换流变压器交流消磁装置的研究

换流变压器交流消磁装置的研究
换流变压器交流消磁装置的研究

换流变压器交流消磁装置的研究

发表时间:2019-07-08T15:44:40.680Z 来源:《电力设备》2019年第6期作者:刘志远1 于晓军1 邹洪森1 张帅2 [导读] 摘要:针对电力换流变压器铁芯剩磁产生的励磁涌流问题及电力换流变压器安全运行的影响,在分析换流变压器剩磁产生及消磁原理的基础上,为解决常规交流消磁设备存在消磁时间较长的问题,基于交流消磁法,采用控制SPWM波来对换流变压器进行消磁。(1.国网宁夏电力有限公司检修公司;2.保定市泰达电力设备有限公司)摘要:针对电力换流变压器铁芯剩磁产生的励磁涌流问题及电力换流变压器安全运行的影响,在分析换流变压器剩磁产生及消磁原理的基础上,为解决常规交流消磁设备存在消磁时间较长的问题,基于交流消磁法,采用控制SPWM波来对换流变压器进行消磁。研制了换流变压器消磁装置,对已知剩磁的变压器,搭建试验回路进行消磁测量,通过测量环形铁芯的励磁涌流,验证消磁装置的消磁效果。试验

结果表明,换流变压器铁芯剩磁通过加载正弦激励后,励磁涌流基本消失,体现了消磁装置的实用性,从而为具有封闭磁路的电力换流变压器中的剩磁研究提供一种测量及消磁方法。关键词:换流变压器;封闭铁芯;剩磁;消磁;励磁涌流引言

电力变压器在运行过程中,其内部会产生稳态磁通。当变压器断电切除时,由于回路磁通守恒,稳态磁通不会立即消失,而会保留一个与最末时刻稳态磁通大小相等、极性相同的剩磁。同时,由于铁磁材料固有的磁滞现象,在对电力变压器进行电压比、直流电阻测量等操作后同样会在铁芯中残留剩磁。剩磁使变压器铁芯饱和,在励磁电流中产生大量谐波,这不仅增加了变压器的无功消耗,而且可能引起继电保护装置误动作。大容量换流变压器的剩磁会导致空载或轻载合闸时产生较大的励磁涌流,使保护系统发生动作,较高的励磁涌流将产生过电压,使得断路器跳闸、换流变合闸操作频频失效,甚至烧毁器件,同时也会对换流变产生冲击造成损伤。当变压器容量较大时,剩磁的危害也会相应增大[1]。在剩磁的估算方面,依据模型计算剩磁提出较早,效果也比较突出,主要是Stoner-Wohlfarth模型(简称SW模型)、Pruduct模型和变压器模型。SW模型主要是针对磁性纳米粒子,利用SW模型构建方程,经插值后得出剩磁[2]。通过分析耦合变压器的互感电路模型,基于场路耦合能量平衡原理计算电感参数和耦合系数[3]。虽然通过模型进行剩磁的优化估算,所得到的结果比较准确,但估算过程比较繁复,容易出错,直接利用合间时刻的剩磁与电流幅值、相角的联系可实现剩磁的准确估算。采用磁通传感器通过测量漏磁场得到剩磁数值,该方法的精确性受限于传感器的安装位置,其仅适用于无油箱的变压器,或者通过变压器通电实验得到励磁涌流的峰值,并根据该峰值得到剩磁的数值[4]。上述方法仅能通过变压器合闸后获得剩磁数值,并不能在合闸前对剩磁数值进行计算。有学者对变压器进行暂态仿真分析的基础上得到了电流-剩磁的表达式,通过对铁芯进行激励,根据测量得到的剩磁进行去磁电流设定[5],使其剩磁减小为0。基于磁滞回线的变压器剩磁计算方法[6],从铁磁材料固有的磁滞现象角度分析变压器剩磁产生的原因,提出了基于时间-电流曲线的变压器剩磁检测的方法[7]。通过绘制的磁通与电流关系曲线,可得到铁心的部分饱和磁滞回线,根据获得的饱和磁滞回线来计算铁心剩磁通和剩磁系数[8]。根据激励电源方式的不同[9],主要分为交流消磁法和直流消磁法。交流消磁方法通过交流电源首先将铁屯、磁通升至饱和,随后采用交变衰减的电压,对铁芯进行消磁。有研究发现变频率定电压方式相比较于变电压定频率方式更加简单且所需消磁时间少,基于研制的消磁装置,对不同结构变压器进行了消磁实验[10,11],当变压器空载合闸时,铁心中的剩磁使变压器产生较大的励磁涌流,对变压器造成严重冲击,同时产生大量谐波,增加了变压器的无功消耗[12]。通过研究励磁涌流与剩磁及合闸初相角之间的关系,可以得出励磁涌流中的谐波含量情况[13]。基于一种磁隔离的交流电流峰值检测电路,结合峰值电流控制技术可有效抑制初级电流的直流偏置[14]。采用集成电路工艺设计了Ruthroff型传输线变压器,应用于宽带功率放大器,实现负载阻抗的转换[15]。而Jacek Horiszny等人提出通过在变压器低压侧并联电容器来削弱铁芯磁通以抑制变压器励磁涌流[16]。但未完全去除剩磁,因此在应用上存在一定的局限性。综上所述,学者对变压器剩磁估算及直流消磁法做了大量研究,而对交流消磁法及其应用方面还需要进一步的探索分析。

