汽车制动系统的结构设计

合集下载

汽车制动器的结构与设计分析

汽车制动器的结构与设计分析

质量管理体系
建立完善的质量管理体系,包括 质量计划、质量标准、质量记录 等方面的制定和实施,以确保整 个生产过程中的质量控制。
常见问题及解决方案
零部件加工精度不足
加工精度不足可能导致制动器性能下降或安全隐患,解决 方案包括加强加工设备精度维护、采用高精度加工工艺等 措施。
组装与调试问题
组装与调试过程中可能出现配合不良、安装错误等问题, 解决方案包括加强组装与调试的技术培训、采用先进的组 装与调试设备等措施。
质量检验
性能测试合格的制动器需进行 严格的质量检验,确保其符合
设计要求和安全标准。
质量控制方法
严格原材料控制
原材料的质量直接影响到制动器 的性能和安全性,因此需对原材 料进行严格的质量控制,包括材 料质量、规格、性能等方面的检 验。
生产过程控制
生产过程中的质量控制是保证制 动器质量的关键,需对每个生产 环节进行严格的质量监控,包括 加工、组装、调试等过程。
03
汽车制动器的设计要求
制动性能要求
制动距离
在紧急制动情况下,汽车 制动器应能提供尽可能短 的制动距离,以减少事故 发生的可能性。
制动力矩
制动器应能够在不同的速 度和路况下提供适当的制 动力矩,以确保车辆的稳 定性和操控性。
制动响应时间
制动器的响应时间应尽可 能快,以便在紧急情况下 快速发挥作用。
检查制动片磨损情况
02
制动片是制动系统中易损件之一,定期检查其磨损情况,及时
更换以保证制动效果。
检查制动盘/鼓的磨损和损坏
03
制动盘/鼓的磨损和损坏会影响制动效果,定期检查并进行必要
的维修或更换。
常见故障排除方法
01
制动不灵

制动系统的优化设计与仿真分析

制动系统的优化设计与仿真分析

制动系统的优化设计与仿真分析随着汽车工业的发展,制动系统的设计和制造技术也在不断进步。

制动系统是汽车行驶过程中最关键的安全系统之一,能够在紧急情况下尽快将车辆停止,保障车辆和行人的安全。

因此,制动系统的优化设计和仿真分析对于汽车行业至关重要。

一、制动系统的构成制动系统主要由制动器、制动盘/鼓、制动液、制动管路、制动泵等几个部分组成。

其中,制动器可以分为基本制动器和辅助制动器两类。

基本制动器主要包括气压制动器、液压制动器和机械制动器等。

其工作原理是通过施加制动力使车轮停止旋转,从而阻止汽车运动。

辅助制动器则是指制动制动器处理无法满足制动要求时所使用的辅助装置。

主要包括泊车制动器和驻车制动器等。

制动盘/鼓是制动系统主要能量转换的地方,它将制动液通过制动器送到刹车片与制动盘接触的位置,转化为制动力。

制动管路是用于传输制动液的管道,而制动泵则是产生并提供制动液压力的终端设备。

二、制动系统的优化设计在实际的汽车制动系统应用中,制动系统需要满足多种复杂的要求。

如何实现较好的制动性能和较低的成本是设计者需要解决的首要问题。

因此,下面分别从黏着力、稳定性和制动力三个方面探讨制动系统的优化设计。

1.黏着力在制动系统中,刹车片和制动盘必须要有良好的黏着力才能实现高效的制动效果。

所谓黏着力,指的是刹车片表面和制动器内壁之间的摩擦力,它决定了汽车能够在多大范围内停止。

优化黏着力的方法主要有以下几个方面:(1)选择合适的材料。

选择合适的刹车片材料可以改善制动器与制动盘之间的黏着力,从而提高制动性能。

目前主流的刹车片材料有金属、有机和陶瓷等,不同材料的优缺点也不同。

(2)改善制动盘表面。

制动盘表面会因为使用而损耗,会影响刹车片与制动盘之间的黏着力。

对制动盘进行适当的处理或涂层处理可以改善黏着性能。

(3)优化刹车片结构。

刹车片的厚度和面积也会影响制动性能。

适当增加刹车片的面积或者采用具有弹性可调的刹车片结构可以增强黏着性能。

车辆工程毕业设计(论文)ca1041轻型商用车制动系统设计【全套图纸】

车辆工程毕业设计(论文)ca1041轻型商用车制动系统设计【全套图纸】

第1章绪论全套图纸,加1538937061.1制动系统设计的意义汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。

汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。

而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。

汽车的制动性能直接影响汽车的行驶安全性。

随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。

通过查阅相关的资料,运用专业基础理论和专业知识,确定汽车制动系统的设计方案,进行部件的设计计算和结构设计。

使其达到以下要求:具有足够的制动效能以保证汽车的安全性;本系统采用Ⅱ型双回路的制动管路以保证制动的可靠性;采用真空助力器使其操纵轻便;同时在材料的选择上尽量采用对人体无害的材料。

1.2制动系统研究现状车辆在行驶过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。

当车辆制动时,由于车辆受到与行驶方向相反的外力,所以才导致汽车的速度逐渐减小至零,对这一过程中车辆受力情况的分析有助于制动系统的分析和设计,因此制动过程受力情况分析是车辆试验和设计的基础,由于这一过程较为复杂,因此一般在实际中只能建立简化模型分析,通常人们主要从三个方面来对制动过程进行分析和评价:(1)制动效能:即制动距离与制动减速度;(2)制动效能的恒定性:即抗热衰退性;(3)制动时汽车的方向稳定性;目前,对于整车制动系统的研究主要通过路试或台架进行,由于在汽车道路试验中车轮扭矩不易测量,因此,多数有关传动系!制动系的试验均通过间接测量来进行汽车在道路上行驶,其车轮与地面的作用力是汽车运动变化的根据,在汽车道路试验中,如果能够方便地测量出车轮上扭矩的变化,则可为汽车整车制动系统性能研究提供更全面的试验数据和性能评价。

