精馏塔设计换热器选型

精馏塔设计换热器选型
精馏塔设计换热器选型

前言

工业生产过程中,两种物流之间热的交换通过换热器实现。在石油、化工、食品加工、轻工、制药等行业的生产过程中,换热器是通用工艺设备,可用作加热器、冷却器、冷凝器、蒸发器和再沸器等,换热器类型,性能各异,但设计所依据的传热基本原理相同,不同之处是在结构设计上需要根据各自设备特点采用不同的计算方法。为此,本次仅对设计成熟,应用广泛的列管式换热器的工艺设计作介绍。

列管式换热器的应用已有悠久的历史。在很多工业部门中,列管式换热器仍处于主导地位,随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强,换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型的高效换热器相继问世。

本次设计任务是年产3.4万吨酒精精馏系统换热器设计,其中包含了生产工艺流程中五个换热器:原料预热器,塔顶全凝器,塔底冷却器,塔顶冷却器和再沸器。选取了三个换热器对其进行了精算,经反复选择与核算之后,选取了合适的换热器类型及其结构尺寸等其他工艺指标要求。对其余两个换热器做了冷热流体的物料衡算,以及对换热器的初步选型。

此次设计参考了较多的文献资料,结合实际生产需求采用了科学严谨的计算方法和精确严密的计算步骤,设计出了较符合生产需求,经济实惠,安全可靠,操作简便,易于清洗、维修的列管式换热器。

第一章 概 述

1.1设计设备在生产中的作用

在工业生产中,要实现热量的交换,须采用一定的设备,此种交换热量的设备称为换热器。

换热器作为工艺过程必不可少的单元设备,广泛地应用于石油、化工、动力、轻工、机械、冶金、交通、制药等工程领域中,据统计,在现代石油化工企业中,换热器投资约占装置建设总投资的30%-40%;在合成氨厂中,换热器占全部设备总台数的40%,由此可见,换热器对整个企业的建设投资及经济效益有着重要的影响。

1.2设计工艺流程示意图

图解:原料液通过原料液预热器预热后进入精馏塔,被成功加热后成为原料蒸汽

原料液

原料液预热器 再沸器

精馏塔 分配器

釡液贮罐

冷却器

塔顶冷凝器

预热器

产品贮罐

进入塔顶冷凝器被冷却水冷却成为液体,再进入分配器,经过二次冷却成为产品进入贮罐。而从塔底出来的一部分釜残液进入第一次预热器对原料液进行第一次加热,另一部分通过再沸器达到预期需要的温度后回到精馏塔,此过程循环进行。

1.3流程方案

在进行换热器的设计之前,首先应根据工艺要求确定换热系统的流程方案并选用适当类型的换热器,确定所选定换热器中流体的流动空间及流速等参数,同时计算完成给定生产任务所需的传热面积,并确定换热器的工艺尺寸。

随着环境意识的增强,节约能源,减少热污染等问题在换热器设计中已成为必须考虑的问题,如何在满足工艺要求的前提下,实现节能和环保,是流程方案确定的主要任务,经过慎重考虑确定出的流程方案最终表现在流程方案说明和流程图上。

具体流程方案说明如下:

由于任务要求以下所用换热器均为列管式换热器中的一种固定管板式换热器。(1)原料预热器

流经此预热器的是酒精和水蒸气两种流体,由于饱和蒸汽通入壳程便于及时排除冷凝液,且蒸汽较洁净,壳程可不必清洗,除此之外,水蒸气在有折流板的壳程流动时,由于流速和流向的不断改变,使流体在很低的Re下即可达到湍流,将它安排在壳程提高了对流传热系数,降低了热阻,使总传热系数增加,所需传热面积减少,设备费用降低,所以,安排水蒸气走壳程,原料液走管程。