本文首先对变压器消磁原理进行分析,提出一种采用交流消磁控制SPWM波来对换流变压器进行消磁的方法,研制交流消磁装置,对电力换流变压器进行试验验证。

1 变压器消磁原理分析

在电流产生磁场强度H的激励下,铁磁材料(如铁芯)被磁化并以感应强度B描述磁化程度。磁化后的铁芯,若去除电流激励,使H=0,铁磁材料中的磁感应强度虽减小,但并不为零,即B≠0,这种现象称为铁磁材料具有剩磁特性。

当有正弦电流通过电感时,根据电感的电压-电流的时域关系(式(1)所示),说明电感上的电压-电流都为同频正弦量。

(1)

式(2)为上式变换后的相量形式,从中可以看出电感L上的电流大小将跟随频率和电感电压的变化而变化。

(2)

铁磁材料的剩磁可通过施加适当的反向磁场进行减弱或消失。电力变压器消磁原理主要是通过缩小铁心的磁滞回环,达到消除剩磁的目的,主要分为直流法和交流法。本文主要研究交流消磁法。交流消磁的原理主要是通入特定规律性交流电流,逐渐减小磁滞回环。由公式2可知当交流电频率一定时,电感电流大小和电感电压呈正比例关系,或者当交流电电压一定时,电感电流大小与交流电频率成反比关系。

图1交流消磁原理—频率不变

变压器差动保护误动分析及对策(一)

变压器差动保护误动分析及对策(一) 要:文章对微机型变压器差动保护动作的原因,从事件的形成以及保护的原理给予了详细地分析。对新建的、运行的或设备更新改造的发电厂和变电站的变压器差动保护误动提出了对策。 关键词:差动保护误动动作特性电流互感器 0引言 电力变压器是电力系统中最关键的主设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。因此,变压器的正常运行是对电力系统安全、可靠、优质、经济运行的重要保证。作为主设备主保护的微机型纵联差动(简称纵差或差动)保护,虽然经过不断的改进,但是还存在一些误动作的情况,这将造成变压器的非正常停运,影响电力系统的发供电,甚至是造成系统振荡,对电力系统发供电的稳定运行是很不利的。因此对新建或设备更新改造的发电厂和变电站的变压器差动保护误动原因进行分析,并提出了防止变压器差动误动的对策。 1变压器差动保护 变压器差动保护一般包括:差动速断保护、比率差动保护、二次(五次)谐波制动的比率差动保护,不管哪种保护功能的差动保护,其差动电流都是通过变压器各侧电流的向量和得到,在变压器正常运行或者保护区外部故障时,该差动电流近似为零,当出现保护区内故障时,该差动电流增大。现以双绕组变压器为例进行说明。

1.1比率差动保护的动作特性比率差动保护的动作特性见图1。当变压器轻微故障时,例如匝间短路的圈数很少时,不带制动量,使保护在变压器轻微故障时具有较高的灵敏度。而在较严重的区外故障时,有较大的制动量,提高保护的可靠性。 二次谐波制动主要区别是故障电流还是励磁涌流,因为变压器空载投运时会产生比较大的励磁涌流,并伴随有二次谐波分量,为了使变压器不误动,采用谐波制动原理。通过判断二次谐波分量,是否达到设定值来确定是变压器故障还是变压器空载投运,从而决定比率差动保护是否动作。二次谐波制动比一般取0.12~0.18。对于有些大型的变压器,为了增加保护的可靠性,也有采用五次谐波的制动原理。 1.2差动速断保护的作用差动速断保护是在较严重的区内故障情况下,快速跳开变压器各侧断路器,切除故障点。差动速断的定值是按躲过变压器的励磁涌流,和最大运行方式下穿越性故障引起的不平衡电流,两者中的较大者。定值一般取(4~14)Ie。 2变压器差动保护误动作原因分析 根据变压器差动保护误动作可能性的大小,大致分为新建发电厂和变电站、运行中发电厂和变电站、设备更新改造的发电厂和变电站三个方面进行说明,这种分类方法并不是绝对相互区别,只是为了便于在分析问题时优先考虑现实问题。 2.1新建发电厂和变电站变压器差动保护误动作原因分析新建变电站的变压器差动保护误动作,在变压器差动保护误动作中占了较大的比