毕业设计论文—汽车制动系统的设计

毕业设计论文—汽车制动系统的设计

毕业设计论文—汽车制动系统的设计汽车制动系统的设计是一项关键的工程,它直接影响到汽车的安全性能。

本文旨在探讨汽车制动系统的设计原理、组成部分以及优化方法,以满足日益增长的汽车市场需求。

首先,汽车制动系统的设计原理基于转动部件的摩擦力和力矩平衡。

当驾驶员踩下制动踏板时,制动助力器将压力传递给制动主缸。

主缸生成高压液体,通过制动液管传输到车轮上的制动器。

与轮轴相连的制动器则通过摩擦力将车轮减速或停止。

一个典型的汽车制动系统由几个主要部分组成:制动踏板、制动助力器、主缸、制动液管、制动器和制动片。

制动踏板是驾驶员踩下的控制装置,通过运动传感器将信号传递给制动助力器。

制动助力器增加制动力,减少驾驶员踩踏的力量。

主缸是一个液压装置,将驾驶员施加的力量转化为液压压力,并将其传输到制动器上。

制动液管连接主缸和制动器,将液体压力传递给制动器。

制动器包括制动片和制动盘(或制动鼓),分别与车轮相连。

当制动片与制动盘(或鼓)接触时,摩擦力将车轮减速或停止。

为了提高汽车制动系统的性能,需要进行优化设计。

首先,制动系统的制动力和灵敏度需满足不同驾驶条件下的要求。

制动力是制动器产生的摩擦力,可以通过调整制动片和盘(或鼓)之间的接触面积、制动片的材料以及压力比例装置来实现。

灵敏度是指制动器对驾驶员踩踏力的响应程度,可以通过调整制动助力器的机械结构和材料来实现。

其次,制动系统的耐久性和可靠性也是关键要素。

车辆在长时间行驶中,制动系统需要承受较大的磨损和高温。

因此,制动片的材料和设计应具有良好的耐磨和耐高温性能。

此外,制动液管和连接件应具有高强度和密封性,以防止液压泄漏和系统失效。

最后,制动系统的安全性是设计的重要目标。

为了提高系统的安全性,制动系统应具有防抱死制动系统(ABS)和电子制动力分配系统(EBD)。

ABS系统能够避免车轮因制动过度而导致车辆失控,而EBD系统能够根据不同车轮的情况分配适当的制动力,以实现最佳制动性能。

新能源车辆制动系统方案范本(四篇)

新能源车辆制动系统方案范本(四篇)

新能源车辆制动系统方案范本____年新能源车辆制动系统的方案第一部分:电动汽车制动系统1. 制动能量回收技术由于电动汽车在行驶过程中存在能量损耗的问题,制动能量回收技术成为了一项重要的创新内容。

通过引入制动能量回收装置,将制动时产生的能量转化为电能储存起来,以供驱动电动汽车使用。

这种技术不仅提高了能源利用效率,也减少了对电池的依赖,延长了电池使用寿命。

2. 制动力分配系统由于电动汽车的动力系统与传统车辆存在一定的差异,制动力分配系统需要进行相应的调整。

根据电动汽车的动力性能和质量分布等因素,合理分配前后轮制动力,提高制动效果和稳定性,并减少制动过程中的能量损耗。

3. 制动辅助系统为了提高电动汽车的安全性和稳定性,制动辅助系统也需要进行改进。

包括提供制动效果的预警系统、自动刹车系统等,以确保驾驶员在遇到紧急情况时能够及时做出反应并减少事故的发生。

第二部分:氢燃料电池汽车制动系统1. 高效制动液氢燃料电池汽车的制动系统液压系统对制动液的要求更加严格,需要使用高效制动液。

这种制动液具有较高的沸点和阻尼性能,能够更好地适应高速制动和长时间制动,提高制动稳定性和耐久性。

2. 制动力调整系统氢燃料电池汽车的动力系统与传统汽车有所不同,制动力调整系统应根据氢燃料电池汽车的特性和行驶状态进行调整,以提高制动效果和稳定性。

3. 制动信号传输系统由于氢燃料电池汽车使用的是电子制动系统,制动信号传输系统也需要进行改进。

采用更先进的传输技术,确保制动信号的准确传输,提高制动反应速度和安全性。

结论:随着新能源汽车的快速发展,制动系统作为汽车安全的核心保障之一,也需要进行相应的创新和改进。

____年的新能源汽车制动系统方案包括电动汽车制动系统和氢燃料电池汽车制动系统,通过引入制动能量回收技术、制动力分配系统和制动辅助系统等新技术,提高制动效果、稳定性和安全性,推动新能源汽车的进一步发展。

新能源车辆制动系统方案范本(二)____年新能源车辆制动系统方案一、引言二、背景分析1. 新能源车辆市场需求增加:随着环境保护要求的提高和汽车市场的竞争加剧,新能源车辆的市场需求有望继续增加。

纯电动汽车制动器的结构设计及优化策略

纯电动汽车制动器的结构设计及优化策略

纯电动汽车制动器的结构设计及优化策略随着环保意识的日益提高,纯电动汽车作为一种零排放的交通工具受到越来越多消费者的青睐。

而在纯电动汽车的设计中,制动器是关键的安全系统之一。

本文将探讨纯电动汽车制动器的结构设计及优化策略,旨在提高制动器的性能和安全。

1. 纯电动汽车制动器的结构设计纯电动汽车制动器的结构设计需要考虑以下几个方面:1.1 制动器类型目前市场上主要有电磁液压制动系统和电子制动系统两种类型的制动器。

电磁液压制动系统采用电磁阀控制液压系统的工作,具有成熟的技术和较高的制动力;而电子制动系统通过电子控制单元控制电机或电动液压泵制动,具有更高的灵活性和响应速度。

1.2 制动力分配纯电动汽车的制动力分配需要与动力系统协调工作,以确保稳定和协调的制动效果。

制动力分配可以根据车速、加速度等参数进行调整,确保制动的平衡性和可控性。

1.3 制动盘和制动片材料选择制动盘和制动片的材料选择对于制动性能至关重要。

常见的材料包括钢、铸铁、碳陶瓷等。

每种材料都有其优势和劣势,需要根据纯电动汽车的使用需求和成本考虑进行选择。

2. 优化策略2.1 轻量化设计纯电动汽车的重量对于续航里程和动力消耗有着直接的影响。

因此,在制动器的设计中,应该注重轻量化的策略,选择轻量化材料和优化结构,以减少整车的负荷。

2.2 能量回收制动系统纯电动汽车可以利用能量回收制动系统,将制动时产生的能量转化为电能并储存在电池中,以供日后使用。

能量回收制动系统的优化可以实现最大化能量的回收,提高能源利用率。

2.3 制动系统智能化通过引入智能化技术,纯电动汽车的制动系统可以更加智能和自动化。

例如,采用传感器和控制单元实时监测车辆和驾驶员的信息,根据实时情况调整制动力分配和制动策略,提高制动的效果和安全性。

2.4 制动系统的可维护性纯电动汽车制动系统的可维护性对于车辆的长期使用和安全性至关重要。

制动系统应该设计成模块化的结构,方便维修和更换零部件,降低维护成本和时间。

汽车制动系统计算

汽车制动系统计算


b.
F1
Gb L hg
jd1 max
F1 m
g b L hg

F 2
Ga L hg
j d 2 max
F 2 m
g a L hg

S
1 3.6
(t1
t2 ) v 2
v2 25.92 jmax

a
2
b
L
g g
0 .8
各个设计方案均能满足法规对行车制动性能的要求,同时也满足设计要求。 4 ) 助施力器失效时,制动力完全由人力操纵踏板产生,最大踏板力要求:N1类车700N。 加
△g2—鼓式制动器的蹄、鼓间隙
△g3—鼓式制动器摩擦衬片的厚度公差
(3)储油壶总容量Vmax
空载同步附着系数
0
车满载同步附着系数
' 0

