焊接原理与焊点可靠性分析
无铅焊点可靠性分析
![无铅焊点可靠性分析](https://img.taocdn.com/s3/m/a6f48a57a8956bec0975e326.png)
无铅焊点可靠性分析单位:姓名:时间:无铅焊点可靠性分析摘要:主要介绍了Sn-Ag-Cu合金焊接点发生失效的各种表现形式,探讨失效发生与影响可靠性的各种原因及如保在设计及制程上进行改进以,改善焊点的可靠性,提高产品的质量。
关键词:焊点;失效;质量;可靠性前言:电子产品的“轻、薄、短、小”化对元器件的微型化和组装密度提出了更高的要求。
在这样的要求下,如何保证焊点质量是一个重要的问题。
焊点作为焊接的直接结果,它的质量与可靠性决定了电子产品的质量。
也就是说,在生产过程中,组装的质量最终表现为焊接的质量。
目前,环保问题也受到人们的广泛关注,在电子行业中,无铅焊料的研究取得很大进展,在世界范围内已开始推广应用,无铅焊料与有铅焊料相比,其润湿性差、焊接温度,形成的焊点外观粗糙等不利因素。
因此对其焊点品质也是一个大家很关注的问题。
中将就Sn-Ag-Cu焊料合金的焊点质量和可靠性问题进行探讨。
一、无铅焊点的外观评价在印刷电路板上焊点主要起两方面作用。
一是电连接,二是机械连接。
良好的焊点就是应该是在电子产品的使用寿命周期内,其机械和电气性能都不发生失效。
良好的焊点外观表现为:(1)良好的润湿;(2)适当的焊料,完全覆盖焊盘和焊接部位;(3)焊接部件的焊点饱满且有顺畅连接的边缘;二、寿命周期内焊点的失效形式产品在其整个寿命期间内各个时期的故障率是不同的, 其故障率随时间变化的曲线称为寿命的曲线, 也称浴盆曲线(见下图)如上图所示,产品寿命的曲线总共分为三个阶段早期故障期,偶然故障期,耗损故障期。
1)、早期故障期:在产品投入使用的初期,产品的故障率较高,且具有迅速下降的特征。
这一阶段产品的故障主要是设计与制造中的缺陷,如设计不当、材料缺陷、加工缺陷、安装调整不当等,产品投入使用后很容易较快暴露出来。
可以通过加强质量管理及采用筛选等办法来减少甚至消灭早期故障。
2)、偶然故障期:在产品投入使用一段时间后,产品的故障率可降到一个较低的水平,且基本处于平稳状态,可以近似认为故障率为常数,这一阶段就是偶然故障期。
焊接原理与焊点可靠性共66页文档
![焊接原理与焊点可靠性共66页文档](https://img.taocdn.com/s3/m/a45d68f04b35eefdc9d33367.png)
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
焊接原理与焊可靠性
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
焊点可靠性研究详解
![焊点可靠性研究详解](https://img.taocdn.com/s3/m/7ae4265833687e21af45a9ce.png)
SMT焊点可靠性研究前言近几年﹐随着支配电子产品飞速发展的高新型微电子组装技术--表面组装技术(SMT)的飞速发展﹐SMT焊点可靠性问题成为普遍关注的焦点问题。
与通孔组装技术THT(Through Hole Technology)相比﹐SMT在焊点结构特征上存在着很大的差异。
THT焊点因为镀通孔内引线和导体铅焊后﹐填缝铅料为焊点提供了主要的机械强度和可靠性﹐镀通孔外缘的铅焊圆角形态不是影响焊点可靠性的主要因素﹐一般只需具有润湿良好的特征就可以被接受。
但在表面组装技术中﹐铅料的填缝尺寸相对较小﹐铅料的圆角(或称边堡)部分在焊点的电气和机械连接中起主要作用﹐焊点的可靠性与THT焊点相比要低得多﹐铅料圆角的凹凸形态将对焊点的可靠性产生重要影响。
