矿用水文监测系统
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、系统主要实现监测内容
系统可全天候监测引起矿井水害的各种参数,并在地面监控计算机上显示和存储,一旦出现险情(根据综合信息预报),井下立即报警,以便及时采取措施,保证矿井及井下人员安全。监测数据可通过计算机网络查询,报警信息可以短信形式发送到有关人员的手机上。系统主要监测内容如下:
(1)矿井各含水层和积水区水位水压变化情况监测;
系统的软件部分研究内容主要有:水文数据的实时采集、组织与数据库建立、水文数据分析处理、数据发布以及智能预测预警功能的实现。
2 总体功能描述
矿用水文监测系统是根据煤矿系统的规范和要求,充分利用数据采集技术、计算机技术、网络技术和数据库技术等实现地下水水文数据的采集、处理和发布为一体的综合信息管理系统,是现代化科技与管理密切结合的一项系统工程。它是煤矿部门实现地下水管理现代化、决策科学化的一个重要过程。其核心是数据的采集处理和信息发布,通过将水文数据采集并处理后发布给相关各个煤矿部门,为各个部门在实施煤炭安全开采上提供有力的决策依据和参考,最终实现避免突水事件发生、避免煤矿发生水灾这一目的。
对于本系统,从一般的意义上来说,是要实现从数据采集处理到信息发布处理的全过程的自动化,主要包括以下几个方面:
l)数据采集自动化:
即应通过一定的采集方法,能够将煤矿部门需要的地下水的水位(水压)、流量、温度等数据自动的采集并按照一定的方式存贮。
2)数据处理自动化:
采集到的数据能够以实时数据、报表统计、图形等形式直观的显示。
图3.1系统组成
如图3.1所示,水文观测系统主要由智能型水压传感器、智能型水位传感器、智能型位移传感器等)、监测分站、通信线路、通信接口及计算机组成,分布在各测点的智能型传感器完成被测量(钻孔水压)的测量,并通过一条公共传输线路(传感器级M-BUS总线:四芯电缆,其中两根供电,两根通信)将测量数据发送给监测分站,再由监测分站通过另一条公共传输线路(终端级M-BUS总线:四芯电缆,其中两根复位,两根通信)远传至地面监控计算机,实现集中处理、存储、报警,并送入矿和集团公司的计算机网络。有关领导和部门只要打开各自的计算机,就可通过网页浏览、查询全部监测内容。各类传感器一般都受环境温度影响,为掌握影响程度,进行温度补偿,所有智能型传感器都装有温度传感器,温度传感器还可用于测水温。
(2)矿井地面降水量、井下不同区域涌水量及其变化情况监测;
(3)矿井受水害威胁地点水文变化情况综合监测;
(4)矿井防水设施维护状况监测;
(5)矿井排水系统实际工况监测;
(6)地面地质钻孔水位、水温பைடு நூலகம்测;
3、系统主要实现监测功能
(1)系统将各种防治水的因素和参数,完全集中到一个统一的数据库之中实现数据的统一管理。
3)信息发布自动化:
由于煤矿各个部门息息相关,因此,采集到的水文数据通过网络简单快捷发布给各个相关部门。
3系统体系结构
该系统集矿井水文数据采集、数据处理、数据网络共享、矿井水害预警、辅助决策于一体,采用现代化的监测手段对地下水的各种参数进行监测,从而能够及时掌握水文动态,达到对水害事故的早发现、早预报、早防治。对保障煤矿的安全、正常生产具有重要的意义。
该系统由硬件系统和软件系统组成。系统的硬件部分研究内容主要有:传感器、遥测分站、传输系统(无线或有线方式)和水文监测主机等,系统可以通过传感器和遥测分站将地面或井下采集到的各种水文实时数据,使用GSM网或工业控制网,按照设计的通信协议,将各观测点的水文数据传输、处理并存储到水文信息数据库中。
矿井水文动态实时监测报警系统
技术方案
山东科技大学机电技术研究所
山东鲁科自动化技术有限公司
前言
1、意义
水害作为煤矿井下主要灾害之一,严重威胁着煤矿的安全生产,其表现形式是矿井涌水量突然增大超出矿井排水系统的排水能力,因此,井下出水点的涌水量、排水沟水流量监测是一项非常重要的工作。目前,矿井一般由人工定期对所选定的观测点逐点测量,难以获得各测点的同时涌水量,不利于分析涌水点的涌水情况,特别是有突水发生时,不能及时发现。另外,水仓水位、井下钻孔水压、地面野外钻孔水位等参数也十分重要,有必要连续自动监测,但也普遍采用人工测量。因此,建立矿井水文自动监测报警系统十分必要。