标杆
方案
P201-NAM-SD-DP-G3-2
选配方案(四轮盘式)
Fif
Fir
图2 车型的I曲线与β线 ©版权归江淮汽车股份有限公司所有 未经授权禁止复制
第 4 页,共 13 页
制动系统方案设计计算说明书
P201-NAM-SD-DP-G3-2
通 过 1、在空载状态下,地面附着系数为0.8,标杆管路压力达到6MPa,管路压力达到5MPa,选 配方案管路压力达到5MPa,制动器发生抱死,此时后轴早于前轴抱死,这时整车稳定性非常差 。需要ABS进行调节。
n1、n2—前、后制动器单侧油缸数目(仅对盘式制动器而言)
Kv—考虑软管膨胀时的主缸容积系数,汽车设计推荐:轿车 =1.1,货车 =1.3
其中 要根据制动器的类型、参考同类车型确定,对鼓式制动器:汽车设计推荐δ=2-2.5mm;汽车工 程手册推荐3.5-5.5(考虑软管膨胀量及磨损间隙不能自调的影响),公司目前车型均可实现间隙

制动系

制动系
《汽车设计》 PowerPoint版 版权所有者:南航赵又群 14
课程结束! 课程结束!
《汽车设计》 PowerPoint版 版权所有者:南航赵又群 15
二、盘式制动器的设计计算
1、制动器制动力矩 2、衬块的平均半径 3、衬块的有效半径 4、m=R1/R2的选取 5、制造工艺
《汽车设计》 PowerPoint版 版权所有者:南航赵又群 12
§8-4 制动器设计与计算 (p203-210)
三、衬片磨损特性的计算 p207-209 1. 有效因素 2. 能力负荷 3. 评价指标一:比能量耗散率 4. 评价指标二:比摩擦力 四、前、后轮制动器制动力矩的确定 p209 五、应急制动和驻车制动所需的制动力矩 p209210
制动系
《汽车设计》 PowerPoint版
版权所有者:南航赵又群
1
第八章 制动系设计
第八章 制动系设计 8-1 概述 8-2 制动器结构方案分析 8-3 制动器主要参数的确定 8-4 制动器的设计计算 8-5 制动驱动机构 制动力调节机构( 8-6 制动力调节机构(略) 制动器的主要结构元件( 8-7 制动器的主要结构元件(略)
《汽车设计》 PowerPoHale Waihona Puke nt版 版权所有者:南航赵又群 3
§8-2 制动器结构方案分析
(p196-201) p196-201)
分类:
按耗散汽车能量的方式分:摩擦式、液力式、 电磁式和电涡流式等几种。 摩擦式制动器就其摩擦副的结构型式可分为鼓 式、盘式和带式三种。带式的只用作中央制动器。 目前,货车行车制动器大多数用鼓式制动器,并安 装在汽车车轮处。但是,用独立悬架的汽车也有少 数行车制动器安装在驱动桥的半轴上。
《汽车设计》 PowerPoint版 版权所有者:南航赵又群 4

汽车盘式制动系统结构设计

汽车盘式制动系统结构设计

汽车盘式制动系统结构设计汽车盘式制动系统是汽车制动系统的一种常见形式,该制动系统由许多部件组成。

在汽车制动系统的尺寸和工作条件中,盘式制动系统有很高的性能和功能要求。

本文将从盘式制动系统的结构设计的角度探讨盘式制动系统的结构设计。

盘式制动系统是由制动器、制动盘、制动钳、制动片、制动管等部件组成的,下面将会对这些方面进行介绍。

1. 制动器设计制动器是盘式制动系统的核心部件,主要是将动能转化为热能,并在车轮通过转矩产生的惯性力的作用下降低车速。

这里主要介绍制动器的设计目标,包括制动力、制动发热、制动面积等方面。

制动力是制动器的主要目标,根据盘式制动器的结构,制动器的制动力主要是由制动片与制动盘之间的摩擦力产生的,所以制动片与制动盘之间的接触面积和材质是决定制动力的重要因素。

制动盘的外形和材料(如圆盘、波纹盘、飞刀齿轮等)对制动力的影响也很大。

制动发热是盘式制动器的一个不可忽略的问题,过量的制动发热不仅能导致制动器失效,而且还能危及整个汽车的生命安全。

所以,同时保证制动力的前提下,要最大限度地降低制动时的摩擦产生的热量。

2. 制动盘设计制动盘主要用来承载制动器的制动力,并减缓车辆速度。

制动盘具有不同的形状和材质,大多是由高温合金或硬质材料制成。

制动盘的直径和厚度也会影响制动器的性能。

盘式制动器的制动盘通常采用近似于平面的几何形状,以便快速摆脱制动力,从而降低制动力的附加时间,减少制动时的震荡。

制动盘的排布方式(单透气孔式、双透气孔式、多透气孔式等),以及孔的形状和数量,都可以影响制动盘和制动器的冷却、发热和噪声等性能。

3. 制动钳设计制动钳是组成盘式制动器的另一部分,主要是负责将制动片压缩到制动盘上,以产生摩擦力。

制动钳的大小、形状和材质将影响制动器的性能,同时还要注意制动钳和制动盘之间的间隙,以确保制动片和制动盘之间的良好接触。

制动器的钳体设计确定了制动器的强度,尺寸和重量等参数,与强度和功能设计密切相关。

轿车盘式制动器结构设计 【汽车专业毕业论文】【答辩通过】

轿车盘式制动器结构设计 【汽车专业毕业论文】【答辩通过】

摘要汽车的设计与生产涉及到许多的领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。

汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。

随着汽车的行驶速度和路面情况复杂程度的提高,更加需要高性能,长寿命的制动系统。

鉴于制动系统的重要性,本次设计的主要内容就是运输车辆中的制动器,从制动系的功用及设计的要求出发,依据给定的设计参数,进行了方案论证。

对各种形式的制动器的优缺点进行了比较后,在前盘后鼓得基础上改为前后都是盘式制动器,保持制动力分配系数的稳定,改善了汽车的制动稳定性,简化了汽车的制动装置,减轻了整车质量,从而提高了汽车在行驶过程中的安全性与稳定性。

选择了简单液压驱动机构和双管路系统,选用了间隙自动调节装置,采用比例阀作为制动力的调节装置。

关键词:制动钳; 制动盘; 制动轮缸;制动衬片本论文材料仅供参考学习,疑问可咨询文档贡献者。

AbstractAutomobile design and production are involved in many fields, its unique safety, economy, comfort and so many indicators, also raised taller requirement to the design. Automobile braking system is an important vehicle active safety system, and its performance depends on car has an important influence on road safety. As the vehicle of the speed and pavement situation was complex degree rise, more require high-performance, long life of brake system.In view of the importance of brake system, the design of the main content is a transport vehicles, the brake from brake system function and design, according to the requirement of design parameters, given the scheme comparison. On all forms of brake their advantages and disadvantages are discussed, based on HouGu have in QianPan instead of before and after are disc brakes, maintain braking force distribution coefficient, improves the stability of the braking stability and simplify the automobile braking device, reduce the vehicle quality, thereby improving the car while driving in the process of security and stability. Choose a simple hydraulic driving mechanism and double pipeline system, chose clearance automatic adjusting device, proportional valve as brake force adjusting device Keywords:brake disc; Brake wheel cylinder; Brake caliper; Braking facings formulations本论文材料仅供参考学习,疑问可咨询文档贡献者。