另外﹐表面组装技术中大尺寸组件(如陶瓷芯片载体)与印制线路板的热膨胀系数相差较大﹐当温度升高时﹐这种热膨胀差必须全部由焊点来吸收。
如果温度超过铅料的使用温度范围﹐则在焊点处会产生很大的应力最终导致产品失效。
对于小尺寸组件﹐虽然因材料的CTE 失配而引起的焊点应力水平较低﹐但由于SnPb铅料在热循环条件下的粘性行为(蠕变和应力松弛)存在着蠕变损伤失效。
因此﹐焊点可靠性问题尤其是焊点的热循环失效问题是表面组装技术中丞待解决的重大课题。
80年代以来﹐随着电子产品集成水平的提高,各种形式﹑各种尺寸的电子封装器件不断推出﹐使得电子封装产品在设计﹑生产过程中,面临如何合理地选择焊盘图形﹑焊点铅料量以及如何保证焊点质量等问题。
同时﹐迅速变化的市场需求要求封装工艺的设计者们能快速对新产品的性能做出判断﹑对工艺参数的设置做出决策。
目前﹐在表面组装组件的封装和引线设计﹑焊盘图形设计﹑焊点铅料量的选择﹑焊点形态评定等方面尚未能形成合理统一的标准或规则﹐对工艺参数的选择﹑焊点性能的评价局限于通过大量的实验估测。
因此﹐迫切需要寻找一条方便有效的分析焊点可靠性的途径﹐有效地提高表面组装技术的设计﹑工艺水平。
焊点可靠性分析技术要点
![焊点可靠性分析技术要点](https://img.taocdn.com/s3/m/d3910b206fdb6f1aff00bed5b9f3f90f76c64d84.png)
焊点可靠性分析技术要点1. 可焊性的评估和测试可焊性一般指金属表面被熔融焊料润湿的能力,润湿的过程如上所述,在电子行业中,可焊性评估的目的是验证元器件引脚或焊端的可焊性是否满足规定的要求和判断存储对元器件焊接到单板上的能力是否产生了不良影响,可焊性测试主要是测试镀层可润湿能力的稳健性(robustness)。
可焊性测试通常用于判断元器件和PCB在组装前的可焊性是否满足要求。
焊料润湿性能的试验方法有很多种,包括静滴法(Sessile drop)、润湿称量法(Wetting balance也称润湿平衡法)、浸锡法等。
图1为静滴法的示意图,该法是将液体滴落在洁净光滑的试样表面上,待达到平衡稳定状态后,拍照放大,直接测出润湿角θ,并可通过θ角计算相应的液—固界面张力。
该法中接触角θ可用于表征润湿合格与否,θ≤90°,称为润湿,θ>90°,称为不润湿,θ=0°,称为完全润湿,θ=180°,为完全不润湿。
润湿称量法则是将试样浸入焊锡中,测量提升时的荷重曲线,然后根据该荷重曲线,得出对润湿时间以及浮力进行修正后的润湿力。
以上两种方法为定量的方法,浸锡法则是定性的方法,是将试样浸入熔融焊料炉,观察焊料在镀层上的爬锡情况,凭经验定性评估镀层对焊料润湿情况,从而得出可焊性结论。
这种方法具有快捷、方便和费用少等特点,但是它的重复性和再现性Gauge R&R差,两个人在不同时间进行同一测试可能会得出不同的结论。
可焊性的测试方法,代表性的标准为“IPC/EIA J-STD-003B印制板可焊性试验”和“IPC/EIA/JEDEC J-STD-002C元件引线、焊接端头、接线片及导线的可焊性测试”。
润湿称量法由于其具有良好的重复性和再现性,受到多个标准的推荐使用。
影响可焊性的因素很多,主要有:焊料的合金组成、表面镀层(或者表面处理)、温度、助焊剂和时间等。
目前用于电子装配的焊料合金,主要以锡添加其它金属组成,添加的金属类型和量的比例,对润湿性能有很大影响。
无铅焊接的质量和可靠性分析报告
![无铅焊接的质量和可靠性分析报告](https://img.taocdn.com/s3/m/29cdd48db7360b4c2e3f64cf.png)
无铅焊接的质量和可靠性分析前言:传统的铅使用在焊料中带来很多的好处,良好的可靠性就是其中重要的一项。
例如在常用来评估焊点可靠性的抗拉强度,抗横切强度,以及疲劳寿命等特性,铅的使用都有很好的表现。
