Matlab实现M序列的产生及其自有关序列
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子信息工程专业课程设计任务书
1 需求分析
伪随机信号既有随机信号所具有的优良的相关性,又有随机信号所不具备的规律性. 因此,伪随机信号既易于从干扰信号中被识别和分离出来,又可以方便地产生和重复,其相关函数接近白噪声的相关函数, 有随机噪声的优点,又避免了随机噪声的缺点. 伪随机序列具有可确定性、可重复性,易于实现相关接受或匹配接受,故有很好的抗干扰性能. 因此伪随机序列在相关辩识、伪码测距、导航、遥控遥测、扩频通信、多址通信、分离多径、误码测试、线形系统测量、数据加扰、信号同步等方面均有广泛的应用. m序列是伪随机序列中最重要的一种,是最长线性移位寄存器序列,m序列易于实现,具有优良的自相关特性,在直扩通信系统中用于扩展要传递的信号。可以通过移位寄存器,利用MATLAB 编程产生m序列。
2 概要设计
m 序列是最长线性反馈移位寄存器序列的简称,m 序列是由带线性反馈的移位寄存器产生的.
由n级串联的移位寄存器和和反馈逻辑线路可组成动态移位寄存器,如果反馈逻辑线路只由模2和构成,则称为线性反馈移位寄存器。
带线性反馈逻辑的移位寄存器设定初始状态后,在时钟触发下,每次移位后各级寄存器会发生变化。其中任何一级寄存器的输出,随着时钟节拍的推移都会产生一个序列,该序列称为移位寄存器序列。
n级线性移位寄存器的如图1所示:
图1 n 级线性移位寄存器
图中i C 表示反馈线的两种可能连接方式,i C =1表示连线接通,第n-i 级输出加入反馈中;i C =0表示连接线断开,第n-i 级输出未参加反馈。
因此,一般形式的线性反馈逻辑表达式为
112201(mod 2)n
n n n n i n i i a C a C a C a C a ---==⊕⊕
⊕=∑
将等式左面的n a 移至右面,并将00(1)n n a C a C ==代入上式,则上式可改写为
10
0n
i n i C a -==∑
定义一个与上式相对应的多项式
()n
i i i F x C x ==∑
其中x 的幂次表示元素的相应位置。式称为线性反馈移位寄存器的特征多项式,特征多项式与输出序列的周期有密切关系.当F(x)满足下列三个条件时,就一定能产生m 序列:
(1) F(x)是不可约的,即不能再分解多项式; (2) F(x)可整除1p x +,这里21n p =-; (3) F(x)不能整除1q x +,这里q
满足上述条件的多项式称为本原多项式.这样产生m 序列的充要条件就变成了如何寻找本原多项式. 根据m 序列的特征方程:
2
0120
()n
n
i n i i f x c c x c x c x c x ==+++
+=∑
并根据其联接多项式编写Matlab 程序.
3 运行环境
硬件环境:Window xp
软件环境:Matlab 6.5
4 开发工具和编程语言
Matlab 6.5
5 详细设计
主程序Untitled.m:
%m序列发生器及其自相关 mseq.m
clear all;
close all;
g=19;%G=10011;
state=8;%state=1000
L=1000;
%m序列产生
N=15;
mq=mgen(g,state,L);
%m序列自相关
ms=conv(1-2*mq,1-2*mq(15:-1:1))/N;
figure(1)
%subplot(222)
stem(ms(15:end));
axis([0 63 -0.3 1.2]);title('m序列自相关序列') figure(2)
%m序列构成的信号(矩形脉冲)
N_sample=8;
Tc=1;
dt=Tc/N_sample;
t=0:dt:Tc*L-dt;
gt=ones(1,N_sample);
mt=sigexpand(1-2*mq,N_sample);
mt=conv(mt,gt);
figure(2)
%subplot(221);
plot(t,mt(1:length(t)));
axis([0 63 -0.3 1.2]);title('m序列矩形成形信号')
st=sigexpand(1-2*mq(1:15),N_sample);
s=conv(st,gt);
st=s(1:length(st));
rt1=conv(mt,st(end:-1:1))/(N*N_sample);
figure(3)
%subplot(223)
plot(t,rt1(length(st):length(st)+length(t)-1));
axis([0 63 -0.3 1.2]);title('m序列矩形成形信号的自相关');xlabel('t');
Tc=1;
dt=Tc/N_sample;
t=-20:dt:20;
gt=sinc(t/Tc);
mt=sigexpand(1-2*mq,N_sample);
mt=conv(mt,gt);
st2=sigexpand(1-2*mq(1:15),N_sample);
s2=conv(st2,gt);
st2=s2;
rt2=conv(mt,st2(end:-1:1))/(N*N_sample);
figure(4)
%subplot(224);
t1=-55+dt:dt:Tc*L-dt;
plot(t,mt(1:length(t)));
plot(t1,rt2(1:length(t1)));
axis([0 63 -0.5 1.2]);title('m序列since成形信号的自相关');xlabel('t') 调用的子程序如下:
(1)mgen.m:
function [out] = mgen(g,state,N)
%输入 g:m序列生成多项式(10进制输入)
%state:寄存器初始状态(10进制输入)
%N:输出序列长度
% test g=11;state=3;N=15;
gen = dec2bin(g)-48;