(2)塔顶全凝器

流经此换热器的是酒精蒸汽和冷却水两种流体,由于蒸汽走壳程可及时排除冷凝液,且蒸汽较洁净,壳程可不必清洗。为了便于清洗,应使酒精蒸汽走壳程,冷却水走管程。

(3)塔底冷却器

流经此换热器的是0.5%残液和水蒸气,考虑到冷却水较酒精易结垢和冷却,安排酒精走壳程,冷却水走管程。

1.4设备方案

本次设计所有换热器均为固定管板式换热器,它是列管式换热器中的一种,其结构简单,坚固耐用,造价低廉,操作弹性大,应用材料广,适应性强,历史悠久,设

计资料完善。优点是结构紧凑,在相同的壳体直径内排管数最多,旁路最少,每根换热管都可更换,且管内清洗方便,但缺点是壳程不易机械清洗,当换热管束与壳体内通过流体的温差大于50℃时,由于热应力而引起管子弯曲或使管子从管板上拉脱,因此,需在壳体上设置膨胀节。固定管板式换热器适用于流体清洁且不易结垢,两流体温差不大或较大但壳程压力不高的场所。

分别介绍各个换热器的设备方案

(1)原料预热器

两流体温度变化情况:水蒸气进口温度为120℃,出口温度为120℃(液体),酒精进口温度20℃,出口温度81.9℃.两流体温差为69.05℃>50℃,需要考虑补偿,选用带有膨胀节的固定管板式换热器。

(2)塔顶全凝器

两流体温度变化情况:酒精进口温度78.3℃(蒸汽),出口温度78.3℃(液体)。冷却水进口温度15℃,出口温度25℃,两流体温差58.3℃>50℃,则选带有膨胀节的固定管板式换热器。

(3)塔底冷却器

两流体温度变化情况:0.5%乙醇进口温度99.3℃,出口温度35℃,冷流体进口温度15℃,出口温度25℃,两流体温差57.15℃>50℃,需要考虑温度补偿,所以选择带膨胀节的固定管板式换热器。

1.5换热器的结构形式

1.管壳式换热器

管壳式换热器又称列管式换热器,是一种通用的标准换热设备,它具有结构简单,坚固耐用,造价低廉,用材广泛,清洗方便,适应性强等优点,应用最为广泛。管壳式换热器根据结构特点分为以下几种:

(1)固定管板式换热器

固定管板式换热器两端的管板与壳体连在一起,这类换热器结构简单,价格低廉,但管外清洗困难,宜处理两流体温差小于50℃且壳方流体较清洁及不易结垢的物料。

带有膨胀节的固定管板式换热器,其膨胀节的弹性变形可减小温差应力,这种补偿方法适用于两流体温差小于70℃且壳方流体压强不高于600Kpa的情况。

(2)浮头式换热器

浮头式换热器的管板有一个不与外壳连接,该端被称为浮头,管束连同浮头可以自由伸缩,而与外壳的膨胀无关。浮头式换热器的管束可以拉出,便于清洗和检修,适用于两流体温差较大的各种物料的换热,应用极为普遍,但结构复杂,造价高。(3)填料涵式换热器

填料涵式换热器管束一端可以自由膨胀,与浮头式换热器相比,结构简单,造价低,但壳程流体有外漏的可能性,因此壳程不能处理易燃,易爆的流体。

2.蛇管式换热器

蛇管式换热器是管式换热器中结构最简单,操作最方便的一种换热设备,通常按照换热方式不同,将蛇管式换热器分为沉浸式和喷淋式两类。

3.套管式换热器

套管式换热器是由两种不同直径的直管套在一起组成同心套管,其内管用U型时管顺次连接,外管与外管互相连接而成,其优点是结构简单,能耐高压,传热面积可根据需要增减,适当地选择管内、外径,可使流体的流速增大,且两种流体呈逆流流动,有利于传热。此类换热器适用于高温,高压及小流量流体间的换热。

1.6 材质的选择

在进行换热器设计时,换热器各种零、部件的材料,应根据设备的操作压力、操作温度。流体的腐蚀性能以及对材料的制造工艺性能等的要求来选取。当然,最后还要考虑材料的经济合理性。一般为了满足设备的操作压力和操作温度,即从设备的强度或刚度的角度来考虑,是比较容易达到的,但材料的耐腐蚀性能,有时往往成为一个复杂的问题。在这方面考虑不周,选材不妥,不仅会影响换热器的使用寿命,而且也大大提高设备的成本。至于材料的制造工艺性能,是与换热器的具体结构有着密切关系。

一般换热器常用的材料,有碳钢和不锈钢。

(1)碳钢

价格低,强度较高,对碱性介质的化学腐蚀比较稳定,很容易被酸腐蚀,在无耐腐蚀性要求的环境中应用是合理的。如一般换热器用的普通无缝钢管,其常用的材料为10号和20号碳钢。