在我们准备抛弃铅后,新的选择是否能够具备相同的可靠性,自然也是业界关心的主要课题。
一般来说,目前大多数的报告和宣传,都认为无铅的多数替代品,都有和含铅焊点具备同等或更好的可靠性。
不过我们也同样可以看到一些研究报告中,得到的是相反的结果。
尤其是在不同PCB焊盘镀层方面的研究更是如此。
对与那些亲自做试验的用户,我想他们自然相信自己看到的结果。
但对与那些无能力资源投入试验的大多数用户,又该如何做出选择呢?我们是选择相信供应商,相信研究所,还是相信一些形象领先的企业?我们这回就来看看无铅技术在质量方面的状况。
什么是良好的可靠性?当我们谈论可靠性时,必须要有以下的元素才算完整。
1.使用环境条件(温度、湿度、室内、室外等);2.使用方式(例如长时间通电,或频繁开关通电,每天通电次数等等特性);3.寿命期限(例如寿命期5年);4.寿命期限内的故障率(例如5年的累积故障率为5%)。
而决定产品寿命的,也有好几方面的因素。
包括:1. DFR(可靠性设计,和DFM息息相关);2.加工和返修能力;3.原料和产品的库存、包装等处理;4.正确的使用(环境和方式)。
了解以上各项,有助于我们更清楚的研究和分析焊点的可靠性。
也有助于我们判断其他人的研究结果是否适合于我们采用。
由于以上提到的许多项,例如寿命期限、DFR、加工和返修能力等等,他人和我的企业情况都不同,所以他人所谓的‘可靠’或‘不可靠’未必适用于我。
而他人所做的可靠性试验,其考虑条件和相应的试验过程,也未必完全符合我。
这是在参考其他研究报告时用户所必须注意的。
您的无铅焊接可靠性好吗?因此,在给自己的无铅可靠性水平下定义前,您必须先对以下的问题有明确的答案。
§ 您企业的质量责任有多大?§ 您有明确的质量定义吗?§ 您企业自己投入的可靠性研究,以及其过程结果的科学性、可信度有多高?§ 您是否选择和管理好您的供应商?§ 您是否掌握和管理好DFM/DFR工作?§ 您是否掌握好您的无铅工艺?只有当您对以上各项都有足够的掌握后,您才能够评估自己的无铅可靠性水平。
焊点测试的原理和应用
![焊点测试的原理和应用](https://img.taocdn.com/s3/m/97cbda8688eb172ded630b1c59eef8c75ebf9573.png)
焊点测试的原理和应用焊点测试的原理焊点测试是通过对焊点进行检测,以确定焊点的质量和可靠性。
焊点测试主要目的是检测焊点的连接强度、电气性能和耐久性。
焊点测试可以帮助制造商评估焊点的可靠性,并及时发现焊点故障,从而提高产品质量和可靠性。
以下是常用的焊点测试原理:1.视觉检测:通过人眼观察焊点的外观,检查是否有未焊接、焊接质量差或焊点损坏等问题。
2.电阻检测:通过测量焊点的电阻来评估焊点的连接质量。
正常情况下,焊点的电阻应该很低,如果电阻过高,则可能是焊点存在问题。
3.拉力测试:通过施加拉力作用于焊点,并测量焊点的抗拉强度,来评估焊点的可靠性。
4.耐久性测试:通过连续施加电流、温度、振动或其他外部刺激,来模拟实际使用条件下焊点的工作状态,评估焊点的耐久性和可靠性。
焊点测试的应用焊点测试广泛应用于电子制造业中,特别是在电子产品的生产过程中。
以下是焊点测试的一些常见应用场景:1.PCB制造:焊点测试可以检测PCB上的焊点连接质量,确保焊点与PCB之间的连接良好。
在大规模生产中,焊点测试可以提高生产效率,并降低因焊点质量不良引起的产品故障率。
2.电子组件制造:焊点测试可以用于检测电子组件之间的焊接连接,以确保组件之间的电气连接可靠。
焊点测试可以帮助制造商及时发现焊点问题,并及时采取措施修复或更换焊点,以提高产品质量和可靠性。
3.汽车制造:焊点测试在汽车制造中扮演重要角色。