纯电动汽车制动器的工作原理与结构设计

纯电动汽车制动器的工作原理与结构设计

纯电动汽车制动器的工作原理与结构设计纯电动汽车的制动器是确保车辆行驶安全的重要组件之一。

它通过转换动能为热能,从而将车辆减速或停车。

下面将介绍纯电动汽车制动器的工作原理与结构设计。

工作原理:纯电动汽车的制动器主要分为摩擦制动器和再生制动器两种类型。

1. 摩擦制动器:摩擦制动器是通过制动盘上的制动片对制动盘施加摩擦力来实现制动的。

制动踏板被踩下时,制动液通过制动油管进入制动器周围的活塞腔中,使活塞向前移动,从而使制动片与制动盘接触,并产生摩擦力将车辆减速或停车。

2. 再生制动器:再生制动器利用电机运转时产生的电能回馈电池系统,实现制动效果。

当驾驶员松开油门踏板或踩下制动踏板时,电机切换到发电模式,将车辆的动能转化为电能,并通过电机控制器将电能发送到电池进行储存。

这种制动方式可以减少摩擦制动的使用,减少能量损失,同时延长制动器的寿命。

结构设计:纯电动汽车制动器的结构设计需要充分考虑到制动效果、热量分散和结构轻量化等因素。

1. 制动盘:制动盘是制动系统中的关键部件,一般由铸铁材料制成。

它需要具备一定的刚度和耐磨性,能够快速地分散制动时产生的热量,以避免制动衰减和失灵。

制动盘的表面通常会进行波纹状或鳞片状的处理,以增加摩擦系数和散热面积。

2. 制动片:制动片是制动器产生摩擦的关键部件,一般由具有良好摩擦性能的材料制成,如有机树脂、陶瓷等。

制动片需要具备一定的硬度和强度,以承受制动时产生的高温和高压力,并且要有较好的耐磨性能,以延长使用寿命。

3. 制动液:制动液是传递制动力的介质,一般采用聚合物液压油。

它需要具备较高的沸点和低的粘度,以在高温下仍能保持较好的制动性能,并且能够有效地传递制动力到制动器。

4. 电机控制器:电机控制器是实现再生制动的关键部件,它需要具备较高的控制精度和响应速度。

通过监测驾驶员的行为和车辆运行状态,电机控制器能够实时切换电机的工作模式,将电能回馈到电池系统进行储存,同时确保制动效果的准确控制。

盘式制动器设计范文

盘式制动器设计范文

盘式制动器设计范文盘式制动器是一种常见的汽车制动系统,在汽车制动过程中起到关键作用。

它由刹车盘、刹车片、刹车卡钳、刹车片卡钳、制动油管等组成。

以下是关于盘式制动器设计的一些信息,涵盖了设计原则、材料选择、结构设计等方面。

1.设计原则:(1)刹车力的均匀分布:刹车力要均匀分布到所有刹车片中,以确保制动效果稳定。

(2)热量散发和通风:盘式制动器在制动过程中会产生大量的热量,需要在设计中考虑热量的散发和通风,以避免制动效果因过热而下降。

(3)轻量化:盘式制动器需要在保证安全性能的基础上尽可能轻量化,以减少整车的质量。

(4)材料的选择:盘式制动器的材料需要具备高温抗磨损和耐腐蚀性能。

2.材料选择:(1)刹车盘:常见的刹车盘材料有钢铁、复合材料和碳陶瓷等。

钢铁材料价格低廉,但其热膨胀系数较大,容易导致制动时的变形;复合材料在热量散发和通风方面较好,但价格较高;碳陶瓷材料具有较好的高温抗磨损性能和轻量化特点,但价格昂贵。

(2)刹车片:常见的刹车片材料有有机材料、半金属材料和陶瓷材料等。

有机材料制动片具有制动效果较好、噪音小、对刹车盘磨损小的特点,但耐高温性能较差;半金属材料制动片具有耐高温性能较好,但噪音大、对刹车盘磨损大;陶瓷材料制动片具有良好的高温抗磨损性能和耐腐蚀性能,但价格昂贵。

(3)刹车卡钳:刹车卡钳一般采用铝合金材料制作,具有较好的强度和轻量化特点。

3.结构设计:(1)刹车盘:刹车盘一般为圆盘状,中间部分为锁定于车轮轮毂上的固定盘,可用螺栓与车轮连接;外边缘为可摩擦的刹车片接触面。

刹车盘一般具有散热孔,以增强热量散发和通风效果。

(2)刹车片:刹车片一般为半圆形,两片作用在刹车盘两侧。

刹车片与刹车盘之间的摩擦产生刹车力。

(3)刹车卡钳:刹车卡钳用于固定刹车片,通常采用活塞和活塞密封圈结构。

活塞在制动过程中施加压力使刹车片与刹车盘接触,并在松开刹车时将刹车片与刹车盘分离。

以上是关于盘式制动器设计的一些信息,涉及了设计原则、材料选择、结构设计等方面。

制动器设计优秀课件

制动器设计优秀课件
1)难以完全预防尘污和锈蚀(封闭旳多片全盘式制动器除外)。 2)兼作驻车制动器时,所需附加旳手驱动机构比较复杂。 3)在制动驱动机构中必须装用助力器。 4)因为衬块工作面积小,所以磨损快,使用ቤተ መጻሕፍቲ ባይዱ命低,需用高材质旳衬 块。 应用: 盘式制动器在轿车前轮上得到广泛旳应用。
§8-3 制动器主要参数旳拟定
力矩。
制动器效能因数: 在制动鼓或制动盘旳作用半径R上所得到摩擦力(
Mμ/R)与输入力F0之比。
K M F0 R
制动器效能旳稳定性: 效能因数K对摩擦因数f旳敏感性(dK/df)。
1.领从蹄式
每块蹄片都有自己旳固定支点,而且两固定支点位于两蹄旳同一端 。
张开装置:
平衡式
凸轮或楔块式
平衡凸块式 楔块式
A1B1 R
sin sin 1
dγ—蹄旳转角
表面旳径向变形和压力为:
1
p1
R sin pmax
ad
sin a
是α旳函数
结论:新蹄片压力沿摩擦衬片 长度旳分布符合正弦曲线规律
沿摩擦衬片长度方向压力分布旳不均匀程度,可用不 均匀系数△评价
pmax / p f
pf—在同一制动力矩作用下,假想压力分布均匀时旳平均压 力;
保有足够旳强度和耐磨性能,其牌号不应低于HT250。 制动器设计参照《机械传动装置设计手册》 第27章 制动器 卞学良编
三、衬片磨损特征旳计算 摩擦衬片(衬块)旳磨损受温度、摩擦力、滑磨速度、制动鼓(制动
盘)旳材质及加工情况,以及衬片(衬块)本身材质等许多原因旳影响, 试验表白,影响磨损旳最主要旳原因还是摩擦表面旳温度和摩擦力。 制动器能量负荷:在汽车制动过程中,制动器所承担旳汽车动能转换成制 动器热能旳量。 比能量耗散率:每单位村片(衬块)摩擦面积旳每单位时间耗散旳能量。 一般所用旳计量单位为w/mm2。比能量耗散率有时也称为单位功负荷, 或简称能量负荷。 双轴汽车旳单个前轮及后轮制动器旳比能量耗散率

