电源正负限运算放大器的原理及应用

电源正负限运算放大器的原理及应用
电源正负限运算放大器的原理及应用

电源正负限运算放大器的原理及应用

电源正负限运算放大器的原理及应用

电源正负限运算放大器的原理及应用

作者:高光天 文章来源:Internet 点击数: 810 更新时间:2007-12-

5

摘 要: 介绍电源正负限运算放大器的特点,输入级和输出级的结构及应用时须考虑的问题。

关键词: 电源正负限运算放大器 正限 负限 限区 动态范围

近年来计算机技术、通信技术和多媒体技术的迅猛发展促进模拟集成电路有了长足进步

,其发展趋势之一是单电源、低功耗、低价格和高性能。

图1 ±15V 电源电压情况下“限区”示意图

图2 某些运放当输入信号超过规定的动态范围时出现的“倒相”

从电源的角度来说,传统的双电源±15V 供电系统已经不能满足现代电子技术发展的需要

。一方面,许多便携机和电池供电设备要求单电源、低功耗的器件,因为它们使用方便

、耐用;另一方面,从计算机系统和数字信号及混合信号设备中获取单电源极为方便。从器件的性能

来说,从传统的双电源改为降低电压的单电源(比如从±15V 改为±3V),由于器件受单方向变化的限制,

使其对失调电压、偏置电流、有限开环增益、噪声等引起的误差比较敏感,也势必影响带宽、转换速

率和动态范围。为了克服这些问题,必须采取特殊的电路结

构和特殊的制造工艺。因此近年来模拟器件制造商推出许多独具特色的新产品,其中电源正

负限运算放大器(rail to rail operational amplifier)就是采用了特殊的电路结构,成功地解

决了单电源工作条件下动态范围受到限制的问题。本文综述了这类运算放大器的特点、原理及应用问

题,希望对感兴趣的读者在应用过程中有所裨益。

1 特 点

电源正负限运算放大器是一种新型的运算放大器,因为它具有非常窄的限区(headroom)和极宽的输入或输出动态范围(下限接近或达到电源地,上限接近电源的正端电压或相差几毫伏),所以近年来很流行。为了说明电源正负限运算放大器的特点,我们先从普通的运算放大器谈起。 普通的双极运算放大器的电源电压一般为±15V(见图1),其最大输入或输出动态范围与该电

源的正限即正端电压(positive rail)或电源的负限即负端电压(negative rail)或单电源的地,通常要有2~3V 固定的限区。在给定输出负载条件下这个限区的大小基本上不随电源电压变化。因此,对于普通的运算放大器,当其电源电压为±15V 时,其输入和输出动态范围为±13V ;当其电源电压降低到单电源+5V 时,其满度输出范围降到2×(25-2)=10V

。即使真正的单电源运算放大器,即其动态范围的下限可以达到电源的负限即电源地,而

其动态范围的上限与电源正限之间仍然还有2~3V 的限区。在假定运放本底噪声不变的情况

下,输入或输出动态范围降低,势必降低信噪比,从而限制了系统的有效分辨率。相反,如

果输入或输出信号超过运放规定的动态范围,即进入“限区”,特别是当接近电源的负限

时,有时运放不但其线性变坏,而且会产生倒相或闩锁现象,如图2所示。鉴于普通运放

存在的上述问题,美国ADI 公司研制出一系列新型运算放大器,使其限区减到最小,输入或输出动态范围接近电源的正限和负限(仅差几毫伏),这就是电源源正负限运算

放大器的特点,如图3所示。

2 原理

21输入级结构

普通运算放大器的输入级(见图4)使用NPN双极结型晶体管(BJT)(优点是宽频带、低噪声和低漂移,但功耗电流大),或者结型场效应晶体管(JFE T)(优点是高输入阻抗、低漏电流、低偏置电流和低功耗)。这两种输入级结构的共同缺点是,都要求使用双电源,并且相对电源的正限和负限都要求有2~3V的限区,以保证在规定的线性区正常工作。

在许多单电源应用中,仅要求输入达到电源电压的一个端电压(通常为地)。使用PNP差动对管(或N沟道JFET对管)很容易设计出零伏输入的运算放大器,例如差动对管结构的AD8041/42/44,如图5所示(N沟道JFET结构的AD820/22/23/24,如图6所示)。如果输入共模范围仅要求包括电源的正限,可使用NPN差动对管或P沟道JFET对管OP282/482。

在图6所示的JFET输入级中,当输入信号接近和

图3 真正的电源正负限运算放大器的输入输出特性

图4 采用BJT和JFET对管的普通输入级结构

图5 允许输入达到电源负限的PNP对管输入级结构

图6 允许输入达到电源负限的N沟道JFET对管输入级结构

超过放大器的线性共模电压范围时,可能会出现倒相。这是由于内部放大器前级饱和迫使后级进入截止状态。由于输入级的结构不同,出现倒相的情况也不相同。对于N沟道JFET输入级,在倒相期间,输出电压可达到电源电压的负限。对于P沟道JFET输入级,在倒相期间,输出电压可达到电源电压的正限。新型的JFET输入运算放大器AD820,在输入信号比电源电压高200mV的情况下,具有防止输出电压倒相的功能。