系统分为三个网络层次,第一层由智能型传感器和监测分站组成,监测分站为主机,通过发送不同的地址(每个智能传感器都设有唯一的地址,地址范围1~100)依次控制各智能型传感器执行测量工作,并读取和存储其测量数据。智能型传感器采用总线集中供电方式,即由监测分站输出一对电源线,给智能型传感器供电,而监测分站由防爆电源直接供电;第二层由监测分站与监控计算机组成,监控计算机为主机,通过发送不同的地址(每个监测分站都设有唯一的地址,地址范围1~255)依次选通各监测分站,并读取其存储的测量数据;第三层为计算机局域网络,监控计算机作为网络结点,兼有文件服务器功能。第一、二层拓扑结构均为M-BUS总线型,特点是多个网络结点可共用一条通信信道,非常适合煤矿井下测点分布较广的情形。M-BUS总线是欧洲标准的2线串行总线,专门为耗能测量仪器传送信息而设计,具有通信设备容量大(255点),通信距离远、通信速率高、布线简便(无极性、可任意分支,普通双绞线)、抗干扰能力强等优点。
当终端级M-BUS总线距离长或挂接监测分站较多时,需在总线上加终端中继器,以提高通信距离,终端中继器由单独的本安电源供电。同样,当传感器级M-BUS总线距离长或挂接智能型传感器较多时,需在总线上加传感器中继器,以提高通信距离,传感器中继器也由单独的本安电源供电。
1 系统简介
矿用水文监测系统是利用计算机技术、通讯技术、传感器技术解决矿井水害防治问题,是多学科领域与水文科学相结合的产物。
(2)定时测量间隔时间1分~24小时可以任意设置。
(3)具有初步的分析功能,显示各个地点历史数据,历史曲线可以自动绘制。
(4)可以根据需要自动打印有关的报表和曲线。
(5)具有超限自动报警功能,出现异常立即报警。
(6)具有网络管理远程管理功能。
(7)地面水文地质钻孔实现无线遥测通信功能。
4、系统硬件组成及工作原理
系统可全天候监测引起矿井水害的各种参数,并在地面监控计算机上显示和存储,一旦出现险情(根据综合信息预报),井下立即报警,以便及时采取措施,保证矿井及井下人员安全。监测数据可通过计算机网络查询,报警信息可以短信形式发送到有关人员的手机上。系统主要监测内容如下:
(1)矿井各含水层和积水区水位水压变化情况监测;
系统的软件部分研究内容主要有:水文数据的实时采集、组织与数据库建立、水文数据分析处理、数据发布以及智能预测预警功能的实现。
2 总体功能描述
矿用水文监测系统是根据煤矿系统的规范和要求,充分利用数据采集技术、计算机技术、网络技术和数据库技术等实现地下水水文数据的采集、处理和发布为一体的综合信息管理系统,是现代化科技与管理密切结合的一项系统工程。它是煤矿部门实现地下水管理现代化、决策科学化的一个重要过程。其核心是数据的采集处理和信息发布,通过将水文数据采集并处理后发布给相关各个煤矿部门,为各个部门在实施煤炭安全开采上提供有力的决策依据和参考,最终实现避免突水事件发生、避免煤矿发生水灾这一目的。
对于本系统,从一般的意义上来说,是要实现从数据采集处理到信息发布处理的全过程的自动化,主要包括以下几个方面:
l)数据采集自动化:
即应通过一定的采集方法,能够将煤矿部门需要的地下水的水位(水压)、流量、温度等数据自动的采集并按照一定的方式存贮。
2)数据处理自动化:
采集到的数据能够以实时数据、报表统计、图形等形式直观的显示。
图3.1系统组成
如图3.1所示,水文观测系统主要由智能型水压传感器、智能型水位传感器、智能型位移传感器等)、监测分站、通信线路、通信接口及计算机组成,分布在各测点的智能型传感器完成被测量(钻孔水压)的测量,并通过一条公共传输线路(传感器级M-BUS总线:四芯电缆,其中两根供电,两根通信)将测量数据发送给监测分站,再由监测分站通过另一条公共传输线路(终端级M-BUS总线:四芯电缆,其中两根复位,两根通信)远传至地面监控计算机,实现集中处理、存储、报警,并送入矿和集团公司的计算机网络。有关领导和部门只要打开各自的计算机,就可通过网页浏览、查询全部监测内容。各类传感器一般都受环境温度影响,为掌握影响程度,进行温度补偿,所有智能型传感器都装有温度传感器,温度传感器还可用于测水温。