12脉动换流变压器对称性涌流现象分析

第39卷第23期电力系统保护与控制Vol.39 No.23 2011年12月1日Power System Protection and Control Dec.1, 2011 12脉动换流变压器对称性涌流现象分析 田 庆 (南方电网超高压输电公司检修试验中心,广东 广州 510663) 摘要:分析了(特)高压直流系统中12脉动换流变压器的对称性涌流问题。根据云广直流输电工程中发生的一起12脉动换流变空充误跳闸事件,从剩磁和直流偏磁衰减的角度,采用和应涌流的分析方法,分析了12脉动换流变对称性涌流的产生机理、变化特点和影响该对称性涌流的各种因素,并根据现场实际录波数据,对12脉动换流变空充误跳闸事故做了详细的讨论。给出了两种解决办法解决12脉动换流变空充误跳闸问题,并得到现场试验验证。这可增强高压直流系统的安全稳定运行。 关键词:特高压直流;12脉动换流变;对称性涌流;和应涌流;剩磁 Analysis on the symmetry inrush of 12 impulsive convertor transformer TIAN Qing (Test and Maintenance Center,CSG EHV Power Transmission Company,Guangzhou 510663,China) Abstract:This paper analyses the symmetry inrush of 12 impulsive convertor transformers in UHV or EHV direct current. From the angle of residual magnetism and DC magnetic bias attenuation,the production mechanism,changing characteristics of symmetry inrush of 12 impulsive convertor transformers as well as the influence factors are studied according to a fault trip event during the no-load charging of 12 impulsive convertor transformer in Yunguang UHVDC project. The sympathetic inrush method is used. Two corresponding solutions are put forward after the detail study based on the recorded field data and it is proved by the field test result that it can enhance the socurity and stability of the HVDC control and protection system. Key words:UHVDC;12 Converter transformer;symmetry inrush current;sympathetic inrush;residual magnetism 中图分类号: TM77 文献标识码:B 文章编号: 1674-3415(2011)23-0133-05 0 引言 变压器差动保护不明原因误动的分析也受到了理论界和工业界的广泛关注。特别是在和应涌流导致保护误动的研究方面,国内外多个研究小组均对其形成机理进行了深入的探讨,取得了不同程度的进展。 文献[1-3]通过数值仿真分析,指出空投一台变压器时,励磁涌流在系统与变压器之间的电阻上产生不对称电压,这在变压器之间形成了一种暂态和应作用,不但使空投变压器的励磁涌流幅值和持续时间发生变化,而且在运行变压器中将产生和应涌流,结果导致运行变压器差动保护误动和长时间的谐波过电压。 文献[4]建立了两台单相变压器并联和级联运行模型,推导了当一台变压器正常运行,另外一台并联或级联变压器空投充电时,两台变压器的磁链解析表达形式,定性分析了正在运行的变压器可能发生饱和现象以及和应涌流产生及影响的机理。 文献[5]在等效电路的基础上,从磁通变化的角度出发,分析了单台变压器励磁涌流的衰减机理,在此基础上,研究了变压器和应涌流的产生机理及其变化特点,对系统等效电阻、并联与串联以及运行变压器负载对和应涌流的影响进行了初步的分析。文献[6]在变压器和应涌流产生机理分析的基础上,指出偏磁是和应涌流产生的根本原因,分析了串联和并联两种情况下和应涌流对变压器差动保护、变压器后备保护及其他相关保护的影响。 文献[7-10]利用励磁涌流偏向时间轴一侧的特点,解释了和应涌流产生的机理及其变化特点,指出了和应涌流产生的本质原因一是由于合闸变压器励磁涌流流过系统电阻,使得其他变压器工作母线

差动保护的工作原理

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

变压器差动保护

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高 =220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KV A, I1’:流过变压器高压侧的一次电流; I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2”I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地) 单相接地故障以及匝间、层间短路故障;

四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。以p点为 例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2,最小制动电流 Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流I1=6A,180度,低压侧电流I2=6A,0度,固定I1升 I2,当I2升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(I1+I2)/2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 判此电流为非故障电流,进行谐波闭锁。500kv一下等级的变压器之

变压器差动保护整定计算

变压器差动保护整定计算 1. 比率差动 装置中的平衡系数的计算 1).计算变压器各侧一次额定电流: n n n U S I 113= 式中n S 为变压器最大额定容量,n U 1为变压器计算侧额定电压。 2).计算变压器各侧二次额定电流: LH n n n I I 12= 式中n I 1为变压器计算侧一次额定电流,LH n 为变压器计算侧TA 变比。 3).计算变压器各侧平衡系数: b n n PH K I I K ?= -2min 2,其中)4,min(min 2max 2--=n n b I I K 式中n I 2为变压器计算侧二次额定电流,min 2-n I 为变压器各侧二次额定电流值中最小值,max 2-n I 为变压器各侧二次额定电流值中最大值。

平衡系数的计算方法即以变压器各侧中二次额定电流为最小的一侧为基准,其它侧依次放大。若最大二次额定电流与最小二次额定电流的比值大于4,则取放大倍数最大的一侧倍数为4,其它侧依次减小;若最大二次额定电流与最小二次额定电流的比值小于4,则取放大倍数最小的一侧倍数为1,其它侧依次放大。装置为了保证精度,所能接受的最小系数ph K 为,因此差动保护各侧电流平衡系数调整范围最大可达16倍。 差动各侧电流相位差的补偿 变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。电流互感器各侧的极性都以母线侧为极性端。 变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,大大加快保护的动作速度。对于Yo/Δ-11的接线,其校正方法如下: Yo 侧: )0('I I I A A ? ??-= )0(' I I I B B ? ? ? -= )0('I I I C C ? ??-= Δ侧: 3/ )('c a a I I I ? ??-=

换流变压器与交流系统的主变压器比较

换流变压器与交流系统的主变压器比较 超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点[1>包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。我国目前已投运的超高压直流输电工程包括葛上直流、天广直流和三常直流等,在这些工程中所有的保护与控制系统都是国外进口设备。 换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在较优的状态等。 换流变压器的投资在换流站中占有很大的比例,换流变压器的可靠安全运行是直流输电系统可靠安全运行的基础。因此对换流变压器提供完善的保护功能对直流输电系统的安全稳定可靠运行显得尤为重要。下面主要讨论换流变压器的特点、直流输电的各种运行工况对换流变压器保护的影响,并结合其特点提出相应的保护原理与方案。 1 换流变压器的特点以及对保护带来的影响