真正的电源正负限输入级要求有两个长尾对,其中一个长尾对为NPN双极晶体管对(或P

沟道JEFT对),另一个长尾对为PNP晶体管对(或N沟道JFET对),如图7所示。由于这两种长尾对具有不同的失调电压和偏置电流,所以当输入共模电压变化时,放大器的输入失调电压和输入偏置电流也跟着变化。当两个电流源(Ⅰ 1 和Ⅰ 2 )在通过整个输入共模范围有效

时,放大器的输入失调电压实际上是NPN和PNP长尾对的平均失调电压。在输入共模电压的某

点对电流源进行交替切换的应用场合,放大器的输入失调电压对于接近负电源的信号,主要

由于PNP长尾对的失调电压决定,而对于接近正电源的信号主要由NPN长尾对的失调电压决定。

放大器的输入偏置电流不但是晶体管电流增益的函数,而且也是输入共模电压的函数。与双电源精密器件相比,这种单电源放大器的输入偏置电流使其共模抑制(CMR)相当差,而且在共模输入电压范围内改变共模输入阻抗。当选择电源正负限运算放大器时,尤其是同相放大

器,应认真考虑上述技术指标。输入失调电压、输入偏置电流,甚至CMR在部分共模范围上

可能都相当好,但是在NPN和PNP长尾对之间交替工作区却相当坏,反之亦然。因此在要求电源正负限输入的应用场合应认真考虑,一定要使选择的运算放大器输入失调电压、输入偏置电流、共模抑制和噪声电压及噪声电流满足要求。

2 2 输出级结构

早期的集成运算放大器的输出级是带有NPN电流源或下拉电阻的NPN射级跟随器,如图8(a)所示。正向信号的转换速率自然要比负向信号的转换速率快。虽然所有现代运算放大器都具有某种形式的推挽输出级,但也有许多运放的输出级是非对称的,所以在某一方向上的转换速率要比其它方向上的转换速率快。这种非对称性一般是由于NPN晶体管所采用的集成电路制造工艺优于PNP晶体管的制造工艺,从而还会导致输出电压接近电源正限和负限的能力不一样。

图7 电源正负限输入级结构

图8 使用互补运算放大器输出级推挽驱动

普通运算放大器的输出级另一种结构如图8(b)所示,采用NPN PNP射极跟随器对管,接成AB类工作方式。放大器的输出动态范围受每只晶体管的V BE 及串联电阻压降IR的限制。

电源正负限运放器的输出级结构为图9所示。

使PNP和NPN晶体管的交流和直流性能匹配得相当好的集成电路工艺能够使输出电压动态范围

和转换速率匹配得相当好。但是采用双极结构型晶体管(BJT)构成的输出级不能使其动态范

围完全达到电源的正限和负限,仅能达到电源正负限的晶体管饱和电压(V CESAT )范围内

。对于小的负载电流(小于100μA),饱和电压可能低到5~10mV,但是对于较大的负载电流

,例如50mA,饱和电压可能增加到几百毫伏(例如500mV)。总之,这种输出级的动态范围受

饱和电压、导通电阻和负载电流的限制。

另一方面,由CMOS场效应晶体管(FET)构成的输出级虽然具有真正的电源正负限输出特性,但仅当在无负载条件下才能达到。如果输出级必须给出电流或者吸收电流,由于FET内部导

通电阻(典型值为100Ω),上的电压降使输出动态范围下降。

3 应用

电源正负限运算放大器广泛应用于工业过程控制,移动通信设备、多媒体应用

电路、电池供电仪表、单

图9 电源正负限输出级动态范围限制因素

电源传感器信号调理、DAC输出级放大和电源控制及管理等领域。在选择电源正负限运算放大器时应考虑以下几个问题:(1)对于真正的电源正负限输入运算放大器,输入失调电压和输入偏置电流是外加输入共模电压的函数。所以应用这类放大器的电路设计应当以减小由此产生的误差为目的。反相放大器在同相输入端有一个虚地参考端,由于它保持输入共模电压不变,从而可以避免产生这些误差。如果不接成反相放大器,则应当使用像OP284/OP484一类的放大器,因为它们不具有任何共模交迭阈值。

(2)由于输入偏置电流并不总是很小并且有不同的极性,所以为了减小输入偏置电流引起的

失调电压和失真应当认真匹配信号源阻抗。另外还要考虑使用的放大器在外加输入共模电压范围内应该使偏置电流变换特性很平缓。

(3)放大器的输出级增益依赖于负载,从而影响放大器的开环增益,势必影响闭环增益精度

。在精密应用中,如果阻性负载小于10k,应当选择开环增益大于30 000的运算放大器。对于不需要真正的电源正负限输出动态范围的应用场合,可选择OPX13和OPX93系列运算放大器,其直流增益为02V/μV或更大。