焊点测试可以帮助汽车制造商检测车身焊接点的质量,确保车身结构的稳定性和安全性。
焊点测试可以帮助汽车制造商发现焊点质量不良的问题,并及时采取措施,防止车辆在使用中出现安全隐患。
4.航空航天制造:在航空航天制造领域,焊点测试尤为重要。
焊点测试可以用于检测飞机和航天器上的焊点连接质量,确保航空航天器的结构稳定性和安全性。
焊点测试可以帮助制造商检测焊点的可靠性,并及时发现焊点故障,以确保航空器和航天器的安全飞行。
总结起来,焊点测试是提高产品质量和可靠性的关键步骤之一。
无铅焊接的质量和可靠性分析
![无铅焊接的质量和可靠性分析](https://img.taocdn.com/s3/m/c5667ca36394dd88d0d233d4b14e852458fb39af.png)
无铅焊接的质量和可靠性分析无铅焊接是一种替代传统铅焊接的技术,在电子制造业中越来越受欢迎。
它被广泛应用于手机、计算机、汽车电子等领域,并在一定程度上改善了环境和健康安全问题。
本文将对无铅焊接的质量和可靠性进行分析。
首先,无铅焊接的质量主要取决于焊接接头的可靠性。
与传统的铅焊接相比,无铅焊接在焊接接头的物理性能上存在一些差异。
无铅焊料的熔点较高,焊接温度也相应提高,这可能导致焊接接头出现焊缺、毛刺和冷焊等问题。
因此,在无铅焊接的过程中,需要严格控制焊接的温度和时间,确保焊缝的完整性和连接的可靠性。
其次,无铅焊接的质量还与焊接材料的选择和焊接工艺的优化有关。
无铅焊料种类繁多,包括有机铅、无铅合金等。
正确选择合适的焊料是保证焊接质量的关键。
此外,优化的焊接工艺可以提高焊接接头的可靠性。
例如,合理调整焊接参数、采用预热和后热等措施可以减少焊接应力和应变,提高焊接质量。
关于无铅焊接的可靠性,一些研究已经针对其使用寿命和耐久性进行了分析。
无铅焊接与铅焊接相比,无铅焊接的接头强度和耐久性较差。
然而,通过合适的设计和工艺控制,可以提高焊接接头的可靠性。
例如,结构设计上的考虑、扬声器布置等可减少焊接接头的应力集中,增强接头的耐久性。
此外,研究者还发现适当增大焊料的量,以及利用辅助材料(如球墨铸铁)等措施可以增加焊接接头的寿命。
综上所述,无铅焊接的质量和可靠性与焊接接头的设计、焊接材料的选择和焊接工艺的优化密切相关。
通过合理控制焊接参数,采取适当的焊接工艺和辅助措施,可以有效提高无铅焊接的质量和可靠性。
然而,仍需要进一步研究和改进,以推动无铅焊接技术的发展和应用。
接着上文所述,下面将继续探讨无铅焊接的质量和可靠性的相关内容。
除了焊接接头的可靠性外,无铅焊接的质量还与焊接过程中产生的焊接缺陷有关。
无铅焊接常见的缺陷包括焊接裂纹、焊接虹吸缺陷和焊接气孔等。
这些缺陷可能导致焊接接头的破裂或失效,降低焊接质量和可靠性。
因此,在无铅焊接过程中,及时检测和修复焊接缺陷是保证焊接质量的重要步骤。
锡焊原理与焊点可靠性分析-经典共63页
![锡焊原理与焊点可靠性分析-经典共63页](https://img.taocdn.com/s3/m/58575e6390c69ec3d4bb7554.png)
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
锡焊原理与焊点可靠性分析-经典
1、纪律是管理关系的形式。——阿法通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
55、 为 中 华 之 崛起而 读书。 ——周 恩来
锡焊原理与焊点可靠性分析-经典课件
![锡焊原理与焊点可靠性分析-经典课件](https://img.taocdn.com/s3/m/5d061ef56bec0975f465e2a0.png)
冷却后形成焊点
材料力学——强度(拉力、剥离疲劳)、应力集中