1.1 短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。 1.2 直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使地电位发生变化,造成直流电流流入变压器原边绕组,使换流变压器发生直流偏磁,工作点偏移。如果此直流电流过大,会导致换流变压器铁心饱和,同时损耗和温升也将增加。因此,要配置相应的保护防止这种情况下对换流变压器造成的损坏。 1.3 谐波 由于换流器的非线性,在交流和直流系统中将出现谐波电压和电流。对于换流变压器,主要会流过特征谐波电流,即p*n 1次谐波电流(p为脉波数,n为任意正整数)。在运行中,谐波电流会使换流变压器损耗和温升增加,产生局部过热,发出高频噪声,还会使交流电网中的发电机和电容器过热,对通讯设备产生干扰。这些谐波电流应加以考虑,以免对保护装置造成影响。

变压器纵差动保护动作电流的整定原则是什么

变压器纵差动保护动作电流的整定原则是什么? .(1)大于变压器的最大负荷电流; (2)躲过区外短路时的最大不平衡电流; (3)躲过变压器的励磁涌流。 39.什么是自动重合闸?电力系统为什么要采用自动重合 闸? 答:自动重合闸装置是将因故障跳开后的断路器按需要自动投入的一种自动装置。电力系统运行经验表明,架空线路绝大多数的故障都是瞬时性的,永久性故障一般不到10%。因此,在由继电保护动作切除短路故障之 后,电弧将瞬间熄灭,绝大多数情况下短路处的绝缘可以自动恢复。因此,自动将断路器重合,不仅提高了供电的安全性,减少了停电损失,而且还提高了电力系统的暂态稳定水平,增大了高压线路的送电容量。所以,架空线路要采用自动重合闸装置。 什么是主保护、后备保护、辅助保护? 答:主保护是指能满足系统稳定和安全要求,以最快速度有选择地切除被保护设备和线路故障的保护。 后备保护是指当主保护或断路器拒动时,起后备作用的保护。后备保 护又分为近后备和远后备两种:(1)近后备保护是当主保护拒动时, 由本线路或设备的另一套保护来切除故障以实现的后备保护(2)远后 备保护是当主保护或断路器拒动时,由前一级线路或设备的保护来切 除故障以实现的后备保护. 辅助保护是为弥补主保护和后备保护性能的不足,或当主保护及后备 保护退出运行时而增设的简单保护。 、何谓主保护、后备保护?何谓近后备保护、远后备保护?(8分) 答:所谓主保护是指能以较短时限切除被保护线路(或元件)全长上的故障的保护装置。(2分) 考虑到主保护或断路器可能拒动而配置的保护,称为后备保护。(2分) 当电气元件的主保护拒动时,由本元件的另一套保护起后备作用,称为近后备。(2分)

变压器微机差动保护的整定计算

变压器微机差动保护的整定计算 作者:程秀娟 (扬子石油化工设计公司南京210048) 摘要:本文首先对变压器差动保护误动的原因作了初步分析,然后介绍了三段折线式比率制动特性的变压器差动保护的基本原理,并对各种参数的整定值设置进行了详细论述。 关键词:变压器差动保护三折线参数整定 1 前言 电力变压器是电力系统中十分重要的供电设备,它出现故障将对供电可靠性和系统的正常运行带来严重的影响。纵联差动保护是大容量变压器的主保护之一,然而,相对于线路保护和发电机保护来说,变压器保护的正确动作率显得较低,据各大电网的不完全统计,正确动作率尚不足70%。究其原因,就在于变压器结构及其内部独特的电磁关系。要提高变压器差动保护的动作正确率,首先必须找出误动的原因,从而在整定计算时充分考虑这些因素,才能有效地避免误动的出现。 2 变压器差动保护误动原因分析 2.1 空载投入时误动 变压器空载投入时瞬间的励磁电流可能很大,其值可达额定电流的10倍以上,该电流称为励磁涌流。其产生的根本原因是铁心中磁通在合闸瞬间不能突变,在合闸瞬间产生了非周期性分量磁通。 励磁涌流波形特征是:含有很大成分的非周期分量;含有大量的谐波分量,并以二次谐波为主;出现间断。励磁涌流的影响因素有:电源电压值和合闸初相角;合闸前铁芯磁通值和剩磁方向;系统等值阻抗值和相角;变压器绕组的接线方式和中心点接地方式;铁芯材质的磁化特性、磁滞特性等,铁芯结构型式、工艺组装水平。 为防止变压器空投时保护误动,其差动保护通常利用二次谐波作制动。原理是通过计算差动电流中的二次谐波电流分量来判断是否发生励磁涌流。当出现励磁涌流时应有:Id2 > K I d1。其中,Id1、Id2分别为差动电流中的基波和二次谐波电流的幅值;K为二次谐波制动比。但是,由于变压器磁特性的变化,某些工况下励磁涌流的二次谐波含量低,容易导致误动;而大容量变压器、远距离输电的发展,使得内部故障时暂态电流可能产生较大二次谐波,容易导致拒动。这时,就必须选用其它制动方式,如偶次谐波电流制动、判断电流间断角识别励磁涌流、半波叠加制动等。 2.2 区外短路时误动