(4)电源正负限输出电压动态范围与放大器输出级结构和负载电流有关。饱和电压、导通电

阻和负载电流都影响放大器的输出电压动态范围。

根据结构和功能不同电源正负限运算放大器可分为多种类型。例如,正负限输入、正负限输出、正负限输入和输出运算放大器,+3V,+5V供电单电源运放,±15V双电源运放,以及单、双、四运放等。有关电源正负限运算放大器的详细技术资料及选购业务请与北京市英赛尔器件集团及其分公司联系。

参考文献

1 Analog Devices Inc.,Practical Analog Design Techniques,1996

2 Aualog Devices Inc.,High Speed Design Techniques,1996

3 Analog Devices Inc.,Analog Dialogue Vo1.29,No.3,1995

4 高光天关于rail to rail amplifier一组新名词释名和定名的探讨模拟器件天地第1期1997年,电子产品世界,第1期1997年

放大电路原理

放大电路原理 放大器有交流放大器和直流放大器。交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。此外还有用集成运算放大器和特殊晶体管作器件的放大器。它是电子电路中最复杂多变的电路。但初学者经常遇到的也只是少数几种较为典型的放大电路。 读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。 下面我们介绍几种常见的放大电路。 低频电压放大器 低频电压放大器是指工作频率在 20 赫~ 20 千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。 ( 1 )共发射极放大电路 图 1 ( a )是共发射极放大电路。 C1 是输入电容, C2 是输出电容,三极管 VT 就是起放大作用的器件, RB 是基极偏置电阻 ,RC 是集电极负载电阻。 1 、 3 端是输入, 2 、3 端是输出。 3 端是公共点,通常是接地的,也称“地”端。静态时的直流通路见图 1 ( b ),动态时交流通路见图 1 ( c )。电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。

( 2 )分压式偏置共发射极放大电路 图 2 比图 1 多用 3 个元件。基极电压是由 RB1 和 RB2 分压取得的,所以称为分压偏置。发射极中增加电阻 RE 和电容 CE , CE 称交流旁路电容,对交流是短路的; RE 则有直流负反馈作用。所谓反馈是指把输出的变化通过某种方式送到输入端,作为输入的一部分。如果送回部分和原来的输入部分是相减的,就是负反馈。图中基极真正的输入电压是RB2 上电压和 RE 上电压的差值,所以是负反馈。由于采取了上面两个措施,使电路工作稳定性能提高,是应用最广的放大电路。 ( 3 )射极输出器 图 3 ( a )是一个射极输出器。它的输出电压是从射极输出的。图 3 ( b )是它的交流通路图,可以看到它是共集电极放大电路。

运算放大器的工作原理

运算放大器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括 一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正回

放大电路的组成及工作原理

2、4 放大电路的组成及工作原理 参考教材:《模拟电子技术基础》孙小子张企民主编西安:西安电子科技大学出版社 一、教学目标及要求 1、通过本次课的教学,使学生了解晶体管组成的基本放大电路的三种类型,掌 握放大电路的组成元器件及各元器件的作用,理解放大电路的工作原理。 2、通过本节课的学习,培养学生定性分析学习意识,使学生掌握理论结合生活 实际的分析能力。 二、教学重点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 三、教学难点 1、共发射极放大电路的组成元器件及各元器件作用; 2、共发射极放大电路的工作原理。 四、教学方法及学时 1、讲授法 2、1个学时 五、教学过程 (一)导入新课 同学们,上节课我们已经学习了晶体管内部载流子运动的特性以及由此引起的晶体管的一些外部特性,比如说晶体管的输入输出特性等,在这里,我要强调一下,我们需要把更多的注意力放在关注晶体管的外部特性上,而没有必要细究内部载流子的特点。由晶体管的输出特性,我们知道,当晶体管的外部工作条件不同时,晶体管可以工作在三个不同的区间。分别为:放大区、截止区、饱与区,其中放大区就是我们日常生活中较为常用的一种工作区间。大家就是否还记得,晶体管工作在放大区时所需要的外部条件就是什么不(发射结正偏,集电结反偏)?这节课,我们将要进入一个晶体管工作在放大区时,在实际生活中应用的新内容学习。 2、4放大器的组成及工作原理 一、放大的概念 放大: 利用一定的外部工具,使原物体的形状或大小等一系列属性按一定的比例扩大的过程。日常生活中,利用扩音机放大声音,就是电子学中最常见的放大。其原理框图为: 声音声音 扩音器原理框图 由此例子,我们知道,放大器大致可以分为:输入信号、放大电路、直流电源、输出信号等四部分,它主要用于放大小信号,其输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。对放大电路的基本要求:一就是信号不失真,二就是要放大。 二、基本放大电路的组成

运算放大器构造及原理

万联芯城销售TI,ADI,ST等原装品牌运算放大器IC。全现货库存,提供一站式配套服务,万联芯城,三十年电子元器件销售经验,是您的BOM配单专家,为您节省采购成本。点击进入万联芯城 点击进入万联芯城

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同,运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等