锡焊原理与焊点可靠性分析-经典
焊接过程中焊接金属表面(母材,以Cu为例)、 助焊剂、熔融焊料之间相互作用
1. 助焊剂与母材的反应
(1)松香去除氧化膜——松香的主要成分是松香酸, 融点为74℃。170℃呈活性反应, 300℃以上无活性。 松香酸和Cu2O反应生成松香酸铜。松香酸在常温下 和300℃以上不能和Cu2O起反应。
由于液体内部分子受到四周分子的作用力是对 称的,作用彼此抵消,合力=0。但是液体表面分子受 到液体内分子的引力大于大气分子对它的引力,因此 液体表面都有自动缩成最小的趋势。
熔融焊料在金属表面也有表面张力现象。
大大气
液体表面分子受液体内分子的引力>大气分子引力
锡焊原理与液焊点体可靠内性部分析分-经子典 受力合力=0
(2)溶融盐去除氧化膜——一般采用氯离子Cl-或氟离 子F- ,使氧化膜生成氯化物或氟化物。
(3)母材被溶蚀——活性强的助焊剂容易溶蚀母材。
(4)助焊剂中的金属盐与母材进行置换反应。 锡焊原理与焊点可靠性分析-经典
2. 助焊剂与焊料的反应 (1)助焊剂中活性剂在加热时能释放出的HCl,与SnO
起还原反应。 (2)活性剂的活化反应产生激活能,减小界面张力,
Wa = CSL +ALV COSθ+ ALV- CSL Wa = ALV(1 + COSθ )——润湿力关系式
S:固体 L:液体 V:气体 θ :润湿角
从润湿力关式可以看出:润湿角锡焊θ越原理小与,焊点润可湿靠性力分越析-大经典
润湿条件
(a)液态焊料分与子母运材动之间有良好的亲和力,能互相溶解。 互溶程度取决于:原子半径和晶体类型。因此润湿是
锡焊原理与焊点可靠性分析-经典63页PPT
![锡焊原理与焊点可靠性分析-经典63页PPT](https://img.taocdn.com/s3/m/112dd823bb4cf7ec4bfed003.png)
1
0
、
倚
南
窗
以
寄
傲
,
审
容
膝
舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
63
锡焊原理与焊点可靠性分析-经典
6
、
露
凝
无
游
氛
,
天
高
风
景
澈
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
(完整word版)焊点的质量与可靠性
![(完整word版)焊点的质量与可靠性](https://img.taocdn.com/s3/m/89ef82a40066f5335a8121c7.png)
焊点的质量与可靠性机电工程学院微电子制造工程1000150312 黄荣雷摘要:本文介绍了Sn-Pb合金焊接点发失效的各种表现形式,探讨失效的各种原因。
在实践基础上,指出如何在工艺上进行改进已改善焊点的可靠性,提高产品的质量。
1 前言电子产品的"轻、薄、短、小"化对元器件的微型化和组装密度提出了更高的要求。
在这样的要求下,如何保证焊点质量是一个重要的问题。
焊点作为焊接的直接结果,它的质量与可靠性决定了电子产品的质量。
也就是说,在生产过程中,组装的质量最终表现为焊接的质量。
目前,在电子行业中,虽然无铅焊料的研究取得很大进步,在世界范围内已开始推广应用,而且环保问题也受到人们的广泛关注,但是由于诸多的原因,采用Sn-Pb焊料合金的软钎焊技术现在仍然是电子电路的主要连接技术。
文中将就Sn-Pn焊料合金的焊点质量和可靠性问题进行较全面地介绍。
2 焊点的外观评价良好的焊点应该是在设备的使用寿命周期内,其机械和电气性能都不发生失效。
其外观表现为:(1)良好的湿润;(2)适当的焊料量和焊料完全覆盖焊盘和引线的焊接部位(或焊端),元件高度适中;(3)完整而平滑光亮的表面。
原则上,这些准则适合于SMT中的一切焊接方法焊出的各类焊点。
