纯电动汽车动力系统及驱动技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纯电动汽车动力系统及驱动技术
一、电动汽车简介及现状
电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,电动汽车可分为三种:蓄电池式纯电动车、燃料电池电动汽车和混合动力电动汽车。电动汽车历史悠久,世界上的第一辆电动汽车于1834年诞生,比1886年问世的世界上第一辆内燃机汽车还要早半个世纪。
大力发展新能源汽车从而实现世界交通及能源结构的转型已经成为当代汽车行业实现可持续发展的重要趋势。和传统燃油汽车相比,电动汽车尽管目前技术不太成熟,但凭借其能源效率高、环境污染小、能源多样化的优点已经成为汽车行业发展的必然选择,其发展也得到世界各国政府的重视与支持。
1.1 国内电动汽车发展现状
我国的电动汽车研究大约开始于上个世纪60年代,自“八五”以来,通过大量人力、物力和财力在纯电动汽车研究上的投入,正式把电动汽车的研究列入攻关计划,并在在北京、杭州等城市开展了不同形式的小规模示范运行。
2001年我国正式启动了“十五”国家高新技术研究发展计划(863),电动汽车被列入其中并投资数亿,确立了以燃料电池汽车、混合动力汽车和纯电动汽车为“三纵”,以多能源动力总成、驱动电机和动力蓄电池共性关键技术为“三横”的“三纵三横”研发布局川,具体分工如下:承担电动大客车项目的有北方车辆厂和北京理工大学,承担纯电动轿车研发的是上海汽车、上海交通大学、天津汽车集团等。
自2009年以来,国家陆续出台《汽车产业调整振兴规划》、电动汽车“十城千辆”项目,这表明在低碳经济的政策背景下,国家对于纯电动汽车的扶持力度正在不断加大。
1.2 国外电动汽车发展现状
在电动汽车的发展进程中,各国和各地区都依据自己的国情和特点择了不同的技术路线,而处在技术领先位置的仍然是日本、美国和欧洲,他们在电动汽车的车速、续驶里程、加速性能、动力蓄电池、基础设施等方面都有较大的优势。纯电动汽车已经在欧洲各国中拥有大量的用户,特别是在当地政府部门。但是由于没有成功地解决电动汽车续驶里程问题,商业化进程缓慢。各大汽车厂商发展电动汽车的热情明显不如日本和美国,所以其注意力更多地转向了其它清洁能源车的开发。下表是国外几种电动汽车的技术指标。
二、各类电动汽车比较
2.1 纯电动汽车
纯电动汽车(Electric Vehicle),一种仅采用动力电池作为储能动力装置的汽车。动力电池通过功率变换装置为驱动电机提供电能,使得驱动电机工作运转,驱动电机经传动系统带动车轮旋转,从而推动汽车前进或后退。相对于传统内燃机,驱动电机具有较宽的调速范围,并且驱动电机的低速恒转矩与高速恒功率特性可以更好地满足汽车的起步、加速和高车速需求。纯电动汽车结构简单、能量利用率高、噪音低、零排放,可解决汽车给人类带来的能源危机和环境污染问题。
2.2 混合动力汽车
将传统内燃机驱动系统和可重复充电的电能储存系统的驱动系统有机结合在一起的汽车,即混合驱动汽车。混合动力汽车将传统内燃机和驱动电机的优点相结合,具有更好的动力性和燃油经济性;低负荷情况下可采用纯电模式进行驱动,在一定程度上可以缓解能源危机和减少环境污染。虽然其续驶里程可接近传统内燃机汽车续驶里程,但其长距离高速行驶时基本并不能减少油耗。混合动力汽车部分动力源仍然由传统内燃机提供,可以减少汽车对石油的依赖和对环境的污染程度,无法彻底地解决能源危机和环境污染,将限制其未来的发展。因此多数汽车企业将混合动力汽车作为新能源汽车发展的过渡方案。
2.3 燃料电池电动汽车
燃料电池电动汽车(Fuel Cell Electric Vehicle),以氧气等作为燃料,与大气中的氧发生化学反应并产生电流,对驱动电机供电,从而驱动汽车行驶。燃料电池电动汽车电池能量通过氧气和氧气的化学反应得到,其化学反应过程并不涉及燃烧和热机做功,且不会化学反应产物对人体无害,不会污染环境。燃料电池电动汽车效率高、噪音低、无污染,被人们认为是理想的新能源汽车。但是燃料电池在制造、使用及维护成本均很高,关键技术不够成熟,可靠性低和运行寿命低,所以无法在短期内实现量产化,市场化。
三、纯电动汽车动力系统
3.1 概述
电动汽车与传统的燃油汽车的真正区别在于动力系统。电动汽车即为用电力驱动车轮行驶的车辆。电动汽车与传统内燃机汽车的动力传递路线是大体一致的,只是动力传递的元件有很大区别。电动汽车的动力系统的主要有电池、电机、控制器、变速器、减速器、和驱动轮等组成。电动汽车动力系统的工作过程:控制器接受并整合来自档位、刹车、油门(即加速踏板)的信号,然后传递给电机来控制电机的转速、转矩等从而来满足汽车在不同的行驶路况下的要求。因此电动汽车的动力系统的组成部件的相互匹配和总体的布置方式将直接影响电动汽车的动力性能。
3.2 纯电动车动力系统的布置方案
1)传统驱动模式
图3-1 传统驱动模式
1-电动机;2-离合器;3-变速器;4-传动轴;5-驱动桥;6-转向器
该模式在传统内燃机的基础上将电动机代替发动机,同时还是采用内燃机汽车的传动系统,包括离合器、变速器、传动轴和驱动桥等。见图3-1所示,这种形式的电动汽车也可以将电机做出前置、后置等驱动模式。它的工作原理也和传统的汽车类似,主要由离合器来控制动力的传递。
2)电动机驱动桥组合式
图3-2 电动机驱动桥组合式
1-转向器;2-电动机驱动桥组合式驱动系统
这种模式就是使电动机输出轴直接与减速齿轮以及差速器相连,也就是使电机、驱动桥、减速器的轴平行。这种结构省去了离合器也没有可以选择的档位,这种布置方式具有紧凑的结构、传动效率高、安装简单的特点,但这也就要求电机性能和控制器的控制质量相应的提高。
3)轮毂电机式
图3-3 轮毂电机式
1-转向器;2-轮毂电机
这种模式把驱动电机放在汽车车轮里面,这种模式也有好几种布置方式,如两前轮驱动、两后轮驱动、或者四轮全驱动等。不管哪种方式,这种轮毂电动机式大大的缩短了动力的传递路径,另外也节省了大量的空间来做其它部件的布置。通过控制器独立的控制调节功能,使各个电动机达到电子差速度的目的。
4)电动机驱动桥整体式