运算放大器的典型应用

Op Amp Circuit Collection AN-31

Practical Differentiator f c e 1 2q R2C1 f h e 1 2q R1C1 e 1 2q R2C2 f c m f h m f unity gain TL H 7057–9 Integrator V OUT e b 1 R1C1 t2 t1 V IN dt f c e 1 2q R1C1 R1e R2 For minimum offset error due to input bias current TL H 7057–10 Fast Integrator TL H 7057–11Current to Voltage Converter V OUT e l IN R1 For minimum error due to bias current R2e R1 TL H 7057–12 Circuit for Operating the LM101 without a Negative Supply TL H 7057–13Circuit for Generating the Second Positive Voltage TL H 7057–14

Neutralizing Input Capacitance to Optimize Response Time C N s R1 R2 C S TL H 7057–15 Integrator with Bias Current Compensation Adjust for zero integrator drift Current drift typically0 1 n A C over b55 C to125 C temperature range TL H 7057–16 Voltage Comparator for Driving DTL or TTL Integrated Circuits TL H 7057–17 Threshold Detector for Photodiodes TL H 7057–18 Double-Ended Limit Detector V OUT e4 6V for V LT s V IN s V UT V OUT e0V for V IN k V LT or V IN l V UT TL H 7057–19 Multiple Aperture Window Discriminator TL H 7057–20

运算放大器的工作原理

运算放大s得工作原理 放大器得作用:仁能把输入讯号得电压或功率放人得装置,由电了管或晶体管■电源变压器与其她电器元件组成。用在通讯、广播.需达、电视、自动控制等各种装置中。原理:高频功率放人器用于发射机得末级,作用就是将高频已调波信号进行功率放大,以满足发送功率得炎求,然后经过天线将其辐射到空间,保证在?定区域内得接收机可以接收到满意得信号 电平,并且不干扰相邻信道得通信。高频功率放大器就是通信系统中发送装置得重要组件。 按其工作频带得宽窄划分为窄带简频功率放人器与宽带高频功率放人器两种,窄带周频功率放人器通常以具有选频滤波作用得选频电路作为输出回路,故又称为调谐功率放人器或谐振功率放人器:宽带简频功率放人器得输出电路则就是传输线变圧器或其她宽带匹配电路,W此又称为非调谐功率放大器?高频功率放人能就是?种能量转换器件,它将电源供给得直流能量转换成为高频交流输出在“低频电r 线路噪程中己知倣人器可以按照电流导通角得不同, 运算放人器原理 运算放人器(Op e r atio n a 1 AmpI i Pier-简称OP、OPA、OPAMP)就是?种直 流耦合,差模(差动模式)输入、通常为单端输出(D 1 ffere ntial—in, sing 1 e—ended o utput)得高增益(gain)电压放人器阴为刚开始主耍用于加法,乘法等运算电路中? W而得名??个理想得运算放大器必须具备下列特性:无限人得输入阻抗.等于零得输出阻抗、无限人得开回路 增益、无限大得共模計#斥比得部分.无限人得频宽。最基本得运算放人器如图1-1- 一个运算放人器模组?般包括?个正输入端(OP_P〉、?个负输入端(OP_N〉与?个输出端(0 P_0)。 图1?1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node )连接,形成一负反馈(negative feedback)组态。原因就是运算放人器得电压増益非常大,范 圉从数百至数万倍不等,使用负反馈方可保证电路得稳定运作。但就是这并不代衣运算放人器不能连接成正回馈(positive f e edbac k ),相反地,在很多需要产生震荡讯号得系统中,正回馈组态得运算放大器就是很常见得组成元件。 开环回路

运算放大器组成的基本运算电路

实验五运算放大器组成的基本运算电路 一、实验目的 1、了解运算放大器的基本使用方法。 2、应用集成运放构成的基本运算电路 3、学会使用线性组件u A741。 4、掌握加法运算、减法运算电路的基本工作原理及测试方法。 5、学会用运算放大器组成积分电路。 二、实验属性 验证性实验 三、实验仪器设备及器材 1、实验台 2、数字万用表 3、示波器 4、计时表 四、实验内容及步骤 1.调零:按图 7-1 接线,接通电源后,调节调零电位器 RW 使输出 0V。运放调零后, 在后面的实验中均不用调零了。 图7-1 仿真参考电路:

电路如图7-2 所示,根据电路参数计算A V=Vo/V i,并按照表7-1 给定的V i 计算和测量对应的Vo值,并把结果记入表7-1 中。 图7-2 仿真参考电路:

电路如图7-3 所示,根据电路参数计算A V=Vo/V i,并按照表7-2 给定的V i 计算和测量对应的Vo值,并把结果记入表7-2 中。 图7-3 仿真参考电路:

电路如图7-4 所示,按照表7-3 给定的V i1 和V i2 计算和测量对应的Vo 值,并把结果记入表7-3中。 图7-4 仿真参考电路:

电路如图7-5 所示,按照表7-4 给定的V i1 和V i2 计算和测量对应的Vo 值,并把结果记入表7-4中。 图7-5 仿真参考电路:

五、实验报告 1.整理实验数据,填入表中。 答:整理数据如上表中。 2.分析各运算关系。 答: 反相比例运算:U0=-(R f/R1)X(U i) 放大倍数 A uf=-R f/R1 随着电压的不断增加,实际运放也不断变大,误差逐渐减小同相比例运算:U0=(1+(R f/R1))X(U i) 放大倍数 A uf=1+(R f/R1) 随着电压的不断增加,误差逐渐减小,越来越趋近于理论值加法运算:U0=-((R f/R i1))X(U i1)+ (R f/R i2))X(U i2)) 改变任一电路的输入电阻时,对其他路没有任何影响减法运算:U0=(1+(R f/R1))X(R3/(R2+R3))X(U i2)-(R f/R1)X(U i1) 输出与两个输入信号的差值成正比

基本放大电路的概念及工作原理

基本放大电路的概念及工作原理里 基本放大电路一般是指有一个三级管和场效应管组成的放大电路。放大电路的功能是利用晶体管的控制作用,把输入的微弱电信号不失真的放到所需的数值,实现将直流电源的能量部分的转化为按输入信号规律变化且有较大能量的输出信号。放大电路的实质,是用较小的能量去控制较大能量转换的一种能量装换装置。 利用晶体管的以小控大作用 ,电子技术中以晶体管为核心元件可组成各种形式的放大电路。其中基本放大电路共有三种组态:共发射极放大电路、共集电极放大电路和共基极放大电路,如图1所示。 (a)共发射极放大电路 (b)共集电极放大电路

(c)共基极放大电路 图1基本放大电路的三种组态 无论基本放大电路为何种组态,构成电路的主要目的是相同的:让输入的微弱小信号通过放大电路后,输出时其信号幅度显著增强。 1、放大电路的组成原则 需要理解的是,输入的微弱小信号通过放大电路,输出时幅度得到较大增强,并非来自于晶体管的电流放大作用,其能量的提供来自于放大电路中的直流电源。。晶体管再放大电路中只是实现的对能量的控制,是指转换信号能量,并传递给负载。因此放大电路组成的原则首先是必须有直流电源,而且电源的设置应保证晶体管工作在线性放大电路状态。其次,放大电路中各元件的参数和安排上,要保证被传输信号能够从放大电路的输入端尽量不衰减地输出,在信号传输的过程中能够不失真的放大,最后经放大电路输出端输出,并且满足放大电路的性能指标要求。 综上所述,放大电路必须具备以下条件。 ○1保证放大电路的核心元件晶体管工作在放大电路状态,及要求其发射极正偏,集电结反偏。 ○2输入回路的设置应当是输入信号耦合到晶体管的输入电极,并形成变化的基极电流i B ,进而产生晶体管的电流控制关系,变成集电极电流i C 的变化。

运算放大器基本原理

运算放大器基本原理及应用 一. 原理 (一) 运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线 图2运算放大器输入输出端图示 图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 2.理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。

由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 3. 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R ’=R 1 // R F 。 输出电压U 0与输入电压U i 称比例关系,方向相反,改变比例系数,即改变两个电阻的阻值就可以改变输出电压的值。反向比例电路对于输入信号的负载能力有一定的要求。 (b) 同向比例电路 同向比例电路如图4所示,跟反向比例电路本质上差不多,除了同向接地的一段是反向输入端: i 1 f O U R R U - =

运算放大器的工作原理

运算放大器的工作原理 放大器的作用:1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正

对数放大器的原理与应用.docx

对数放大器的原理与应用 信号压缩 在现实世界中,一些信号往往具有很宽的动态范围。比如雷达、声 纳等无线电系统中,接收机前端信号动态范围可达 120dB 以上;光纤 接收器前端的电流也可从“pA”级到“mA”级。宽动态范围往往给 应用设计带来很多问题。一方面,线性放大器无法处理这样宽的动态 范围。另一方面, DA 变换中,在保证分辨率的情况下,模数转换器的 位数会随动态范围的增大而增大。因此,在处理宽动态范围的信号时,常常将其动态范围压缩到一个可以处理的程度。如果一个系统中阻抗 是线性的,信号的功率与电压的平方成正比,信号的动态范围既可 以用电压表示也可以用功率来表示。 在工程应用中,动态范围的压缩分为“线性压缩”和“非线性压缩”。线性压缩是指放大器的增益与信号的大小无关,输出基本保持 恒定。线性压缩的特点使谐波失真小,其本质是一种“压控放大器” (V CA )。非线性压缩方面最好的例子就是对数放大器。它是输入输出信号成对数关系的器件,它对信号动态范围的压缩不需要像 AGC 系统那样提取输入信号的电平来控制增益,其增益与信号的大小成反比,在通信、雷达、电子对抗、电子测量中有着广泛的应用。 对数放大器的实质 多年来,人们对对数放大器本质的认识有一些模糊。通常人们把 它看作是一种放大器,反而淡化了其非线性的特性,把它们看作特殊