此外焊接点的边缘应当较薄,若焊接表面足够大,焊料与焊盘表面的湿润角以300以下为好,最大不超过600。
3 寿命周期内焊点的失效形式考虑到失效与时间的关系,失效形式分为三个不同的时期,如图1所示。
(1)早期失效阶段,主要是质量不好的焊点大量发生失效,也有部分焊点是由于不当的工艺操作与装卸造成的损坏。
可以通过工艺过程进行优化来减少早期失效率。
(2)稳定失效率阶段,该阶段大部分焊点的质量良好,失效的发生率(失效率)很低,且比较稳定。
(3)寿命终结阶段,失效主要由累积的破环性因素造成,包括化学的、冶金的、热-机械特性等因素,比如焊料与被焊金属之间发生金属化合反应,或热-机械应力造成焊点失效。
焊接原理与焊点强度
![焊接原理与焊点强度](https://img.taocdn.com/s3/m/28c6bf37376baf1ffc4fad1f.png)
焊接原理與銲點強度Soldering Basics and Joint Strength焊錫性與銲點強度的不同The Difference of Solderability and Solder Joint Strengthz焊接是一種化學反應 銲墊為銅基地者焊接後立即生成良性的 Cu6Sn5,且還會隨焊接熱量與後續老化 而長厚 ,不幸的是老化中更會長出惡性致命的Cu3Sn。
此類表面處理為:OSP、 HASL 、 I-Sn、I-Ag等。
總體而言銅基地的銲點要比鎳基地者脆性低,可靠度也較好。
鎳基地之化鎳浸金與電鍍鎳金之金層較厚者,其焊點不但IMC較薄且更容易形 成金 脆,只有在快速長出的AuSn4游走後鎳基地才會形成Ni3Sn4 其強度原本就不如 Cu6Sn5 。
2焊接過程與IMC (Intermetallic Compound,介面金屬共化物,介金屬)有鉛與無鉛各種配方合金銲料(Solder)中,只有純錫(Sn)才會與PCB承焊的銅基地 (OSP,I-Ag,I-Sn,HASL等)或鎳基地(化學鎳與電鍍鎳),在強熱中發生擴散反應 迅速生成介面性IMC而焊牢。
銲料中純錫以外的其他少量金屬,其等主要功能就是為了降低熔點(Melting Point, mp)以節省能源與減少PCB的熱傷害。
次要目的是改善銲點(Solder Joint)的韌度 (Toughness)與強度(Strength),以加強互連之可靠度。
純錫的熔點高達321℃根本無法用於PCBA的焊接,必須配製成 以錫為主的合金銲料才能使用。
例如加入少許銅做為兩相合金 時 (0.7% by wt),不但mp降至227℃而且還呈現內外瞬間整體 熔融之共熔狀態(Eutectic此字被譯為“共晶”係抄自日文 並不正確)。
無鉛回焊者以SAC305為主,波焊以SCNi為主。
介面性IMC是銲點強度的基礎,係強熱中銲料內的液錫與基地的銅或鎳相互擴散 而組成的,一般而言完工銲點IMC的Cu6Sn5比Ni3Sn4強度要好些,老化後的銲點 強度則不一定。
BGA封装焊点可靠性及疲劳寿命分析
![BGA封装焊点可靠性及疲劳寿命分析](https://img.taocdn.com/s3/m/1f87b46fec630b1c59eef8c75fbfc77da26997fe.png)
BGA封装焊点可靠性及疲惫寿命分析随着电子产品的不息进步,电子元件的集成化和微小化趋势愈创造显。
BGA(Ball Grid Array)封装作为一种先进的表面贴装技术,因其在空间利用率、导热性能和可靠性等方面的优势而被广泛应用于现代电子产品的制造中。
然而,由于BGA封装焊点的结构和工作环境的特殊性,焊点可靠性和疲惫寿命成为影响产品质量和可靠性的重要因素。
BGA封装的焊点可靠性主要受到以下几个因素的影响:焊点结构设计、焊接工艺和材料的选择以及使用环境条件。