换流变压器阀侧单相接地故障保护动作分析_高爱云

第29卷第4期2010年10月 电工电能新技术 Advanced Technology of Electrical Engineering and Energy Vol.29,No.4Oct.2010 收稿日期:2010- 01-10作者简介:高爱云(1977-),女,山东籍,讲师,硕士,研究方向为电动机故障诊断,电力系统继电保护; 蔡泽祥(1960-),男,江苏籍,教授,博士,研究方向为电力系统故障诊断与继电保护。 换流变压器阀侧单相接地故障保护动作分析 高爱云1,聂娟红2,李晓华3,蔡泽祥 3 (1.广东水利电力职业技术学院电力系,广东广州510635;2.北京四方继保自动化股份有限公司, 北京100085;3.华南理工大学电力学院,广东广州510640) 摘要:文章系统分析了超高压直流输电系统的换流变压器阀侧发生单相接地故障时的特点,并讨论了相应的换流变压器差动保护和换流器差动保护的动作行为,最后运用EMTDC 对CIGRE 直流输电标准测试系统的整流侧和逆变侧换流变压器阀侧单相接地故障进行了仿真分析,研究了交直流保护系统的配合及相关的解决措施,完善了超高压直流输电系统的故障分析和保护配置。关键词:换流变压器;阀侧单相接地;交直流保护 中图分类号:TM77 文献标识码:A 文章编号:1003- 3076(2010)04-0071-051引言 超高压直流输电系统中,换流变压器是重要的 设备之一。目前,对换流变压器阀侧接地及其保护已有较深入的研究,文献[1]提出阀侧单相接地故障是不接地系统的两相故障和直流短路的反复切换, 导致差电流中含有大量的谐波含量,变压器差动保护有可能不能出口;文献[2]主要以试验和仿真的方法对逆变侧换流变阀侧单相接地进行了分析,其目的在于分析直流保护的动作特性,并未对换流变差动保护进行分析;文献[3]主要介绍了逆变侧换流变阀侧套管接地故障过程和直流保护动作情况, 其故障点位于换流变阀侧套管电流互感器与换流器之间,属于换流变保护区外故障,未分析换流变差动保护动作行为及其与换流器差动保护之间的配合关系。实际上, 换流变阀侧交流引线单相接地时,既是交流系统的单相接地,又是换流器的阀短路。因此,从电路角度对换流变阀侧接地故障进行分析,研究换流变差动保护的动作行为及与换流器差动保护之间的配合关系对系统运行和保护设计具有指导意义。 2换流变压器阀侧单相接地故障分析 本文以6脉桥为例,对整流侧和逆变侧换流变 阀侧单相接地进行了分析, 如图1所示。图中,三相电动势e u 、e v 、e w 对应换流变阀侧三相电动势,电抗X r 为换相电抗,即换流变的短路阻抗。 若整流侧换流变阀侧U 相接地,假设V1V6导通,电流分布如图1(a )所示。由于阀V6的单向导通性,换流变UV 两相经接地极系统电阻R 和过渡电阻 R f 构成短路回路,短路电流为2E (2X r )2 +(R +R f ) 槡 2 ,此电流即是流过换流变阀 侧UV 两相和直流中性端的电流。同时, 因为U 相接地,所以施加在V1上的电压减小,也就是流过阀V1和直流线路电流减小。类似地,可分析其他阀导通时的电流分布,得出U 相接地的故障特点: (1)换流变阀侧电流和直流中性端电流相等,并且均增大; (2)V1V3V5上的电压减小,直流线路电流也减小。 若逆变侧换流变阀侧U 相接地,假设V3V4导通,电流分布如图1(b )所示。一方面,因V4导通,直流电流经V4和过渡电阻构成回路,造成直流电流突增,直流电压突降,换流变U 相电流减小,最终导致逆变器换相失败。另一方面, 因V3导通,则换流变UV 两相经过渡电阻和接地极系统电阻构成短路回路,即换流变UV 两相和直流中性端的电流增加。

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: ①采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流 ①变压器两侧电流相位不同 电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。 ②电流互感器计算变比与实际变比不同 由于变比的标准化使得其实际变比与计算变比不一致,从而产生不平衡电流。

电力变压器保护作用有哪些

https://www.360docs.net/doc/da11589652.html, 电力变压器保护作用有哪些?据贤集网小编了解其有差动保护、瓦斯保护、后备保护、电流保护。下面对于电办变压器四种保护作用进行详细介绍。 瓦斯保护的作用 变压器中的主要保护措施是瓦斯保护,变压器油面降低以及变压器油箱内的故障都由瓦斯予以反映。当变压器出现轻微故障时,就会出现油面下降的现象,轻瓦斯会有信号发出,而当瓦斯有严重故障发生时,会有大量的气体产生,重瓦斯也会有跳闸的现象。 变压器内部发生故障时,故障局部会有发热的情况产生,这样一来,在附近的变压器就会发生油膨胀的现象,空气被放出,形成气泡逐渐上升,而其他材料和油会在放电等作用下产生瓦斯,从而让油面下降。 故障很严重时,产生瓦斯气体之后,增大了变压器内部的压力,从而让油流向油枕方向,挡板会在油流冲击时对弹簧的阻力进行克服,从而让磁铁朝干簧移动,接通干簧的触点,这样一来,就会发生跳闸的现象。 差动保护的作用 差动保护是对变压器的主保护,主要是对变压器的引出线以及绕组的故障进行反映,变压器的各侧断路器它都可以跳开。根据装置不同,差动保护可以分为以下几种:横联差动保护常常用于并联电容器以及短路保护中,当设备采用双母线以及双绕组时,就会采用横联差动保护;纵联差动保护主要是对短路以及匝间短路等进行反映,保护范围主要包括引出线和套管。 后备保护作用 主变压器在运行时有阻抗较大的特点,因此,主变压器在低压侧时有故障出现,对高压侧的运行不会产生影响。高压侧的稳定性对电压闭锁的保护功能可以有效地实现。但是在主变故障在运行时发生异常的情况下并不能及时的做出反应。因此,主变压器在运行时,要做好后备保护措施,可以采用高压侧和低压侧并联开放的方式,让闭锁回路的开放具有灵活性。 变压器的电压以及电流保护的作用 当变压器的外部有故障发生时,就会产生过电流;在变压器的内部有故障时,就会产生差动保护以及瓦斯保护的后备,在变压器中,应该安装电流保护装置。根据变压器容量以及系统短路电流的不同,对不同的保护方法进行选择。 继电保护用的电流互感器要求为:绝缘可靠;足够大的准确限值系数;足够的热稳定性和动稳定性。保护用互感器在额定负荷下能够满足准确级的要求最大一次电流叫额定准确限值一次电流。准确限值系数就是额定准确限值一次电流与额定一次电流比。当一次电流足够大时铁芯就会饱和起不到反映一次电流的作用,准确限值系数就是表示这种特性。保护用互感器准确等级5P、10P,表示在额定准确限值一次电流时的允许误差5%、10%。

