纳米材料的制备方法(液相法)剖析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冻干燥;真空干燥。
混合物共沉淀过程是非常复杂的。溶液中不同种 类的阳离子不能同时沉淀,怎么办?
各种离子沉淀的先后与溶液的pH值密切相关。
如图所示:Zr,Y,Mg,Ca的氯化物溶 入水形成溶液,随pH值的逐渐增大, 各种金属离子发生沉淀的pH值范围不 同。
§ 2.2.2 喷雾法
喷雾法是指溶液通过各种物理手段进行雾化获得 超微粒子的一种化学与物理相结合的方法。
水热条件下,水对反应的进行起重要的作用: 1)有时作为化学组分起化学反应 2)反应和重排的促进剂 3)起压力传递介质的作用 4)起溶剂的作用 5)提高物质的溶解度
二、经典的晶体生长理论
水热条件下晶体生长包括以下步骤: ①溶解阶段 原料在水热介质里溶解,以离子、分子团的形式
进入溶液; ②输运阶段 由于体系中存在十分有效的热对流以及溶解区和
它的基本过程是溶液的制备、喷雾、干燥、收集 和热处理。
其特点是颗粒分布比较均匀,但颗粒尺寸为亚微 米到l0 um,具体的尺寸范围取决于制备工艺和 喷雾的方法。
喷雾法可分为下述三种:
(1)喷雾干燥法 将金属盐水溶液送入雾化器,由喷嘴高速喷入干
燥室获得了金属盐的微粒,收集后进行焙烧, 得到所需要成分的超微粒子。
生长区之间的浓度差,这些离子、分子成离子 团被输运到生长区; ③结晶阶段 离子、分子或离子团在生长界面上的吸附、分解 与脱附;吸附物质在界面上的运动;结晶
三、水热法制备纳米材料的特色
水热法是一种在密闭容器内完成的湿化学方法, 与溶胶凝胶法、共沉淀法等其它湿化学方法的 主要区别在于温度和压力。
水热法通常使用的温度在130~250℃之间,相应 的水蒸汽压是0.3~4 MPa。
§2.2 .1 沉淀法 precipitation method
沉淀法是指包含一种或多种离子的可溶性盐溶液, 当加入沉淀剂(如OH--,CO32-等)后,或在一定 温度下使溶液发生水解,形成不溶性的氢氧化 物、水合氧化物或盐类从溶液中析出,并将溶 剂和溶液中原有的阴离子除去,经热分解或脱 水即得到所需的化合物粉料。
§2.2 液相法制备纳米微粒
• 液相法制备纳米微粒是将均相溶液通过各种途 径使溶质和溶剂分离,溶质形成一定形状和大 小的颗粒,得到所需粉末的前驱体,热解后得 到纳米微粒。Solution-based method
• 液相法优点: 设备简单、原料容易获得、纯度高、均匀
性好、化学组成控制准确。
液相法包括沉淀法,水解法,水热法,喷 雾法,乳液法,溶胶-凝胶法,自组织生长
目前用水热法制备纳米微粒的实际例子很多:
• 用碱式碳酸镍及氢氧化镍水热还原工艺可制备出最小粒 径为30 nm的镍粉。
• 锆粉通过水热氧化可得到粒径约为25nm的单斜氧化锆纳 米微粒,具体的反应条件是在100MPa压力下,温度为 523~973K。
• 金属Ti粉能溶解于H2O2的碱性溶液生成Ti的过氧化物, 在不同的介质中进行水热处理,制备出不同晶型、9种形 状的TiO2纳米微粒。
(1)单相共沉淀:沉淀物为单一化合物或单相固溶体。 (2)混合物共沉淀:沉淀产物为混合物。 例如:用ZrOCl2·8H20(氧氯化锆 )和Y2O3(氧化钇,化学
纯)为原料来制备ZrO2—Y2O3的纳米粒子的过程如下:
Y2O3用盐酸溶解得到YCl3,然后将ZrOCl2·8H20和YCl3配制成一定浓 度的混合溶液,在其中加NH4OH后便有Zr(OH)4和Y(OH)3的沉淀粒 子缓慢形成。反应式如下:
如铁氧体的超细微粒制备: 程序是将镍、锌、铁的硫酸盐的混合水溶液喷雾, 获得了10~20 um混合硫酸盐的球状粒子,经 1073~1273 K焙烧,即可获得镍锌铁氧体软磁超 微粒子,该粒子是由200nm的一次颗粒组成。
(2)雾化水解法
将一种盐的超微粒子,由惰性气体载入含有金属 醇盐的蒸气室,金属醇盐蒸气附着在超微粒的 表面,与水蒸气反应分解后形成氢氧化物微粒, 经焙烧后获得氧化物的超细微粒。
ZrOCl 2 2NH 4OH H 2O Zr (OH )4 2NH 4Cl
YCl3 3NH 4OH Y (OH )3 3NH 4Cl
得到的氢氧化物共沉淀物经洗涤、脱水、煅烧可得到具 有很好的烧结活性的ZrO2(Y2O3)纳米微粒。
烧结时应注意粉体的团聚问题。 常用方法: 丁醇共沸蒸馏;乙醇洗涤;表面活性剂改性;冷
一、水热法是在高压釜里的高温、高压反应环境中, 采用水作为反应介质,使得通常难溶或不溶的物质 溶解,在高压环境下制备纳米微粒的方法。
• 在高温高压的水热体系中,粘度随温度的升高而降低。 有助于提高化合物在水热溶液中的溶解度。
例如:在高温、高压下一些氢氧化物在水中的溶解度 大于对应的氧化物在水中的溶解度,于是氢溶液中加入
草酸沉淀剂后,形成了单相 化 合 物 BaTiO(C2O4)2·4H2O 沉淀。 经高温(450~750℃)加热分解, 经过一系列反应可制得 BaTiO3粉料; 用单相共沉淀方法也可制得 BaZn(C2O4)2·0.5H2O。
这种方法的缺点是适用范围很窄,仅对有限的草酸盐沉淀适 用,如二价金属的草酸盐间产生固溶体沉淀。
这种方法获得的微粒纯度高,分布窄,尺寸可控。 具体尺寸大小主要取决于盐的微粒大小。
例如高纯Al2O3微粒可采用此法制备: 具体过程是将载有氯化银超微粒(868一923K)的
氦气通过铝丁醇盐的蒸气,氦气流速为500— 2000 cm3/min,铝丁醇盐蒸气室的温度为395— 428K,醇盐蒸气压<=1133Pa。在蒸气室形成 以铝丁醇盐、氯化银和氦气组成饱和的混合气 体。经冷凝器冷却后获得了气态溶胶,在水分 解器中与水反应分解成勃母石或水铝石(亚微 米级的微粒)。经热处理可获得从Al2O3的超细 微粒。
(3) 雾化焙烧法
将金属盐溶液经压缩空气由窄小的喷嘴喷出而雾 化成小液滴,雾化室温度较高,使金属盐小液 滴热解生成了超微粒子。
例如将硝酸镁和硝酸铝的混合溶液经此法可制成 镁、铝尖晶石,溶剂是水与甲醇的混合溶液, 粒径大小取决于盐的浓度和溶剂浓度。粒径为 亚微米级,它们由几十纳米的一次颗粒构成。
§ 2.2.3 水热法(高温水解法)
相关文档
最新文档