(2)矿井地面降水量、井下不同区域涌水量及其变化情况监测;
(3)矿井受水害威胁地点水文变化情况综合监测;
(4)矿井防水设施维护状况监测;
(5)矿井排水系统实际工况监测;
(6)地面地质钻孔水位、水温பைடு நூலகம்测;
3、系统主要实现监测功能
(1)系统将各种防治水的因素和参数,完全集中到一个统一的数据库之中实现数据的统一管理。
3)信息发布自动化:
由于煤矿各个部门息息相关,因此,采集到的水文数据通过网络简单快捷发布给各个相关部门。
3系统体系结构
该系统集矿井水文数据采集、数据处理、数据网络共享、矿井水害预警、辅助决策于一体,采用现代化的监测手段对地下水的各种参数进行监测,从而能够及时掌握水文动态,达到对水害事故的早发现、早预报、早防治。对保障煤矿的安全、正常生产具有重要的意义。
该系统由硬件系统和软件系统组成。系统的硬件部分研究内容主要有:传感器、遥测分站、传输系统(无线或有线方式)和水文监测主机等,系统可以通过传感器和遥测分站将地面或井下采集到的各种水文实时数据,使用GSM网或工业控制网,按照设计的通信协议,将各观测点的水文数据传输、处理并存储到水文信息数据库中。
矿井水文动态实时监测报警系统
技术方案
山东科技大学机电技术研究所
山东鲁科自动化技术有限公司
前言
1、意义
水害作为煤矿井下主要灾害之一,严重威胁着煤矿的安全生产,其表现形式是矿井涌水量突然增大超出矿井排水系统的排水能力,因此,井下出水点的涌水量、排水沟水流量监测是一项非常重要的工作。目前,矿井一般由人工定期对所选定的观测点逐点测量,难以获得各测点的同时涌水量,不利于分析涌水点的涌水情况,特别是有突水发生时,不能及时发现。另外,水仓水位、井下钻孔水压、地面野外钻孔水位等参数也十分重要,有必要连续自动监测,但也普遍采用人工测量。因此,建立矿井水文自动监测报警系统十分必要。
系统分为三个网络层次,第一层由智能型传感器和监测分站组成,监测分站为主机,通过发送不同的地址(每个智能传感器都设有唯一的地址,地址范围1~100)依次控制各智能型传感器执行测量工作,并读取和存储其测量数据。智能型传感器采用总线集中供电方式,即由监测分站输出一对电源线,给智能型传感器供电,而监测分站由防爆电源直接供电;第二层由监测分站与监控计算机组成,监控计算机为主机,通过发送不同的地址(每个监测分站都设有唯一的地址,地址范围1~255)依次选通各监测分站,并读取其存储的测量数据;第三层为计算机局域网络,监控计算机作为网络结点,兼有文件服务器功能。第一、二层拓扑结构均为M-BUS总线型,特点是多个网络结点可共用一条通信信道,非常适合煤矿井下测点分布较广的情形。M-BUS总线是欧洲标准的2线串行总线,专门为耗能测量仪器传送信息而设计,具有通信设备容量大(255点),通信距离远、通信速率高、布线简便(无极性、可任意分支,普通双绞线)、抗干扰能力强等优点。
当终端级M-BUS总线距离长或挂接监测分站较多时,需在总线上加终端中继器,以提高通信距离,终端中继器由单独的本安电源供电。同样,当传感器级M-BUS总线距离长或挂接智能型传感器较多时,需在总线上加传感器中继器,以提高通信距离,传感器中继器也由单独的本安电源供电。
1 系统简介
矿用水文监测系统是利用计算机技术、通讯技术、传感器技术解决矿井水害防治问题,是多学科领域与水文科学相结合的产物。
(2)定时测量间隔时间1分~24小时可以任意设置。
(3)具有初步的分析功能,显示各个地点历史数据,历史曲线可以自动绘制。
(4)可以根据需要自动打印有关的报表和曲线。
(5)具有超限自动报警功能,出现异常立即报警。
(6)具有网络管理远程管理功能。
(7)地面水文地质钻孔实现无线遥测通信功能。
4、系统硬件组成及工作原理