变压器差动保护计算要领

变压器比率制动纵差保护 整定计算步骤及要领 1.计算制动电流启动值 正常运行中变压器负荷电流通常在额定电流I e 以下,不平衡I bp 电流很小, 无需比率制动,差动动作电流I cd 为恒定,不随制动电流的增大而增大。 所以制动电流启动值:I Zd qd =(0.8~1.0)I e /n L 式中:n L -电流互感器变比 制动电流启动值也就是一折线的拐点电流值。 2.计算差动保护启动电流值 差动保护启动电流(门槛值)现场一般取:I cd qd =(0.4~0.7)I e /n L 如果有条件,最好在现场实测变压器的不平衡电流I bph ,作为差动启动电流 整定计算的依据。 3.计算差动保护速断电流值 差动速断电流值:I cd sd =(6~8)I e /n L 4.计算比率制动系数 比率制动系数K zd 与变压器外部三相最大短路电流、制动电流启动值相关, 与差动电流启动值、速断值相关。 计算比率制动系数:K zd = e I .max )3(I e I 23.0.max )3(I 5.40--外外 5.计算制动电流 制动电流:I Zd =(I cd sd - I cd qd )/ K zd +I Zd qd 举 例 一、已知参数: 主变容量=10000KVA ;额定电压=35/10.5KV ;

计算变压器一次侧额定电流=35 310000?=165(A ); 一次侧CT 变比=300/5、CT 二次额定电流=60 165=2.75(A ) 主变阻抗电压百分比=7.33% 通过短路电流计算已知主变外部三相最大短路电流=2095(A ) 二、计算定值 1.计算制动电流启动定值:I Zd qd =1.0I e /n L =60 165=2.75(A ) 2.计算差动启动电流定值:I cd qd =0.7I 2e =0.7×2.75=1.925 取I cd qd =2.0 3.计算差动速断电流定值:I cd sd =8I e /n L =60 1658?= 22(A ) 4. 计算比率制动系数:K zd =e max )3(e .max )3(I .I I 23.0I 5.40--外外 =165 209516523.02095I 5.40-?-? =0.468 取K zd =0.5 5.计算制动电流:I Zd =(I cd sd - I cd qd )/ K zd +I Zd qd =(22-2)/0.5+2.75 =42.75A 取I Zd =43A 说明:本计算公式中的代表符号与说明书不一致,在使用时应注意。