优化紧凑型轿车盘式制动器结构设计方案

优化紧凑型轿车盘式制动器结构设计方案

优化紧凑型轿车盘式制动器结构设计方案紧凑型轿车盘式制动器是汽车制动系统中的重要零部件之一,在保证安全性和可靠性的基础上,优化盘式制动器的结构设计方案,可以提升制动性能、减轻重量、降低成本等方面带来一定的好处。

首先,我们可以从盘式制动器的材料选择和制造工艺方面来进行优化设计。

目前常用的盘式制动器材料有铸铁和复合材料两种。

铸铁材料制作的盘式制动器具有成本低、制造工艺简单等优势,但其刹车性能和散热性能相对较差。

相比之下,复合材料制作的盘式制动器具有重量轻、散热性能好等优点,但制造工艺较为复杂,成本较高。

因此,在优化盘式制动器结构设计方案时,可以根据车辆的使用情况和需求选择合适材料,并结合先进的制造工艺进行制作,使其既能满足制动要求,又能降低制造成本。

其次,我们可以从盘式制动器的组成部分进行优化设计。

盘式制动器主要由刹车盘、刹车夹和刹车片等组成。

刹车盘是承受刹车力的部件,在设计时需要考虑到刹车盘的厚度、直径、材料选择等因素。

优化设计可以选择合适的材料,如高强度合金材料,以提高刹车盘的耐热性和耐磨性。

同时,通过改变刹车盘的厚度和直径,可以提升制动力矩和散热能力。

刹车夹是将刹车片夹紧在刹车盘上的部件,优化设计可以优化刹车夹的结构,使其更加紧凑、轻量化,并考虑到刹车片的易更换性和维修性。

此外,在盘式制动器的结构设计中,还需要考虑到盘式制动器的散热性能。

制动时,刹车盘会受到较大的摩擦热量,如果不能及时散热,会导致刹车性能下降甚至制动失效。

因此,在优化设计过程中,应合理设计散热通道和散热片,以增加散热面积和散热能力,确保盘式制动器在高温工况下的正常工作。

可以通过优化刹车盘的内部结构,增加散热通道的数量和尺寸,进一步提升盘式制动器的散热性能。

最后,在盘式制动器的结构设计中,还需要考虑到制动力的传递和分配。

优化设计可以选择合适的刹车片材料和结构,以提高制动力的传递效果。

同时,合理设计刹车系统的衬垫和活塞等部件,以均匀地分配制动力,避免因部分区域受压不均衡导致刹车不稳定的问题。

制动系统设计规范精选全文完整版

制动系统设计规范精选全文完整版

可编辑修改精选全文完整版一、国标要求1、GB 12676-1999《汽车制动系统结构、性能和试验方法》2、GB 13594-2003《机动车和挂车防抱制动性能和试验方法》3、GB 7258-1997《机动车运行安全技术条件》二、整车基本参数及样车制动系统主要参数整车基本参数样车制动系统主要参数三、计算1. 前、后制动器制动力分配1.1 地面对前、后车轮的法向反作用力 公式:gz h dt du mGb L F +=1 ………………………………(1) gz h dt du mGa L F -=2 (2)参数:1z F ——地面对前轮的法向反作用力,N ;2z F ——地面对后轮的法向反作用力,N ;G ——汽车重力,N ;b ——汽车质心至后轴中心线的水平距离,m ;a ——汽车质心至前轴中心线的距离,m 。

m ——汽车质量,kg ;gh ——汽车质心高度,m ;L ——轴距,m ;dt du——汽车减速度,m/s 2四、制动器的结构方案分析制动器有摩擦式、液力式和电磁式等几种。

电磁式制动器虽有作用滞后小、易于连接且接头可靠等优点,但因成本高而只在一部分重型汽车上用来做车轮制动器或缓速器。

液力式制动器只用作缓速器。

目前广泛使用的仍为摩擦式制动器。

摩擦式制动器按摩擦副结构形式不同,分为鼓式、盘式和带式三种。

带式只用作中央制动器。

一、鼓式制动器鼓式制动器分为领从蹄式、双领蹄式、双向双领蹄式、双从蹄式、单向增力式、双向增力式等几种,见图la ~f 。

不同形式鼓式制动器的主要区别有:①蹄片固定支点的数量和位置不同。

②张开装置的形式与数量不同。

③制动时两块蹄片之间有无相互作用。

因蹄片的固定支点和张开力位置不同,使不同形式鼓式制动器的领、从蹄数量有差别,并使制动效能不同。

制动器在单位输入压力或力的作用下所输出的力或力矩,称为制动器效能。

在评比不同形式制动器的效能时,常用一种称为制动器效能因数的无因次指标。

制动器效能因数的定义为,在制动鼓或制动盘的作用半径R 上所得到的摩擦力(RM μ)与输入力0F 之比,即RF M K 0μ=式中,K 为制动器效能因数;μM 为制动器输出的制动力矩。

汽车制动系统的设计及仿真

汽车制动系统的设计及仿真

汽车制动系统的设计及仿真任务书1.设计的主要任务及目标汽车制动器是制动系中最重要的一个部件,是制动系统中用以产生阻碍汽车运动或运动趋势的力的部件。

凡是利用固定元件与旋转元件工作表面的摩擦而产生制动力矩的制动器都成为摩擦制动器。

摩擦制动器可分为鼓式和盘式两大类。

前者的摩擦副中的旋转元件为制动鼓,其工作表面为圆柱面;后者的旋转元件则为圆盘状的制动盘,以端面为工作表面。

2.设计的基本要求和内容(1)了解汽车制动系统的工作过程。

(2)熟悉汽车制动系统的设计过程和设计参数。

(3)结合汽车制动性能要求设计汽车制动器。

(4)结合三维建模软件,并实现制动器的运动仿真。

3.主要参考文献[1] 王望予.汽车设计[M].北京:机械工业出版社,2004[2] 余志生.汽车理论[M].北京:机械工业出版社,2003[3] 陈家瑞.汽车构造[M].北京:机械工业出版社,2003[4] 林秉华.最新汽车设计实用手册[M],黑龙江:黑龙江出版社,2005[5] 张尉林.汽车制动系统的分析与设计[M].北京:机械工业出社,20024.进度安排注:一式4份,系部、指导教师各1份、学生2份:[毕业设计]及答辩评分表各一份汽车制动系统的设计及仿真摘要:汽车的制动系是汽车行车安全的保证,许多制动法规对制动系提出了许多详细而具体的要求,这是我们设计的出发点。

