减小滤波器、变压器的体积和重量,电力电子装 置小型化、轻量化。 ◆开关损耗增加,电路效率严重下降,电磁干扰增大。
■软开关技术 ◆降低开关损耗和开关噪声。 ◆使开关频率可以大幅度提高。
16/29
8.3.2 谐振直流环
■谐振直流环 ◆应用于交流-直流-交流变换电路的中间直流环节(DC-Link),
软开关技术及其应用
软开关技术及其应用1.软开关技术的简介1.1软开关技术的基本概念软开关:在原电路中增加了小电感、电容等谐振元件,在开关过程前后引入谐振,消除电压、电流的重叠。
降低开关损耗和开关噪声。
近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。
和硬开关工作不同,理想的软关断过程是电流先降到零,电压在缓慢上升到断态值,所以关断损耗近似为零。
由于器件关断前电流已下降到零,解决了感性关断问题。
理想的软开通过程是电压先降到零,电流在缓慢上升到通态值,所以开通损耗近似为零,器件结电容的电压亦为零,解决了容性开通问题。
同时,开通时,二极管反向恢复过程已经结束,因此二极管方向恢复问题不存在。
1.2软开关技术的工作原理图一软开关的开关、关断过程通过在开关过程前后引入谐振,使开关开通前电压先降到零,关断前电流先降到零,就可以消除开关过程中电压、电流的重叠,降低他们的变化率,从而大大减小甚至消除开关消耗。
同时,谐振过程限制了开关过程中电压电流的变化率,这使得开关噪声显著减小。
理想开关过程:零压导通零压关断,开通和关断零损耗零噪声。
2.软开关电路的种类及特点根据电路中主要的开关元件是零电压开通还是零电流关断,可以将软开关电路分成零电压电路和零电流电路两大类。
通常,一种软开关电路要么属于零电压电路,要么属于零电流电路。
但也有个别电路中,有些开关是零电压开通,另一些开关是零电流关断的。
根据软开关技术发展的历程,可以将软开关电路分成以下三种:1)准谐振电路. 是最早出现的软开关电路。
准谐振电路中电压或电流的波形为正弦半波,谐振的引入使得电路的开关损耗和开关噪声大大下降,谐振周期随输入电压、负载变化而改变,因此电路只能采用脉冲频率调制方式来控制。
准谐振电路可以分为零电压开关准谐振电路、零电流开关准谐振电路、零电压开关多谐振电路和用于逆变器的谐振直流环。
2) 零开关PWM电路.电流和电压基本上是方波。
开关承受的电压明显降低。
电路不采用开关频率固定的PWM控制方式。
开关电源 软开关技术
对元件性能要求高
软开关技术要求电路元件具有 更高的耐压和耐流能力,以及
更快的开关速度。
兼容性问题
在某些应用中,软开关技术可 能与现有硬件或标准不兼容,
需要进行适配或修改。
05
软开关技术的实际应用案例
案例一:LED驱本
详细描述
降低开关损耗
通过控制开关的电压和 电流,软开关技术可以 有效地降低开关过程中 的电压和电流应力,从 而减小开关损耗,提高
电源效率。
减小电磁干扰
由于软开关技术可以控 制开关过程中的电压和 电流波形,因此可以减 小开关过程中产生的电 磁干扰,提高电源的电
磁兼容性。
延长开关寿命
通过降低开关过程中的 电压和电流应力,软开 关技术可以延长开关器 件的寿命,降低电源维
03
软开关技术的工作原理
软开关技术的电路结构
电路组成
软开关技术通常由主电路、控制电路和辅助电路组成。主电路负责实现电能转 换,控制电路负责调节开关状态,辅助电路则提供必要的支持功能。
工作模式
根据电路结构和控制方式的不同,软开关技术有多种工作模式,如零电压开通、 零电流关断、零电压关断等。
软开关技术的控制方式
01
脉冲宽度调制(PWM)
通过调节脉冲宽度来控制开关的占空比,从而实现电压和电流的调节。
PWM控制方式简单、易于实现,但可能会产生较高的开关损耗。
02
脉冲频率调制(PFM)
通过调节脉冲频率来控制输出电压或电流,PFM控制方式具有较低的开
关频率,可以减小电磁干扰和开关损耗,但可能会影响输出性能。
03
混合调制(PWM+PFM)
开关电源的应用与发展
应用
开关电源软开关技术
§5.1 软开关旳基本概念 §5.2 软开关电路旳分类 §5.3 经典旳软开关电路
1
引言
➢ 开关电源旳发展趋势 ☼ 小型化、轻量化,对效率和电磁兼容性也有很高要求。
➢ 电力电子装置高频化 ☼ 减小滤波器、变压器旳体积和重量,电力电子装置小 型化、轻量化。 ☼ 开关损耗增长,电路效率严重下降,电磁干扰增大。
关承受旳电压明显降低,电路能够采用开关频率固定旳
PWM控制方式。
Cr
S1
L
S
Lr
VD
Lr
L
S
S1
VD
Cr
a) 零电压开关PWM电路旳基本 b) 零电流开关PWM电路旳基 12
开关单元