特高压换流变压器现场局部放电试验技术分析 田丰

特高压换流变压器现场局部放电试验技术分析田丰 发表时间:2018-06-25T16:23:05.960Z 来源:《电力设备》2018年第4期作者:田丰 [导读] 摘要:特高压换流变压器现场局部放电试验的技术是很多电力部门比较热衷的话题。 (保定天威保变电气股份有限公司河北保定 071056) 摘要:特高压换流变压器现场局部放电试验的技术是很多电力部门比较热衷的话题。本文针对这个问题分析了特高压换流变压器现场ACLD试验、特高压换流变压器现场局部放电检测干扰源及抗干扰措施,以期望对特高压换流变压器现场局部放电试验提供借鉴和参考。 关键词:特高压;换流变压器;局部放电试验 1 引言 直流输电系统中的重要设备是特高压换流变压器,特高压换流变压器的运行状态直接对整个系统的安全性产生影响,换流变压器的安全运行状态主要取决于换流变压器本身的绝缘性能。通过现场的长时交流感应耐压试验可以对换流变压器本身的运输和绝缘缺陷进行检测,例如可以检测气泡、杂质和悬浮电位的放电缺陷等,这些项目的检测对换流变压器的安全运行是非常重要的。 2 特高压换流变压器现场ACLD试验分析 在进行特高压换流变压器现场ACLD试验的时候要对现场的干扰因素进行充分的考虑,因为试验现场电压高、环境复杂,某种程度来说现场的干扰因素是决定试验成功与否的重要条件。特高压换流变压器现场ACLD试验局部放电测试中要对干扰信号进行充分识别,对干扰信号的传播途径进行研究并制定出抑制干扰进行的策略。 本文主要根据±800kv换流变压器现场ACLD试验局部放电检测干扰信号进行研究,并根据试验中出现的情况制定出相应的抗干扰措施。±800kv直流输电工程主要包括HY和HD两个换流现场,是ACLD试验中的重要试验场地,其中HY换流变从阀侧加压。现场ACLD试验可以在很大程度上避免出现现场拆装的施工过程,不仅规避了风险同时节约了工程费用。本文中的实验采用的是JFD-4000局部放电系统进行多端测量。 3 特高压换流变压器现场局部放电检测干扰源及抗干扰措施分析 3.1 空间电磁波干扰分析 电力系统中的载波通信、高频保护信号和无线电广播等空间电磁波会产生高频正弦波对正常的波形产生干扰,这些干扰波往往具有固定的谐振频率和频带宽度,此次试验通过对局部放电检测仪设置软硬件滤波系统控制空间电磁波的干扰。软件内部设置的FIR可以通过滤波器和减法器等实现自动滤波的功能,硬件上设置的高通滤波器低通滤波档位可以实现滤波的功能。现场测量时需要根据局部放实来对系统的灵敏度和背景噪声进行测量,从而系统就可以选择合适的低频和高频滤波档位,来对测量中的干扰信号进行避开。这个过程不适宜选择宽度小的测量频带,因为过窄的测量频带对有效放电信号可以产生一定的忽略,因此在选择局部放电检测仪测量带的宽度时候一般不得小于100kHz。 通过这个过程将数据采集系统采集到具有局部放电信号和周期性干扰信号的输入列输入一系列的多通带FIR滤波器,最后输出的就是具有周期性的干扰信号,然后再使用减法器对干扰信号与输入列进行相减,从而是系统可以最大限度地避免干扰频率,最终输出局部放电信号。 3.2 电晕干扰分析 试验中的回路如果处于高电位的导电部分就会产生电晕放电现象,例如试验中使用的法兰、金属盖帽、试验变压器和耦合电容器的端部都是特别容易产生电晕的部分。另外,如果试验回路中如果有地方的连接处接触不良地方也是特别容易产生电晕的部分。电晕干扰的特点是会随着试验电压的升高而增大的,在局部放电检测中电晕干扰是非常明显的。 对高压端电晕放电的抑制的最好方法是选用合适的屏蔽环、罩、球等。检查所有的连接部位,从而保证连接处的接触良好从此来消除系统中的接触放电的现象发生。在选用屏蔽罩的时候要检验屏蔽罩的上部是否为半球形、下部是否为单环形。屏蔽双环必须由两个圆形的单环组成,并且屏蔽罩和屏蔽双环表面的最大强度不得大于1.5MV/m。屏蔽罩场的计算可以通过相应的公式来计算。 采用的高压导线和连接线按防晕设计中导线和连接的直径必须足够大,从而保证表面的最大场强不得大于1.5MV/m,这里场强可以采用原著对平板电机的场强计算公式来计算。 3.3 脉冲型干扰分析 脉冲型干扰在时域上是持续时间较短的脉冲信号,在频域上则是频率成分的款待信号,因而脉冲型干扰具有局部放电信号的大部分特征。因而在进行局部放电试验中,高频脉冲型干扰的波形和频率特征与放电脉冲极为相似,甚至在一般状态下很难区分,唯有使用三维图谱观察才能比较明显地对脉冲型干扰进行区分。高频脉冲型干扰大致可以分为三类:固定相位的脉冲干扰;与电压相位有时间相关规律的干扰;随机出现的干扰脉冲。脉冲型干扰在时域上呈离散型,针对这一特性应该采用时域开窗法来进行抑制,时域开窗也有硬件和软件之分,硬件方法主要有差动平衡阀和脉冲鉴别法。两者都是利用两个测量点之间的脉冲差来对外部干扰进行抑制。但是在实际应用中,由于进入两脉冲的脉冲干扰的来源和途径具有差异性,因而脉冲干扰在相位和幅值上的差别也是非常大的,因而采用的单一的方法是无法对所有脉冲干扰进行抑制的,可以采用超声波来进行识别提高识别的精确性。 随机干扰出现的相位、次数和量值具有很大的不确定性,并且非常容易出现相位错乱与局部放电相混合的现象,但是这种脉冲具有一个特点就是次数和零值与相位相当。在检测的时候直接对相位进行检测就可以起到很好的检测效果。 3.4 检测阻抗引起的干扰分析 在对换流变压器现场局部放电进行试验的过程中由于施加在变压器套管上的电压会很高,如果流经局部放电检测的阻抗电流较小就容易产生超过其本身的电流,在这种情况下就会引起检测阻抗的磁饱和,因此在测量电压时要检测阻抗内的磁饱和会产生谐波的影响。相关的试验证明这种谐波的幅值与所选用的检测阻抗的通流强度有关,如果系统选用的检测阻抗具有较大的调节上限,那么系统中能够通过的电流能力就强,产生谐波的可能性就越小。如果局部放电检测回路的灵敏可测性降低,那么检测就必须根据局部放电试验的具体情况来做相应的调整。 现场试验的时候应该根据试验回路的等效调节电容来选用测量阻抗,从而对局部放电信号进行排除,可以提高系统的抗干扰水平。如果测量回路的相关系数一经确定,测量回路的谐振电容就可以通过相应的公式来计算。根据所计算出来的电容公式来对系统的电感和电流