从制动器的功用及设计的要求出发,依据给定的设计参数,进行了方案论证。

对各种形式的制动器的优缺点进行了比较后,选择了浮动钳盘的形式。

这样,制动系有较高的制动效能和较高的效能因素稳定性。

随后,对盘式制动器的具体结构的设计过程进行了详尽的阐述。

选择了简单液压驱动机构和双管路系统,选用了间隙自动调节装置。

在设计计算部分,选择了几个结构参数,计算了制动系的主要参数,盘式制动器相关零件的设计计算。

关键词: 制动器,同步附着系数,制动盘,制动钳Automobile brake system design and simulationAbstracts:The braking system in a vehicle guaranteed the safety of driving .Many rules and regulations have been made for the braking system in detail, which is the starting of our design.Firstly, I demonstrate the project on the base of the function of the brake, And analysis their strong point and shortcomings .I choose the form of front-disked. In this way, the braking system have higher braking efficiency and high stability of the performance factors. Subsequently, the specific structure of the disc brake design was elaborated in detail.I designed the hydraulic drive system and two-pipe system and selected clearance automatic adjusting device.In the calculate part .I chosen several structural parameters, calculated the main parameters of the braking system drive mechanism.Key words:disc brakes,synchronous attachment coefficient,brake disc,brake caliper目录1 绪论 (1)1.1 课题研究的目的及意义 (1)1.2制动系统研究现状 (1)1.3课题设计思路 (3)2制动系统概述 (4)2.1制动系的类型 (4)2.2汽车制动系统组成 (4)2.3 制动器的组成 (5)2.4 制动器的要求 (5)2.5 制动器的种类 (7)3 汽车参数计算 (14)3.1汽车的基本参数 (14)3.2 制动系的主要参数及其选择 (15)3.3 盘式制动器的结构参数与摩擦系数的确定 (16)3.4 制动衬块的设计计算 (18)3.5 摩擦衬块磨损特性的计算 (19)4 制动器主要零件的结构设计 (21)4.2 制动钳 (21)4.4 摩擦材料 (21)4.5 盘式制动器间隙的调整方法及相应机构 (22)4.6 制动驱动机构的结构型式选择与设计计算 (22)结论 (25)参考文献 (26)致谢 (27)附录 (28)1 绪论1.1 课题研究的目的及意义汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。

汽车制动系设计方案

汽车制动系设计方案

汽车制动系设计方案2023-10-27CATALOGUE 目录•引言•制动系统设计基础•制动系统设计方案•制动系统优化设计•制动系统设计方案实施•结论与展望01引言汽车制动系统是保障行车安全的重要系统,随着汽车工业的发展,对制动系统的性能和安全性要求也不断提高。

在此背景下,研究和设计更加先进、更加可靠的汽车制动系具有重要意义。

研究背景和意义研究现状和发展趋势发展趋势主要表现为制动器向着盘式、鼓式、电磁式等多种形式并存的方向发展;制动管路向着轻量化、集成化方向发展。

制动液向着环保、高性能方向发展;目前,国内外对于汽车制动系的研究和应用已经十分广泛,涉及制动器、制动液、制动管路等多个方面。

02制动系统设计基础定义制动系统是汽车中用于减速或停车的系统,由驾驶员操作或自动控制。

功能制动系统的功能是减缓或停止车辆的行驶,确保安全。

制动系统概述基础原理制动系统利用摩擦力来减缓或停止车辆的行驶。

当驾驶员踩下制动踏板时,制动系统会通过摩擦力将车辆的动能转化为热能,从而实现减速或停车。

部件与流程制动系统的主要部件包括制动踏板、制动液、制动管路、制动器等。

当驾驶员踩下制动踏板时,制动踏板会推动制动液,通过制动管路将压力传递到制动器,从而产生摩擦力。

制动系统的工作原理制动系统的基本组成制动器是制动系统中最重要的部件之一,它利用摩擦力来减缓或停止车辆的行驶。

制动器制动液制动管路制动踏板制动液是一种高粘度、高沸点的液体,用于将压力从制动踏板传递到制动器。

制动管路是连接制动踏板和制动器的管道,用于传递压力。

制动踏板是驾驶员操作制动系统的部件,它可以通过杠杆或电子信号将驾驶员的意图传递到制动器。

03制动系统设计方案制动系统是汽车安全的重要组成部分,应确保在各种工况下的制动性能稳定、可靠,确保驾驶员和乘客的安全。

安全性制动系统的性能不仅要求安全,还需要满足舒适性的要求。

制动时要保证减速度平稳,避免制动点头现象,提高乘坐舒适度。

制动部分设计指南

制动部分设计指南

5、制动部分设计指南简要说明内容概括●制动系统包括行车制动系统,驻车制动系统,应急制动系统;➢行车制动:使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定的一套装置;➢驻车制动:使已停使的汽车驻留原地不动的一套装置;➢应急制动:在行车制动系统部分失效或完全失效的情况下保证汽车仍能实现减速或停车的一套装置;●制动系统的开发流程:,制座位上双手无须离开方向盘(或方向把)就能实现制动; 驻车制动应能使机动车即使在没有驾驶员的情况下,也能停在上、下坡道上。

驾驶员必须在座位上就可以实现驻车制动。

●制动效能要满足法规要求●有良好的制动稳定性●驾驶感好(包括踏板力,踏板行程)●有良好的热衰退性能(通过AMS试验来验证,详见试验部分)在满足制动性能的前提下,还应该满足舒适性要求, 如:操作方便,行车制动在产生最大制动效能时的踏板力,对于乘用车不应大于230N ;手握力不应大于 250 N,除了这些力的要求,尽量避免有制动点头,制动时摩擦片尖叫等不良现象,同时在行车制动系统失效的情况下,还应具有应急制动的功能.制动系统性能要满足法规GB/T12676要求,GB/T12676等同于欧洲法规ECER13-09,ECER13H-00及美国法规FMVSS 135制动系统设计计算●决定制动系统关键参数的因素:详见下表●计算过程汽车制动时,地面作用于车轮的切线力称为地面制动力Fxb,它是使汽车制动而减速行驶的外力。