类型的放大器更是不对。尽管这些电路提供一些放大功能,如在RF 和IF 放大器中,它对小信号呈现出高增益等等,但它们真正的用途 是实现精确的对数变换,严格地说,这些电路应该叫做“对数变换器”。但多年来人们已经习惯了“对数放大器”的叫法。IC 厂商也不愿因为改名而使用户对他们的产品性质和用途造成误解。因此,本文也将沿用“对数放大器”这一名称。 对数放大器的分类 在许多文献中,对数放大器的分类也是相当混乱的,根据实现对数函数依据的不同 ,有的将其分为二极管、三极管对数放大器和级联对数放大器,有的将其分为真对数放大器和似对数放大器等等。但几十年来,随着半导体理论、工艺和模拟集成电路的发展,许多对数放大器实现的方法已经被淘汰,其分类方法也未尽科学。目前根据市场上现有的对数放大器结构和应用领域的不同,可将对数放大器分为三类:基本对数放大器、基带对数放大器和解调对数放大器。 基本对数放大器也称跨导线性( Translinear)对数放大器,它基于双极性三极管( BJT)的对数特性来实现信号的对数变换。这类对数放大器可以响应缓慢变化的输入信号,其特点是具有优良的直流精度和非常宽的动态范围(高达 180dB),缺点是交流特性差。 基带对数放大器也称视频对数放大器(虽然很少用于视频显示相关的应用),它克服了基本对数放大器的缺点,能够响应快速变化的

运算放大器工作原理

运算放大器工作原理 1.模拟运放的分类及特点 模拟运算放大器从诞生至今,已有40多年的历史了。最早的工艺是采用硅NPN工艺,后来改进为硅NPN-PNP工艺(后面称为标准硅工艺)。在结型场效应管技术成熟后,又进一步的加入了结型场效应管工艺。当MOS管技术成熟后,特别是CMOS技术成熟后,模拟运算放大器有了质的飞跃,一方面解决了低功耗的问题,另一方面通过混合模拟与数字电路技术,解决了直流小信号直接处理的难题。 经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。这使得初学者选用时不知如何是好。为了便于初学者选用,本文对集成模拟运算放大器采用工艺分类法和功能/性能分类分类法等两种分类方法,便于读者理解,可能与通常的分类方法有所不同。 1.1.根据制造工艺分类 根据制造工艺,目前在使用中的集成模拟运算放大器可以分为标准硅工艺运算放大器、在标准硅工艺中加入了结型场效应管工艺的运算放大器、在标准硅工艺中加入了MOS工艺的运算放大器。按照工艺分类,是为了便于初学者了解加工工艺对集成模拟运算放大器性能的影响,快速掌握运放的特点。 标准硅工艺的集成模拟运算放大器的特点是开环输入阻抗低,输入噪声低、增益稍低、成本低,精度不太高,功耗较高。这是由于标准硅工艺的集成模拟运算放大器内部全部采用NPN-PNP管,它们是电流型器件,输入阻抗低,输入噪声低、增益低、功耗高的特点,即使输入级采用多种技术改进,在兼顾起啊挺能的前提下仍然无法摆脱输入阻抗低的问题,典型开环输入阻抗在1M欧姆数量级。为了顾及频率特性,中间增益级不能过多,使得总增益偏小,一般在80~110dB 之间。标准硅工艺可以结合激光修正技术,使集成模拟运算放大器的精度大大提高,温度漂移指标目前可以达到0.15ppm。通过变更标准硅工艺,可以设计出通用运放和高速运放。典型代表是LM324。 在标准硅工艺中加入了结型场效应管工艺的运算放大器主要是将标准硅工艺的集成模拟运算放大器的输入级改进为结型场效应管,大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。典型开环输入阻抗在1000M欧姆数量级。典型代表是TL084。 在标准硅工艺中加入了MOS场效应管工艺的运算放大器分为三类,一类是是将标准硅工艺的集成模拟运算放大器的输入级改进为MOS场效应管,比结型场效应管大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。典型开环输入阻抗在10^12欧姆数量级。典型代表是CA3140。