变压器差动保护原理

主变差动保护 一、主变差动保护简介 主变差动保护作为变压器的主保护,能反映变压器内部相间短路故障、高压侧单相接地短路及匝间层间短路故障 ,差动保护是输入的两端CT 电流矢量差,当两端CT 电流矢量差达到设定的动作值时启动动作元件。 差动保护是保护两端电流互感器之间的故障(即保护范围在输入的两端CT 之间的设备上),正常情况流进的电流和流出的电流在保护内大小相等,方向相反,相位相同,两者刚好抵消,差动电流等于零;故障时两端电流向故障点流,在保护内电流叠加,差动电流大于零。驱动保护出口继电器动作,跳开两侧的断路器,使故障设备断开电源。 二、纵联差动保护原理 (一)、纵联差动保护的构成 纵联差动保护是按比较被保护元件(1号主变)始端和末端电流的大小和相位的原理而工作的。为了实现这种比较,在被保护元件的两侧各设置一组电流互感器TA1、TA2,其二次侧按环流法接线,即若两端的电流互感器的正极性端子均置于靠近母线一侧,则将他们二次的同极性端子相连,再将差动继电器的线圈并入,构成差动保护。其中差动继电器线圈回路称为差动回路,而两侧的回路称为差动保护的两个臂。 (二)、纵联差动保护的工作原理 根据基尔霍夫第一定律,0 =∑ ? I ;式中∑? I 表示变压器各侧电流的向量和,其物理意义是:变 压器正常运行或外部故障时,若忽略励磁电流损耗及其他损耗,则流入变压器的电流等于流出变压器的电流。因此,纵差保护不应动作。 当变压器内部故障时,若忽略负荷电流不计,则只有流进变压器的电流而没有流出变压器的电流,其纵差保护动作,切除变压器。见变压器纵差保护原理接线。

(1)正常运行和区外故障时,被保护元件两端的电流和的方向如图1.5.5(a)所示,则流入继电器的电流为 继电器不动作。 (2)区内故障时,被保护元件两端的电流和的方向如图1.5.5(b)所示,则流入继电器的电流为 此时为两侧电源提供的短路电流之和,电流很大,故继电器动作,跳开两侧的断路器。 由上分析可知,纵联差动保护的范围就是两侧电流互感器所包围的全部区域,即被保护元件的全部,而在保护范围外故障时,保护不动作。因此,纵联差动保护不需要与相邻元件的保护在动作时间和动作值上进行配合,是全线快速保护,且具有不反应过负荷与系统震荡及灵敏度高等优点。 三、微机变压器纵差保护的主要元件介绍 主要元件有:1)比率差动保护元件,2)励磁涌流闭锁元件,3)TA饱和闭锁元件,4)TA断线闭锁(告警)元件,5)差动速断元件,6)过励磁闭锁元件 下面对各个元件的功能和原理作个简要的介绍:

变压器差动保护

第二节变压器差动保护 1.概述 电气主设备内部故障的主保护方案之一是差动保护,差动保护在发电机上的应用是比较简单的,但是作为变压器内部故障的主保护,差动保护将有许多特点和困难。 变压器有两个和更多个电压等级,构成差动保护所用电流互感器的额定参数各不相同,由此产生的差动保护不平衡电流将比发电机大得多。 变压器每相原副边电流之差(正常运行时的励磁涌流)将作为变压器差动保护不平衡电流的一种来源,特别是当变压器过励磁运行时,励磁电流可达变压器额定电流的水平,势必引起差动保护误动作。更有甚者,在空载变压器突然合闸时,或者变压器外部短路被切除而变压器端电压突然恢复时,暂态励磁电流(即励磁涌流)的大小可与短路电流相比拟,在这样大的不平衡电流下,要求差动保护不误动,是一个相当复杂困难的技术问题。 正常运行中的变压器,根据电力系统的要求,需要调节分接头,这又将增大变压器差动保护的不平衡电流。 变压器差动保护能反应高、低压绕组的匝间短路,而匝间短路时虽然短路环中的电流很大,但流入差动保护的电流可能不大。 变压器差动保护还应能反应高压侧(中性点直接接地系统)经高阻接地的单相短路,此时故障电流也较小。 综上所述,差动保护用于变压器,一方面由于各种因素产生较大和很大的不平衡电流,另一方面又要求能反应具有流出电流的轻微匝间短路,可见变压器差动保护要比发电机差动保护复杂得多。 2.配置原则 对变压器引出线、套管及内部的短路故障,应装设相应的保护装置,并应符合下列规定: (1) 10MVA及以上的单独运行变压器和6.3MVA及以上的并列运行变压器,应装设纵联差动 保护。6.3MVA及以下单独运行的重要变压器,亦可装设纵联差动保护。 (2) 10MVA以下的变压器可装设电流速断保护和过电流保护。2MVA及以上的变压器,当电 流速断灵敏系数不符合要求时,宜装设纵联差动保护。 (3) 0.4MVA及以上,一次电压为10kV及以下,线圈为三角-星形连接的变压器,可采用两 相三继电器式的过流保护。 (4) 以上所述各相保护装置,应动作于断开变压器的各侧断路器。 3.要求达到的性能指标 (1) 具有防止区外故障误动的制动特性; (2) 具有防止励磁涌流引起误动的功能; (3) 宜具有TA断线判别功能,并能选择闭锁差动或报警,当电流超过额定电流的 1.5~2倍 时可自动解除闭锁; (4) 动作时间(2倍整定值时)不大于50ms; (5) 整定值允差±5%。 4.原理及其微机实现 4.1四方 4.1.1 保护原理 变压器差动包括主变差动、发变组差动、厂用变差动、起/备变差动、励磁变差动等,对于高压侧为500kV的一个半开关接线方式,发变组差动及主变差动保护应反应四侧的电流量。

相关文档
最新文档