在轮胎周缘克服制动器摩擦力矩Mu所需的力称为制动器制动力Fu。

地面制动力是滑动摩擦约束反力,其最大值受附着力的限制。

附着力FΦ与Fxbmax的关系为Fxbmax =FΦ=Fz·Φ。

Fz为地面垂直反作用力,Φ为轮胎—道路附着系数,其值受各种因素影响。

若不考虑制动过程中Φ值的变化,即设为一常值,则当制动踏板力或制动系压力上升到某一值,而地面制动力达最大值即等于附着力时,车轮将抱死不动而拖滑。

踏板力或制动系压力再增加,制动器制动力Fu由于制动器摩擦力矩的增长,仍按直线关系继续上升,但是地面制动力达到附着力的值后就不再增加了。

制动系设计毕业设计

制动系设计毕业设计

制动系设计毕业设计制动系统设计毕业设计引言:制动系统是汽车安全性能的重要组成部分,它直接关系到车辆的制动效果和驾驶者的行车安全。

因此,制动系统设计是汽车工程领域中的重要课题之一。

本文将讨论制动系统设计的关键要素和技术挑战,以及如何通过优化设计来提高制动系统的性能。

一、制动系统的基本原理制动系统的基本原理是通过施加力量来减速或停止车辆的运动。

它主要由制动器、制动液、制动管路和制动控制系统等组成。

制动器是制动系统的核心部件,它通过施加摩擦力来减速车辆。

制动液在制动器和制动踏板之间传递压力,制动管路将压力传递到制动器上,而制动控制系统则负责控制制动力的大小和分配。

二、制动系统设计的关键要素1. 制动效果:制动系统设计的首要目标是实现良好的制动效果,即在短时间内将车辆停止或减速到安全范围内。

制动效果的好坏主要取决于制动器的性能和制动力的大小。

2. 制动稳定性:制动系统在制动过程中要保持稳定,避免制动过程中的抖动或失控现象。

制动稳定性的实现需要考虑制动器的设计和制动力的分配等因素。

3. 制动耐久性:制动系统在长期使用中需要保持稳定的性能。

制动器的材料和结构设计要考虑到耐磨损、耐高温和耐腐蚀等因素,以确保制动系统的长期可靠性。

4. 制动舒适性:制动过程中产生的噪音、震动和刹车跳动等问题会影响驾驶者的舒适性。

制动系统设计需要考虑减少这些不良影响,提供平稳、静音的制动体验。

三、制动系统设计的技术挑战1. 制动力的分配:在制动系统设计中,如何合理分配制动力是一个关键问题。

前轮制动力过大会导致车辆打滑,后轮制动力过大则会导致车辆失控。

因此,制动系统设计师需要根据车辆的动力学特性和重心位置等因素来优化制动力的分配。

2. 制动器的材料选择:制动器的摩擦材料对制动效果和制动稳定性起着重要作用。

目前常用的制动器材料有有机材料、金属材料和陶瓷材料等。

设计师需要根据车辆的使用条件和性能要求来选择合适的制动器材料。

3. 制动系统的热管理:制动过程中会产生大量的热量,如果不能及时散热,会导致制动器的性能下降甚至失效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题名称:汽车制动系统的结构设计与计算第一章:制动器结构型式即选择、汽车已知参数:汽车轴距(mm ):3800车轮滚动半径(mm ) :407.5汽车空载时的总质量(kg ):3330 汽车满载时的总质量(kg ) 6330 空载时,前轴负荷 G=mg=12348.24N 后轴负荷为 38624.52N 满载时,前轴负荷 G=mg=9963.53N后轴负荷为 43157.62N空载时质心高度为 750mm 满载时为930mm 质心距离前轴距离空载时为2.36m 满载时为2.62m汽车设计课程设计质心距离后轴距离满载时为 1.44m 满载时为1.18m 二、鼓式制动器工作原理鼓式制动器的工作原理与盘式制动器的工作原理基本相同: 制动蹄压住旋转表面。

这个表面被称作鼓。

许多车的后车轮上装有鼓式制动器,而前车轮上装有盘式制动器。

鼓式制动器具有的元件比盘式制动器的多,而且维修难度更大,但是鼓式制动器的制造成本低, 并且易于与紧 急制动系统结合。

我们将了解鼓式制动器的工作原理、检查紧急制动器的安装情况并找出鼓式制动器所需 的维修类别。

我们将鼓式制动器进行分解,并分别说明各个元件的作用。

鼓式制动器图1鼓式制动器的各个元件与盘式制动器一样,鼓式制动器也带有两个制动蹄和一个活塞。

有一个调节器机构、一个紧急制动机构和大量弹簧。

图2仅显示了提供制动力的元件。

图2.运行中的鼓式制动器当您踩下制动踏板时,活塞会推动制动蹄靠紧鼓。

这一点很容易理解,但是为什么需要这些弹簧呢?这就是鼓式制动器比较复杂的地方。

许多鼓式制动器都是自作用的。

图5中显示,当制动蹄与鼓发生接触时,会出现某种楔入动作,其效果是借助更大的制动力将制动蹄压入鼓 中。

楔入动作提供的额外制动力, 可让鼓式制动器使用比盘式制动器所用的更小的活塞。

但是,由于存在楔入动作,在松开制动器时,必须使制动蹄脱离鼓。

这就是需要一些弹簧的原因。

其他弹簧有助于将制动蹄固定到位,并在调节臂驱动之后使它返回。

制动缸'.蛊盒制动 机构但是鼓式制动器还带为了让鼓式制动器正常工作,制动蹄必须与鼓靠近,但又不能接触鼓。

如果制动蹄与鼓相隔太远(例如,由于制动蹄已磨损),那么活塞需要更多的制动液才能完成这段距离的行程,并且当您使用制动器时,制动踏板会下沉得更靠近地板。

这就是大多数鼓式制动器都带有一个自动调节器的原因。

当衬块磨损时,制动蹄和鼓之间将产生更多的空间。

汽车在倒车过程中停止时,会推动制动蹄,使它与鼓靠紧。

当间隙变得足够大时,调节杆会摇动足够的幅度,使调节器齿轮前进一个齿。

调节器上带有像螺栓一样的螺纹,因此它可以在转动时松开一点,并延伸以填充间隙。

每当制动蹄磨损一点时,调节器就会再前进一点,因此它总是使制动蹄与鼓保持靠近。

一些汽车的调节器在使用紧急制动器时会启动。

如果紧急制动器有很长一段时间没有使用了,则调节器可能无法再进行调整。

因此,如果您的汽车装有这类调节器,一周应至少使用紧急制动器一次。

汽车上的紧急制动器必须使用主制动系统之外的动力源来启动。

鼓式制动器的设计允许简单的线缆启动机构。

鼓式制动器最常见的维修是更换制动蹄。

一些鼓式制动器的背面提供了一个检查孔,可以通过这个孔查看制动蹄上还剩下多少材料。

当摩擦材料已磨损到铆钉只剩下0.8毫米长时,应更换制动蹄。

如果摩擦材料是与后底板粘合在一起的(不是用铆钉),则当剩余的摩擦材料仅为1.6毫米厚时,应更换制动蹄。

图3.制动蹄与盘式制动器中的情况相同,制动鼓中有时会磨损出很深的划痕。

如果磨损完的制动蹄使用时间太长,将摩擦材料固定在后部的铆钉会把鼓磨出凹槽。

出现严重划痕的鼓有时可以通过重新打磨来修复。

盘式制动器具有最小允许厚度,而鼓式制动器具有最大允许直径。

由于接触面位于鼓内,因此当您从鼓式制动器中去除材料时,直径会变大。

图4.制动鼓第二章:制动系的主要参数及其选择、制动力及制动力分配系数分析轴车轮的法向反力比耳为:T.——汽不轴即:去——汽车厭心离丽轴跖离; 厶——汽车质心离后轴聊离;—汽牢质心高度;入密——頂力加速度:dudt-——汽车制动减速度。