起首,焊点结构设计是保证焊点可靠性的基础。
焊点的规划、尺寸和间距的设计需要思量到应力分布、热应力和热膨胀等因素,以防止焊点疲惫和断裂。
其次,焊接工艺和材料的选择是影响焊点可靠性的重要因素。
适当的焊接工艺参数和合适的焊接材料能够确保焊点的高度可靠性。
最后,使用环境条件也会对焊点可靠性产生重要影响。
温度变化、机械应力和震动等环境因素都可能导致焊点的疲惫、裂纹和失效。
疲惫寿命是衡量焊点可靠性的重要指标之一。
焊点在使用过程中会受到屡次热、机械应力的作用,从而导致疲惫断裂。
焊点疲惫寿命将受到多种因素的影响,包括焊点材料的物理、化学性质、腐蚀环境、应力水平宁加载方式等。
通常,焊点的疲惫寿命可以通过试验、数值模拟和寿命猜测模型等方法来进行评估。
通过对焊点疲惫寿命的分析,可以指导焊接工艺的优化,提高焊点的可靠性。
在BGA封装的焊点可靠性和疲惫寿命分析中,试验是一种重要的手段。
通过对不同焊点结构和工艺参数的试验探究,可以评估焊点在不同条件下的失效模式和寿命。
另外,数值模拟方法也是一种有效的手段。
通过建立焊点结构和材料的有限元模型,可以模拟焊点在实际工作条件下的应力和应变分布,从而评估焊点的可靠性和疲惫寿命。
此外,寿命猜测模型也是一种常用的手段。
通过建立适当的数学模型,可以依据焊点的工作条件和材料性质,猜测焊点的寿命,从而指导焊接工艺和材料的选择。
总的来说,BGA封装焊点的可靠性和疲惫寿命是一个复杂而重要的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
升高温度可以增加熔融焊料内的分子距离,减小焊料内 分子对表面分子的引力。
②适当的金属合金比例——Sn的表面张力很大,增加Pb可以降 低表面张力。63Sn/37Pb表面张力明显减小。
η 粘 度
T(℃)
温度对黏度的影响
表 mn/m 面 张 540 力 520 500 480 10 20 30 40 50 Pb含量%
表面张力
表面张力——在不同相共同存在的体系中,由于 相界面分子分与子体运相动内分子之间作用力不同,导致相 界面总是趋于最小的现象。
由于液体内部分子受到四周分子的作用力是对 称的,作用彼此抵消,合力=0。但是液体表面分子 受到液体内分子的引力大于大气分子对它的引力, 因此液体表面都有自动缩成最小的趋势。
锡铅合金配比与表面张力及粘度的关系(280℃测试)
配比(W%)
Sn
Pb
20
80
30
70
50
50
63
37
80
20
表面张力(N/cm)
4.67×10-3 4.7×10-3 4.76×10-3 4.9×10-3 5.14×10-3
粘度(mPa•s)
2.72 2.45 2.19 1.97 1.92
焊接中降低表面张力和黏度的措施
润湿条件
(a)液态焊料与母材之间有良好的亲和力,能互相溶解。 分子运动
互溶程度取决于:原子半径和晶体类型。因此润湿是 物质固有的性质。
(b)液态焊料与母材表面清洁,无氧化层和其它污染物。
清洁的表面使焊料与母材原子紧密接近,产生引力, 称为润湿力。
当焊料与被焊金属之间有氧化层和其它污染物时,妨 碍金属原子自由接近,不能产生润湿作用。这是形成虚焊 的原因之一。
焊接过程中焊接金属表面(母材)、助焊剂、 熔融焊料之间相互作用
1. 助焊剂与母材的反应
(1)松香去除氧化膜——松香的主要成分是松香酸, 融点为74℃。170℃呈活性反应, 300℃以上无活性。 松香酸和Cu2O反应生成松香酸铜。松香酸在常温下 和300℃以上不能和Cu2O起反应。
(2)溶融盐去除氧化膜——一般采用氯离子Cl-或氟离 子F- ,使氧化膜生成氯化物或氟化物。
熔融焊料在金属表面也有表面张力现象。
大大气
液体表面分子受液体内分子的引力>大气分子引力
液体内部分子受力合力=0