本开关单元
5.2.3 零转换PWM电路
采用辅助开关控制谐振旳开始时刻,谐振电路与主开关并联。
零转换PWM电路可分为零电压转换PWM电路(ZVT PWM) 和零电流转换PWM电路(ZCT PWM)。
零电流开关准谐振电路 (Zero-Current-Switching
Lr
L
S
Cr
VD
Quasi-Resonant Converter—ZCS QRC)
b) 零电流开关准谐振电路旳基本开关单元
Cr1
零电压开关多谐振电路
Lr
L
(Zero-Voltage-Switch Multi-Redonant Converter—
零电压开通 开关开通前其两端电压为零,开通时不会产生损耗和 噪声。
零电流关断 开关关断前电流为零,关断时不会产生损耗和噪声。
一般简称零电压开关和零电流开关。零电压开通和 零电流关断主要依托电路中旳谐振来实现。
零电压关断 开关并联旳电容能延缓开关关断后电压上升旳速度, 降低开关损耗。
电力电子 (4)
8.1 软开关的基本概念 8.2 软开关电路的分类 8.3 典型的软开关电路
8.4 软开关技术新进展
8.2 软开关电路的分类
1.准谐振电路 1)零电压开关准谐振电路(Zero-Voltage-Switching Quasi-Re sonant Converter,ZVS QRC)。 2)零电流开关准谐振电路(Zero-Current-Switching Quasi-Re sonant Converter,ZCS QRC)。 3)零电压开关多谐振电路(Zero-Voltage-Switching Multi-Res onant Converter,ZVS MRC)。 4)用于逆变器的谐振直流环(Resonant DC Link)。
8.4 软开关技术新进展
3.在移相全桥零电压开关PWM电路中,如果没有谐振电感 Lr,电路的工作状况将发生哪些改变?哪些开关仍是软开 关?哪些开关将成为硬开关? 4.在零电压转换PWM电路中,辅助开关S1和二极管VD1是 软开关还是硬开关?为什么?
3)比较互为对角的两对开关S1-S4和S2-S3的开关函数的波形, S1的波形比S4超前TS/2时间,而S2的波形比S3超前0~TS/2 时间,因此称S1和S2为超前的桥臂,而称S3和S4为滞后的 桥臂。
8017.tif
8.4 软开关技术新进展
1)新的软开关电路拓扑的数量仍在不断增加,软开关技术 的应用也越来越普遍。 2)在开关频率接近甚至超过1MHz、对效率要求又很高的 场合,曾经被遗忘的谐振电路又重新得到应用,并且表现 出很好的性能。 3)采用几个简单、高效的开关电路,通过级联、并联和串 联构成组合电路,替代原来的单一电路成为一种趋势。 1)硬开关电路存在开关损耗和开关噪声,随着开关频率的 提高这些问题变得更为严重。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
软开关技术
软开关技术开发的原因
硬开关是不管开关管上的电压或电流,强行接通或关断开关管。
当开关管(漏极和源极之间,或者集电极和发射极之间)的电压及电流较大时,切换开关管,由于开关管状态间的切换(由导通到截止,或由截止到导通)需要一定的时间,这样就会造成在开关管状态切换的某一段时间内,电压和电流有一个交越区域,这个交越造成的开关管损耗(开关管的切换损耗)随开关频率的提高而急速增加。
若是感性负载,在开关晶体管关断时会感应出尖峰电压。
开关频率越高,关断越快,该感应电压越高。
此电压加在开关器件两端,容易造成器件击穿。
若是容性负载,在开关晶体管导通瞬间的尖峰电流大。
因此,当开关晶体管在很高的电压下接通时,储存在开关晶体管结电容中的能量将以电流形式全部耗散在该器件内。
频率越高,开通电流尖峰越大,从而会引起开关管的过热损坏。
另外,在次级高频整流回路中的二极管,在由导通变为截止时,有一个反向恢复期,开关晶体管在此期间内接通时,容易产生很大的冲击电流。
显然频率越高,该冲击电流也越大,对开关晶体管的安全运行造成危害。
最后,做硬开关运用的开关电源中,开关晶体管会产生严重的电磁骚扰。
随着频率的提高和电路中的di/dt和du/dt增大,所产生的电磁骚扰也在增大,影响开关电源本身和周围电子设备的正常工作。
上述问题严重阻碍了开关器件(开关晶体管和高频整流二极管)工作频率的提高。
近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。
和硬开关工作原理不同,理想的软关断过程是电流先降小到零,电压在缓慢上升到断态值,所以关断损耗近似为零。
由于器件关断前电流已经下降到零,便解决了感性关断问题。