(2)不锈钢

奥氏体系不锈钢以1Crl8Ni9Ti为代表,它是标准的18-8奥氏体不锈钢,有稳定的奥氏体组织,具有良好的耐腐蚀性和冷加工性能。

1.7 列管式换热器的结构

1.7.1 管程结构

介质流经传热管内的通道部分称为管程。

(1)换热管布置和排列间距

常用换热管规格有ф19×2 mm、ф25×2 mm(1Crl8Ni9Ti)、ф25×2.5 mm(碳钢10)。小直径的管子可以承受更大的压力,而且管壁较薄;同时,对于相同的壳径,可排列较多的管子,因此单位体积的传热面积更大,单位传热面积的金属耗量更少。换热管管板上的排列方式有正方形直列、正方形错列、三角形直列、三角形错列和同心圆排列,如图1-4所示。

(A)(B)(C)

(D)(E)

图 1-4 换热管在管板上的排列方式

(A) 正方形直列(B)正方形错列 (C) 三角形直列

(D)三角形错列(E)同心圆排列

正三角形排列结构紧凑;正方形排列便于机械清洗;同心圆排列用于小壳径换热器,外圆管布管均匀,结构更为紧凑。我国换热器系列中,固定管板式多采用正三角形排列;浮头式则以正方形错列排列居多,也有正三角形排列。

(2)管板

管板的作用是将受热管束连接在一起,并将管程和壳程的流体分隔开来。

管板与管子的连接可胀接或焊接。胀接法是利用胀管器将管子扩胀,产生显著的塑性

变形,靠管子与管板间的挤压力达到密封紧固的目的。胀接法一般用在管子为碳素钢,管板为碳素钢或低合金钢,设计压力不超过4 MPa,设计温度不超过350℃的场合。(3)封头和管箱

封头和管箱位于壳体两端,其作用是控制及分配管程流体。

①封头当壳体直径较小时常采用封头。接管和封头可用法兰或螺纹连接,封头与壳体之间用螺纹连接,以便卸下封头,检查和清洗管子。

②管箱换热器管内流体进出口的空间称为管箱,壳径较大的换热器大多采用管箱结构。由于清洗、检修管子时需拆下管箱,因此管箱结构应便于装拆。

③分程隔板当需要的换热面很大时,可采用多管程换热器。对于多管程换热器,在管箱内应设分程隔板,将管束分为顺次串接的若干组,各组管子数目大致相等。这样可提高介质流速,增强传热。管程多者可达16程,常用的有2、4、6程。在布置时应尽量使管程流体与壳程流体成逆流布置,以增强传热,同时应严防分程隔板的泄漏,以防止流体的短路。

1.7.2 壳程结构

介质流经传热管外面的通道部分称为壳程。

壳程内的结构,主要由折流板、支承板、纵向隔板、旁路挡板及缓冲板等元件组成。由于各种换热器的工艺性能、使用的场合不同,壳程内对各种元件的设置形式亦不同,以此来满足设计的要求。各元件在壳程的设置,按其不同的作用可分为两类:一类是为了壳侧介质对传热管最有效的流动,来提高换热设备的传热效果而设置的各种挡板,如折流板、纵向挡板。旁路挡板等;另一类是为了管束的安装及保护列管而设置的支承板、管束的导轨以及缓冲板等。

(1)壳体

壳体是一个圆筒形的容器,壳壁上焊有接管,供壳程流体进人和排出之用。直径小于400mm的壳体通常用钢管制成,大于400mrn的可用钢板卷焊而成。壳体材料根据工作温度选择,有防腐要求时,大多考虑使用复合金属板。

介质在壳程的流动方式有多种型式,单壳程型式应用最为普遍。如壳侧传热膜系数远小于管侧,则可用纵向挡板分隔成双壳程型式。用两个换热器串联也可得到同样的效果。为降低壳程压降,可采用分流或错流等型式。

(2)缓冲板

在壳程进口接管处常装有防冲挡板,或称缓冲板。它可防止进口流体直接冲击管束而造成管子的侵蚀和管束振动,还有使流体沿管束均匀分布的作用。也有在管束两端放置导流筒,不仅起防冲板的作用,还可改善两端流体的分布,提高传热效率。(3)其他主要附件