表面张力与润湿力
熔融焊分料子在运金动属表面润湿的程度除了与液态焊料与 母材表面清洁程度有关,还与液态焊料的表面张力有关。
表面张力与润湿力的方向相反,不利于润湿。
表面张力是物质的本性,不能消除,但可以改变。
波峰焊——波峰焊时,由于表面张力与润湿力的方向 相反,因此表面张力是不利于润湿的因素之一。
•SMD波峰焊时表面张力造成阴影效应
粘度与表面张力
• 熔融合金的粘度与表面张力是焊料的重要性能。 • 优良的焊料熔融时应具有低的粘度和表面张力,以增 加焊料的流动性及被焊金属之间的润湿性。 • 锡铅合金的粘度和表面张力与合金的成分密切相关。
焊接原理与焊点可靠性分析
顾霭云
内容
一. 概述 二. 锡焊机理 三.焊点可靠性分析
一. 概述 熔焊
熔焊 焊接种类 压焊
钎焊
压焊
钎焊
超声压焊 金丝球焊 激光焊
电子装配的核心——连接技术:焊接技术
焊接技术的重要性 ——焊点是元器件与印制电路 板电气连接和机械连接的连接点。焊点的结构和强 度就决定了电子产品的性能和可靠性。
(3)母材被熔融——活性强的助焊剂容易熔融母材。
(4)助焊剂中的金属盐与母材进行置换反应。
2. 助焊剂与焊料的反应 (1)助焊剂中活性剂在加热时能释放出的HCl与SnO
起还原反应。 (2)活性剂的活化反应产生激活能,减小界面张力,
提高浸润性。 (3)焊料氧化,产生锡渣。 3.焊料与母材的反应
润湿、扩散、溶解、冶金结合,形成结合层
锡焊机理
(1)润湿 (2)扩散 (3)溶解 (4)冶金结合,形成结合层
(1)润湿
液体在固体表面漫流的物理现象
润湿是物质固有分的子性运质动
润湿是焊接的首要条件
润湿角θ
θ=焊料和母材之间的界面 与焊料表面切线之间的夹角
焊点的最佳润湿角 Cu----Pb/Sn 15~45 °
当θ=0°时,完全润湿;当θ=180°时,完全不润湿;
250℃时Pb含量与表面张力的关系
③增加活性剂——能有效地降低焊料的表面张力,还 可以去掉焊料的表面氧化层。
电子焊接——是通过熔融的焊料合金与 两个被焊接金属表面之间生成金属间合金层 (焊缝),从而实现两个被焊接金属之间电 气与机械连接的焊接技术。
二. 锡焊机理
当焊料被加热到熔点以上,焊接金属表面在助焊剂 的活化作用下,对金属表面的氧化层和污染物起到清洗 作用,同时使金属表面获得足够的激活能。熔融的焊料 在经过助焊剂净化的金属表面上进行浸润、发生扩散、 溶解、冶金结合,在焊料和被焊接金属表面之间生成金 属间结合层(焊缝),冷却后使焊料凝固,形成焊点。 焊点的抗拉强度与金属间结合层的结构和厚度有关。
焊接方法(钎焊技术)
• 手工烙铁焊接 • 浸焊 • 波峰焊 • 再流焊
软钎焊
• 焊接学中,把焊接温度低于450℃的焊 接称为软钎焊,所用焊料为软钎焊料。
软钎焊特点
• 钎料熔点低于焊件熔点。 • 加热到钎料熔化,润湿焊件。 • 焊接过程焊件不熔化。 • 焊接过程需要加焊剂。(清除氧化层) • 焊接过程可逆。(解焊)
锡焊过程——焊接过程是焊接金属表物理学——润湿、黏度、毛细管现象、热传导、扩散、溶解
化学——助焊剂分解、氧化、还原、电极电位
表面清洁
冶金学——合金、合金层、金相、老化现象
焊件加热
熔锡润湿
扩散结合层
电学——电阻、热电动势
冷却后形成焊点
材料力学——强度(拉力、剥离疲劳)、应力集中
表面张力在焊接中的作用
再流焊—分—子当运焊动膏达到熔融温度时,在平衡的表面张 力的作用下,会产生自定位效应(self alignment)。表 面张力使再流焊工艺对贴装精度要求比较宽松,比较容易 实现高度自动化与高速度。同时也正因为“再流动”及 “自定位效应”的特点,再流焊工艺对焊盘设计、元器件 标准化有更严格的要求。如果表面张力不平衡,焊接后会 出现元件位置偏移、吊桥、桥接、等焊接缺陷。