G类放大器的基本原理及其应用

第 1 页 共 9 页 G 类放大器的基本原理及其应用 吴红奎 G 类放大器并不是一个什么新概念,大约在1977年,Hitachi (日立)公司就推出了基于G 类放大技术的商用功率放大器:HMA-8300,这就是其其E 系列后级,采用场效应管为输出级,搭配HCA-8300组成分体式的功率放大 器。 题头图. HCA-8300/HMA-8300前/后级放大器 G 类放大器的电源供给需要使用当时还比较昂贵的功率半导体器件做为电子开关,由此带来的效率提升则显得有些微不足道。随着高速和功率半导体器件价格的逐渐降低以及便携产品对效率的苛求,G 类放大器又开始受到人们的追捧,MAXIM (美信)在2006年一下子推出了两款针对便携应用的G 类放大器 IC 。 本文旨在说明G 类放大器的基本原理和实际应用。 一、G 类放大器的概念及其它 1、什么是G 类放大器 放大器的分类方法有很多种,在音频应用领域,按照末级功率晶体管静态工作点的不同,可以分为A (甲)类、AB (甲乙)类、Super-A (滑动甲类)、B (乙)类等;按照末级功率晶体管的工作状态不同,可以分为模拟放大器和D 类放大器(数字放大器)等;功率放大器的供电方式也不仅仅限于固定电压的一组对称的正负电源或者单一电源,也可以是多组电压不同的电源,或者电压变化的单一电源,就有了G 类放大器、H 类放大器之说,图1可以更好的说明这个问题。 G 类放大器采用高、低两组工作电压并且根据输出功率的大小(以信号幅度计)自动转换,图2是G 类放大器的流程示意图,VCC 为正电源,VEE 为负电源,电压的高低以绝对值计,下同;图3是G 类放大器的电源电压对应输出功率的变化曲线图。 如果负载一定,功率放大器的理论最大不失真输出功率和静态功耗只与供电电压有关,所以采用高、低电压供电的G 类放大器理论上有更高的效率,而失真度指标则与末级放大器的工作点有关。由于工作电压的转换与输入信

运算放大器详细的应用电路(很详细)

§8.1 比 例运算电 路 8.1.1 反相比例电路 1. 基本电路 电压并联负反馈输入端虚短、虚断 特点: 反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低 输出电阻小,带负载能力强 要求放大倍数较大时,反馈电阻阻值高,稳定性差。 如果要求放大倍数100,R1=100K,Rf=10M 2. T型反馈网络(T型反馈网络的优点是什么?) 虚短、虚断

8.1.2 同相比例电路 1. 基本电路:电压串联负反馈 输入端虚短、虚断 特点: 输入电阻高,输出电阻小,带负载能力强 V-=V+=V i,所以共模输入等于输入信号,对运放的共模抑制比要求高 2. 电压跟随器 输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2 加减运算电路 8.2.1 求和电路 1.反相求和电路 2.

虚短、虚断 特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系 3.同相求和电路 4. 虚短、虚断 8.2.2 单运放和差电路

8.2.3 双运放和差电路 例1:设计一加减运算电路 设计一加减运算电路,使 V o=2Vi1+5Vi2-10Vi3 解:用双运放实现

如果选Rf1=Rf2=100K,且R4= 100K 则:R1=50K R2=20K R5=10K 平衡电阻 R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K 例2:如图电路,求A vf,Ri 解: §8.3 积分电路和微分电路 8.3.1 积分电路 电容两端电压与电流的关系:

积分实验电路 积分电路的用途 将方波变为三角波(Vi:方波,频率500Hz,幅度1V)

运算放大器工作原理是什么

运算放大器工作原理是什么? 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正回馈(positive feedback),相反地,在很多需要产生震荡讯号的系统中,正回馈组态的运算放大器是很常见的组成元件。

开环回路运算放大器如图1-2。当一个理想运算放大器采用开回路的方式工作时,其输出与输入电压的关系式如下: Vout = ( V+ -V-) * Aog 其中Aog代表运算放大器的开环回路差动增益(open-loop differential gai 由于运算放大器的开环回路增益非常高,因此就算输入端的差动讯号很小,仍然会让输出讯号「饱和」(saturation),导致非线性的失真出现。因此运算放大器很少以开环回路出现在电路系统中,少数的例外是用运算放大器做比较器(comparator),比较器的输出通常为逻辑准位元的「0」与「1」。 闭环负反馈 将运算放大器的反向输入端与输出端连接起来,放大器电路就处在负反馈组态的状况,此时通常可以将电路简单地称为闭环放大器。闭环放大器依据输入讯号进入放大器的端点,又可分为反相(inverting)放大器与非反相(non-inverting)放大器两种。 反相闭环放大器如图1-3。假设这个闭环放大器使用理想的运算放大器,则因为其开环增益为无限大,所以运算放大器的两输入端为虚接地(virtual ground),其输出与输入电压的关系式如下: Vout = -(Rf / Rin) * Vin

运算放大器应用电路的设计与制作(1)

运算放大器应用电路的设计与制作 (一) 运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线 图2运算放大器输入输出端图示 图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 2.理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。

由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 3. 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R ’=R 1 // R F 。 输出电压U 0与输入电压U i 称比例关系,方向相反,改变比例系数,即改变两个电阻的阻值就可以改变输出电压的值。反向比例电路对于输入信号的负载能力有一定的要求。 (b) 同向比例电路 同向比例电路如图4所示,跟反向比例电路本质上差不多,除了同向接地的一段是反向输入端: i 1 f O U R R U - =