曲车池陶地面制动力为町■耳1兀■ * I:■ QqX 血(7)_岔式中q()—制动强度,吓称比减速度或比制动力;% ------- 前后轴车轮的地面制动力“怎由以上两式可求得前*后轴车轮附若力为几之(7?十仇?)旷:為1■夾加匕魅山汽车在附看系救炉■竄确定值时路面上制动时.备轴附看力即极限制动力并非为常瓠加沁圉强度q或总制动力的说数。

出汽车各车轮制动器的制动力足怫时,报抵汽附前.后轴的轴荷介配+ 后年轮制幼瞎制动力的分配、道路附着系数和坡度恬况等.制动过程对能卅现的情况冇三种.即兀⑴前轮先抱死施滑,然后后轮再抱此拖卅;⑵后轮先抱死拖滑-悠后前轮祁抱社拖年:<3)后轮同时抱死損滑。

在旦上三种悄况中*显然是赧后料悄况的附石条件利用得JA好"16)式中G——汽T所受重力*、汽车前后车轮同时抱死时的制动力和分配系数1、制动力(满载)假设汽车的同步附着系数为0 =08在前后车轮均被抱死时,q= 0=0.8,这时前后轴车轮的制动器制动力 卩们、F f2即是理想最大制动力,此时 F B 、F f 和F 相等,所以有:(F B 为汽车总的地面制动力,F f 为汽车总的制动器制动力,F 车轮与路面总的附着力)L=3.8M L1=2.62M L2=1.18MHg=0.93M2、制动力分配系数与同步附着系数假设汽车的同步附着系数为0 =0.8.3、制动强度和附着系数利用率GL 1 =66.8039KN(0 )h g=0.9342)h gJ()h g =1.87 (1 0.8)*0.886=0.93424、最大制动力矩对于选取较大°值的汽车,这类车辆经常行驶在良好道路上,车速较高,后轮制动抱F B 1F f1 FGL(L 2o h g )B i=24891.2NFB2Ff 2 F0h g)0 =24786.628N则制动力分配系数心=0.5L取该车所能遇到的最大附着系数为 max =1,从保证汽车制动时的稳定性出发来确定各轴的最大制动力矩。

=1时,后轴先抱死,当后轴刚要抱死时,可推出得:FBL 1 1.87死失去稳定而出现甩尾的危险性较前一类汽车大得多。

因此应从保证汽车制动时的稳定性出D 、制动器距支撑点位置坐标a 与c发,来确定各轴的最大制动力矩。

=10100.5NM5、制动器因数 领蹄的制动蹄因数从蹄的制动蹄因数为6、鼓式制动器主要结构参数 CD 、车轮的滚动半径为 r=407.5mm,通过中华人民共和国国标,载重汽车标准,轮辋直径为d=16i n=406.4mm制动鼓直径D,通过查表得D/Dr=0.787D=d*78.7%=406.4*0.787=320mm制动间隙取0.3mm.22、制动蹄摩擦片包角 B 宽度b 和单个制动器摩擦衬片总面积,取 沪90 ° A=400Cm (前2轴制动器)A=400 cm (后轴制动器)Ab= =16.98cm (前轮制动器摩擦片宽度)③、摩擦衬块起始角3°B 。

= 3/2=45 °D 、制动器中心张开到张开力e=0.8R=0.8*15=12cmT f 2maxGL (L I qh g ) r e2800*9.8128*(1.87 0.9134*0.886)*1*0.35f 1maxTf 2max10.5851 0.585*5403.08 =10143.2NMBF 1Nf P2.6BF 1Nf P2.6取 D=300mmb===16.98cm (后轮制动器摩擦片宽度)F 。

作用线的距离ea=0.8R=0.8*15=12cm两支承销之间距离k=1.5cm第三章:鼓式制动器设计计算、制动蹄片上的制动力矩前轴单个制动器应能产生的最大制动力矩T f T Tf 1 T rf 2 P1B1 P2B2 ............................:对于液压驱动的制动器,由于P1 P2 ,故所需要的张开力为P T f / B1 B2 ...................................................................................... .⑥由上图可得参数数据:R=159.65mm , c' =131.46860=13.19 ° , 3=90 °, = 31.81 ° , =121.81°, f=0.35T f7955.64NM将参数带入01②③⑷⑤⑥计算得:1 0.115 ° ,2 0.5 °10.22025, 2 0.22025B1 0.0009268, B2 0.002693带入.O式得P=2197.8KNT f T f 1 max/ 25071NM单个蹄片上的制动力矩T Tf1 P1 fh 1 c cos 1 f sinT Tf 1 P2fh 2 c cos 2 f sinarcta nN Xarcta n cos2N Y1 f i P1B1 ........................... ®2 f 2 P2B2 .......... .②cos2 / 2 sin 2 sin 21 4R cos cos cos22cos2 2 sin 22sin 2同理可得后轮单个制动器另外,在计算蹄式制动器时,必须检查蹄有无自锁的可能。

由式子O 1得出自锁条件,当该式 得分母等于零时,蹄自锁,即蹄式制动器的自锁条件为c cos i f sin i f i 0代入数据得 0.35 0.637 ,所以成立!因为亲后轮取的轮胎一样,只有摩擦衬片不一样,而且前轮的制动力矩比较大,所以只需验 证前轮即可,后轮也应该满足条件。

二、摩擦衬片的磨损特性计算1、比能量耗散率e (取极限工况)双轴汽车单个前轮制动器和单个后轮制动器的比能量消耗率分别是为汽车回旋质量换算系数取 1这里, V 1 =i8m/s ,V 1 V 2V 2 0,t —; —,j 为制动减速度这里取0.6g ; A 1, A 2 分别为前、后制动 器衬片的摩擦面积,B 为制动力分配系数这里为 0.501.2因为对于鼓式制动器的比能量耗散率小于等于 1.8W / mm 故满足要求!2、单个车轮的磨损特性指标可用衬片比摩擦力 Fw 表示当汽车产生最大制动力时,前轮单个制动器的制动力矩Tf=5018 , R=150mm , A 1 400 cm 2Ffo=Tf/RA=0.421<0.48N/mm2所以符合要求!3. 比滑磨功Lf如果式子 c cos 1 ic sin 一成立,则不会自锁i1* m a 2 2 V 1 V 2ei 22tA 12 21 m a V 1 V 2e 2 *122tA 2其中m a 为汽车总质量6330kg ,由动初速度至停车所完成的单位衬片面积的比滑磨功L f衡量,最大车速为100公里每小时车轮制动器个制动衬片的总摩擦面积为1600cm2得Lf<[Lf] 满足条件第四章:制动器主要零部件的结构设计与强度计算一、制动鼓制动鼓应具有非常好的刚性和大的热容量,制动时气温升不应超过极限值。

相关文档
最新文档