①旁通挡板如果壳体和管束之间间隙过大,则流体不通过管束而通过这个间隙旁通,为了防止这种情形,往往采用旁通挡板。

②假管为减少管程分程所引起的中间穿流的影响,可设置假管。假管的表面形状为两端堵死的管子,安置于分程隔板槽背面两管板之间但不穿过管板,可与折流板焊接以便固定。假管通常是每隔3~4排换热管安置一根。

③拉杆和定距管为了使折流板能牢靠地保持在一定位置上,通常采用拉杆和定距管。

1.8 列管式换热器及全凝器的设计计算

1.8.1 设计步骤

目前,我国已制订了管壳式换热器系列标准,设计中应尽可能选用系列化的标准产品,这样可简化设计和加工。但是实际生产条件千变万化,当系列化产品不能满足需要时,仍应根据生产的具体要求自行设计非系列标准的换热器。此处将扼要介绍这两者的设计计算的基本步骤。

(1)非系列标准换热器的一般设计步骤

①了解换热流体的物理化学性质和腐蚀性能。

②由热平衡计算传热量的大小,并确定第二种换热流体的用量。

③决定流体通入的空间。

④计算流体的定性温度,以确定流体的物性数据。

⑤初算有效平均温差。一般先按逆流计算,然后再校核。

⑥选取管径和管内流速。

⑦计算传热系数K值,包括管程对流传热系数和壳程对流传热系数的计算。由于壳程对流传热系数与壳径、管束等结构有关,因此一般先假定一个壳程对流传热系数,以计算K值,然后再作校核。

⑧初估传热面积。考虑安全系数和初估性质,常取实际传热面积是计算值的

1.15~1.25倍。

(2)系列标准换热器选用的设计步骤

①至⑤步与(1)相同。

⑥选取经验的传热系数K值。

⑦计算传热面积。

⑧由系列标准选取换热器的基本参数。

⑨校核传热系数,包括管程、壳程对流传热系数的计算。假如核算的K值与

原选的经验值相差不大,就不再进行校核;如果相差较大,则需重新假设K值并重复上述③以下步骤。

⑩校核有效平均温差。

1.8.2 设计计算主要公式

传热速率方程式

Q=KSΔt m

Q——传热速率(热负荷),W;

K——总传热系数,W/(m2·℃);

S——与K值对应的传热面积,m2;

Δt m——平均温度差,℃。

(1)传热速率(热负荷)Q

①传热的冷热流体均没有相变化,且忽略热损失,则

Q=W h C ph(T1-T2)=W c C pc(t2-t1)

W——流体的质量流量,kg/h或kg/s;

c p——流体的平均定压比热容,kJ/(kg·℃);

T——热流体的温度,℃;

t——冷流体的温度,℃。

下标h和c分别表示热流体和冷流体,下标1和2分别表示换热器的进口和出口。

②流体有相变化,如饱和蒸汽冷凝,且冷凝液在饱和温度下排出,则

Q=W h r=W c C pc(t2-t l)

W——饱和蒸汽的冷凝速率,kg/h或kg/s;

r——饱和蒸汽的气化热,kJ/kg。

(2)平均温度差Δt m

①恒温传热时的平均温度差

Δt m=T-t

②变温传热时的平均温度差

逆流和并流

式中Δt1、Δt2——分别为换热器两端热、冷流体的温差,℃。

错流和折流

——按逆流计算的平均温差,℃;

——温差校正系数,无量纲,

温差校正系数根据比值P和R,通过图2-10~图2-13查出。该值实际上表示特定流动形式在给定工况下接近逆流的程度。在设计中,除非出于必须降低壁温的目的,否则总要求,如果达不到上述要求,则应改选其他流动形式。

(3)总传热系数K(以外表面积为基准)

式中K——总传热系数,W/(m2·℃);

αi,αo——传热管内、外侧流体的对流传热系数,W/(m2·℃);

Rsi ,Rso ——传热管内、外侧表面上的污垢热阻,m 2

·℃/W; di ,do ,dm ——传热管内径、外径及平均直径,m ; λ——传热管壁导热系数,W/(m·℃); b ——传热管壁厚,m 。 (4)对流传热系数

传热膜系数的关联式与传热过程是否存在相变、换热器的结构及流动状态等因素有关。关于传热膜系数的关联式很多,在选用时应注意其适用的范围。 h i = 0.8

0.4

0.023

R e

P r

k di h o = ()