电桥放大器的原理与应用

电桥放大器的原理及应用 摘要:在非电量测量仪器中经常采用电阻传感器,通过对电阻传感器中电阻的相对变化的测量来检测一些非电量。电阻传感器都是通过电桥的连接方式,将被测非电量转换成电压或电流信号,并用放大器做进一步放大。这种由电阻传感器电桥和运放组成的运放电路被称为电桥放大器。电桥放大器是非电量测试系统中常见的一种放大电路[1]。本文将主要介绍电桥放大器的原理、应用及应用中出现的问题和解决办法。 关键词:电桥放大器;非电量测量;非线性误差 The Principle and Application of the Bridge Amplifier Abstract:Resistive sensors are often used in non-power measuring instruments and the measurement of the resistor's relative change in resistive sensor can be used to detect some of the non-electricity. Resistive sensors are based on the connection of the bridge and the measured non-electricity is converted into a voltage or current signal and then amplifier further amplification. The op amp circuit composed of resistive sensor bridge and op amp is called Bridge Amplifier. Bridge Amplifier is a common kind of amplifier circuit in a non-electricity test system.This article will focus on the Bridge Amplifier's principles,applications,application problems and solutions. Keywords: Bridge amplifier;Non-power measurement;Nonlinearity error 引言 在现代电子技术的发展中,电子检测技术得到了广泛的应用,在非电量的检测中, 常常使用电阻传感器将一些非电物理量如压力、光、热、湿度、流量等转换为电阻量的变化, 然后再转换为电压进行测量。由于传感器的变化量常常是在一个参考状态的初始值基础上进行变化, 为了获取纯变化量, 一般利用电桥电路来抑制初始值。在电桥电路的输出较小时, 又需要用集成运算放大器与之配合, 这样就形成了应用广泛的电阻电桥传感放大器[2]。本文将对电桥放大器做一些研究,先阐述其基本原理,然后再讨论其应用及在应用中出现的问题和解决方法。 1 电桥放大器

运算放大器详细的应用电路(很详细)

§8.1比 例运算电 路 8.1.1反相比例电路 1.基本电路 电压并联负反馈输入端虚短、虚断 特点: 反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低 输出电阻小,带负载能力强 要求放大倍数较大时,反馈电阻阻值高,稳定性差。 如果要求放大倍数100,R1=100K,Rf=10M 2. T型反馈网络(T型反馈网络的优点是什么?) 虚短、虚断

8.1.2同相比例电路 1.基本电路:电压串联负反馈 输入端虚短、虚断 特点: 输入电阻高,输出电阻小,带负载能力强 V-=V+=Vi,所以共模输入等于输入信号,对运放的共模抑制比要求高 2.电压跟随器 输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2加减运算电路 8.2.1求和电路 1.反相求和电路 2.

虚短、虚断 特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系 3.同相求和电路 4. 虚短、虚断 8.2.2单运放和差电路

8.2.3双运放和差电路 例1:设计一加减运算电路 设计一加减运算电路,使Vo=2Vi1+5Vi2-10Vi3 解:用双运放实现

如果选Rf1=Rf2=100K,且R4= 100K 则:R1=50K R2=20K R5=10K 平衡电阻R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K 例2:如图电路,求Avf,Ri 解: §8.3积分电路和微分电路 8.3.1积分电路 电容两端电压与电流的关系:

积分实验电路 积分电路的用途 将方波变为三角波(Vi:方波,频率500Hz,幅度1V)

最简单讲解运算放大器的工作原理

最简单讲解运算放大器的工作原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正回馈(positive feedback),相反地,在很多需要产生震荡讯号的系统中,正回馈组态的运算放大器是很常见的组成元件。 开环回路运算放大器如图1-2。当一个理想运算放大器采用开回路的方式工作时,其输出与输入电压的关系式如下: Vout = ( V+ -V-) * Aog 其中Aog代表运算放大器的开环回路差动增益(open-loop differential gai由于运算放大器的开环回路增益非常高,因此就算输入端的差动讯号很小,仍然会让输出讯号「饱和」

(saturation),导致非线性的失真出现。因此运算放大器很少以开环回路出现在电路系统中,少数的例外是用运算放大器做比较器(comparator),比较器的输出通常为逻辑准位元的「0」与「1」。 闭环负反馈 将运算放大器的反向输入端与输出端连接起来,放大器电路就处在负反馈组态的状况,此时通常可以将电路简单地称为闭环放大器。闭环放大器依据输入讯号进入放大器的端点,又可分为反相(inverting)放大器与非反相(non-inverting)放大器两种。 反相闭环放大器如图1-3。假设这个闭环放大器使用理想的运算放大器,则因为其开环增益为无限大,所以运算放大器的两输入端为虚接地(virtual ground),其输出与输入电压的关系式如下: Vout = -(Rf / Rin) * Vin 图1-3反相闭环放大器 非反相闭环放大器如图1-4。假设这个闭环放大器使用理想的运算放大器,则因为其开环增益为无限大,所以运算放大器的两输入端电压差几乎为零,其输出与输入电压的关系式如下: Vout = ((R2 / R1) + 1) * Vin 图1-4非反相闭环放大器 闭环正回馈 将运算放大器的正向输入端与输出端连接起来,放大器电路就处在正回馈的状况,由于正回馈组态工作于一极不稳定的状态,多应用于需要产生震荡讯号的应用中。

相关文档
最新文档