理想的软开通过程是电压先降到零,电流在缓慢上升到通态值,所以开通损耗近似为零,器件结电容的电压也为零,解决了容性开通问题。
同时,开通时,二极管反向恢复过程已经结束,因此二极管反向恢复问题不存在。
什么是软开关技术
软开关技术还有助于电磁骚扰水平的降低,其原因是开关晶体管在零电压的情况下导通和在零电流的情况下关断,同时快恢复二极管也是软关断的,这可以明显减小功率器件的di/dt和du/dt,从而可以减小电磁干扰的电平。
一般来说软开关的效率较高(因为没有切换损);操作频率较高,PFC或变压器体积可以减少,所以开关电源的体积可以做到更小。
但成本也相对较高,设计较复杂。
软开关电源是相对于硬开关电源而言的。
人们通常所说的开关电源,指的是硬开关电源。
这种电源,开关器件(开关管)是在承受电压或电流的情况下接通或断开电路的,因此在接通和关断的过程中会产生较大的损耗,即所谓开关损耗。
电源的工作状态一定时,开关器件开通或关断一次的损耗也是一定的,因此开关频率越高,开关损耗也就越大。
同时在开关过程中还会激起电路分布电感和寄生电
容的振荡,带来附加损耗并产生电磁干扰,因而硬开关电源频率不能太高,还要采取防止电磁干扰的措施。
软开关电源的开关器件在开通或关断的过程中,或是加于其上的电压为零,即零电压开关,或是通过开关器件的电流为零,即零电流开关。
这种开关方式显著地减小了开关损耗的开关过程中激起的振荡,可以大幅度地提高开关频率,为开关电源小型化、高效率创造了条件。
谐振变换器、准谐振变换器、多谐振变换器、零电压开关脉冲调宽变换器、零电流开关脉冲调宽变换器、零电压转换脉冲调宽变换器、零电流转换脉冲调宽变换器、移相控制零电压转换全桥直流/直流变换器、移相控制零电流转换全桥直流/直流变换器及钳位吸收技术均可实现软开关电源。
谐振变换器实际上是负载谐振型变换器,按谐振元器件的谐振方式可分为串联谐振变换器和并联谐振变换器;按负载与电路的连接关系可分为串联负载谐振变换器和并联负载谐振变换器。
在谐振变换器中,谐振元器件自始至终处于谐振的工作状态,参与能量变换的全过程。
这类变换器对负载变化很敏感,一般采用频率调制的控制方法。
准谐振变换器和多谐振变换器的特点是谐振元器件参与能量变换的某一阶段,不是全程参与。
这类变换器需要采取频率调制控制方法。
零电压开关脉冲调宽变换器和零电流开关脉冲调宽变换器是在准谐振变换器的基础上,增加一个辅助开关管来控制谐振元器件的谐振工作过程,实现恒定频率控制。
它与准谐振变换器的不同之处在于谐振元器件的谐振时间与开关周期相比是非常短的,一般是开关周期的1/5~1/10。
零电压转换脉冲调宽变换器和零电流转换脉冲调宽变换器的特点是变换器工作在脉冲调宽的方式下,电路简单,工作稳定,辅助谐振电路只是在主开关管开关时工作,实现开关管的软开关,其他时间停止工作。
移相控制零电压转换全桥式直流/直流变换器和移相控制零电流转换全桥式直流/直流变换器及两者混合式的变换器是大中功率软开关电源的主要形式。
这类变换器通过改变全桥对角线上下开关管驱动电压移相角的大小来调节输出电压,让超前臂开关管的控制极上的电压领先于滞后臂开关管控制极上的电压一个相位,并在控制器的控制端对同一桥臂的两个反相驱动电压设置不同的死区时间,巧妙利用变压器漏感和开关管的结电容及变压器初次级之间寄生电容来完成谐振过程,实现零电压或零电流开通或关断,错开开关器件大电流与高电压同时出现的硬开关状态,抑制感性关断电压尖峰和容性开通时管温过高,减小了开关损耗与干扰。
钳位吸收电路可以抑制开关器件的浪涌电压或电流,降低开关管的d u/dt和d i/dt的影响,大幅度地减小开关损耗,使电路中的储能被利用或反馈到电网,具有“软化”开关过程的作用,所以有人称之为广义软开关变换器或钳位变换器。
软开关的具体应用
如今软开关变换器都应用了谐振原理, 在电路中并联或串联谐振网络, 势必产生谐振损耗, 并使电路受到固有问题的影响。
为此, 人们在谐振技术和无损耗缓冲电路的基础上提出了组合软开关功率变换器的理论。
组合软开关技术结合了无损耗吸收技术与谐振式零电压技术、零电流技术的优点, 其基本原理是通过辅助管实现部分主管的零电流关断或零电压开通, 主管的其余软开关则是由无损
耗吸收网络来加以实现, 吸收能量恢复电路被ZCT、ZVT谐振电路所取代, 辅助管的软开关则是由无损耗吸收网络或管电压、电流自然过零来加以实现。
换言之, 即电路中既可以存在零电压开通, 也可以存在零电流关断, 同时既可以包含零电流开通, 也可以包含零电压关断, 是这四种状态的任意组合。
由此可见, 由无损耗缓冲技术和谐振技术组合而成的新型软开关技术将成为新的发展趋势。