23

1g [0.725

]

n d r ta tw -/4

ρλ

μ

λ——冷凝液的导热系数,w /m ℃

ρ——冷凝液的密度,kg /m μ——冷凝液的粘度,p a ·S

n ——水平管束在垂直列一的管数; (5)污垢热阻

在设计换热器时,必须采用正确的污垢系数,否则热交换器的设计误差很大。因此污垢系数是换热器设计中非常重要的参数。污垢热阻因流体种类、操作温度和流速等不同而各异。

1.8.3 流体流动阻力计算主要公式

流体流经列管式换热器时由于流动阻力而产生一定的压力降,所以换热器的设计必须满足工艺要求的压力降。 (1)管程压力降

多管程列管换热器,管程压力降∑ΔP i : ΔP i=(ΔP 1+ΔP 2)F t N s N p

式中ΔP 1—直管中因摩擦阻力引起的压力降,Pa ;

ΔP 2— 回弯管中因摩擦阻力引起的压力降,Pa ;可由经验公式

算;

F t —— 结垢校正系数,无因次,ф25×2.5mm 的换热管取1.4;ф19×2mm 的换热管取 1.5;

N s —— 串联的壳程数;

N p——管程数。

(2)壳程压力降

①壳程无折流挡板壳程压力降按流体沿直管流动的压力降计算,以壳方的当量直径d e代替直管内径d i。

②壳程有折流挡板计算方法有Bell法、Kern法、Esso法等。Bell法计算结果与实际数据一致性较好,但计算比较麻烦,而且对换热器的结构尺寸要求较详细。工程计算中常采用Esso法,该法计算公式如下:

∑ΔP o=(ΔP′1+ΔP′2)F t N s

式中ΔP′1——流体横过管束的压力降,Pa;

ΔP′2——流体流过折流挡板缺口的压力降,Pa;

F t——结垢校正系数,无因次,对液体F t=0.15;对气体F t=1.0;

式中F——管子排列方式对压力降的校正系数:三角形排列F=0.5,正方形直列F=0.3,正方形错列F=0.4;

f O——壳程流体的摩擦系数,f O=5.0×Re o-0.228(Re>500);

n c——横过管束中心线的管数,

B——折流板间距,m;

D——壳体直径,m;

N B——折流板数目;

u O——按壳程流通截面积S O(S O=h(D-n c d O))计算的流速,m/s。

第二章 工艺计算

2.1全塔物料衡算:

(1)粗馏原料:粗酒精含乙醇50%,由20℃预热至泡点81.9℃

(2)塔顶产品:含乙醇不低于92%,78.3℃蒸汽冷凝为饱和液体回流,产品冷却为35℃液体储存

(3)塔底残液:含乙醇不高于0.5%,99.3℃冷却为35℃液体

X F =

=+18504650

4650

0.28

X D =

=+188

46

92

4692

0.82

X w = =

=+

18

5.99465.046

5

.00.002

D =

h kg /22.47227200

104.37

=?;

进料平均摩尔质量:

M m = X F M A + (1-X F )M B = 0.28×46+(1-0.28)×18 =25.88g /mol

塔顶出料平均摩尔质量:

M m = X D M A + (1-X D )M B = 0.82×46+(1-0.82)×18 = 40.91 g /mol 塔底出料平均摩尔质量: M m = X w M A + (1-X w )M B

=05.1818002.0146002.0=?-+

?)(g /mol 由公式: F = D + W

Fx f = D ·X D + W ·Xw

得:F =339.66kmol /h ;W = 224.22kmol /h R =

2

=D L

V = L +D = (R +1) D =3D =346.29kmol /h L = 230.86 kmol /h

2.2 主体设备主要工艺尺寸的设计计算

2.2.1 塔顶全凝器的设计计算

(一)确定设计方案 1、选择换热器的类型

两流体温度变化情况:热流体进口温度78.3℃,出口温度35℃;冷流体15℃,出口温度25℃,此过程流体温度变化不大,所以可选固定管板式换热器。 2、流动空间及流速的确定

由于冷却水易结垢,为在日后操作中便于水垢清洗,应使冷却水走管程,热流体走壳程。

(二)确定定性温度下物性数据

管程热流体的定性温度T=78.3℃ 壳程冷却水的定性温度T=

20

2

25

15=+℃

根据定性温度可分别查出相关物性参数

(1)质量分率为92%(摩尔百分数为82%)的乙醇在78.3℃下相关参数:

r =962.3kJ /kg

;C P h =3.84kJ /kg ·℃;k = 0.1897w/m · ℃

ρh = 748.76 kg /m 3

;μ = 0.476×10-3 p a ·S

(2)质量分率为92%(摩尔百分数为82%)的乙醇在78.3℃蒸汽下相关参数: ρh =1.2kg /m 3

; μ = 0.010337×10-3p a ·S

(3)冷却水在20℃下的相关物性参数:

ρh = 998.2 kg /m 3

; C P c =4.18kJ /kg ·℃;k = 0.5989w/m ·℃

μ = 1.005×10-3 p a ·S;r =850kJ /kg

(三)计算总传热系数 1、热负荷:Q =1000

3600

3

.96272.14166??=?乙醇乙醇r w =3786843w

2、冷却水的消耗量:W=

t1)

-Cpc(t2Q =

=

-??)

1525(1018.437868433

90.53kg/s

3、平均传热温差:92%乙醇 78.3℃ → 78.3℃ 冷却水 25℃ ← 15℃ △t 53.3℃ 63.3℃

1212'ln t t t t t

m

???-?=

?=

583

.533.63ln 3.533.63=-℃

015

253.783.781

221=--=

--=

t t T T R 158.015

3.7815251

112=--=

--=

t T t t p

由图查得校正系数t ??=1

所以m t ?=t ??.m t '?=1?58=58℃ (四)选K 值,估算传热面积

取K=570 W/(m 2·℃) S=

213786843()

57058

Q K t t =

-?=114㎡

(五)初选换热器型号

由固定管板式换热器的系列标准,初选型号为G800I-0.6-110 主要参数如下: 外壳直径 800㎜ 公称压力 0.6MPa 公称面积

110㎡

管子尺寸

φ25×2.5

管子数 501 管长 3000㎜ 管中心距 32 管程数 1

管子排列方式

正三角形

管程流通面

0.1574㎡

实际换热面积:=-=)1.0(L d n S o O π501×3.14×0.025(3-0.1) =114.1 m 2

采用此换热面积的换热器,则要求过程的总传热系数为: )/(7.57058

11437868432

C m W t S Q K o

m

o o ?=?=?=

(六)核算压降

①管程压降 ∑ΔPo=(△P 1+△P 2)FtNs 其中选用φ25×2.5㎜的碳钢管Ft=1.4;Ns=1;Np=1

管程流速:s m A W

i /576.01574

.02.99853.90u i

=?=

?=

ρ

Re i =

=

???=

-3

i 10

005.12

.998576.002.0μ

ρ

u d i 11446(>10000)

对于碳钢管,取管壁粗糙度ε=0.1㎜ 005

.020

1.0d ==i

ε

由λ—Re 关系图中查得λ=0.028

△ P 1==??

?

=2

576

.02.99802

.03028.02

i

2

2

ui D L ρλ

696Pa

P 2==???

?

????=???

?

?

?2576.02.9983232

2

i u ρ497Pa

∑△Pi=(696+497)×1.4×1×1=1671Pa<50KPa

②壳程压降∑△P o =(ΔP′1+ΔP′2)FtNs 其中Fs=1,Ns=1

管子为正三角形排列 F=0.5,Nc=1.1==5011.1n 24.6

取折流挡板间距Z=0.3 D 5

1

B N =

9

13

.031=-=

-Z

L

壳程流通面积)(00d n D Z A c -==0.3(0.8-24.6?0.025)=0.0553㎡ U o=

s m Ao

Vs /0950.00553

.076.74836007

.14166=??=

Reo=

500378210

01.076

.7480950.0025.03

>=???=

ρ

douo

F o =5.0Re

-0.228

=5.0(3782)-0.228

=0.76

△P 1’

=0.5×0.76×24.6×10×

7.3172

0950

.076.7482

=?Pa

△P 2’

=B N (3.5-

D

Z 2)

2

h u ρ=9×(3.5-8

.03.02?)×

8.922

0950

.076.7482

=?pa

∑△P o =(317.7+92.8)×1×1=411Pa<50KPa 计算结果表明,管程和壳程的压降均能满足设计条件 (七)核算总传热系数

①管程对流传热系数 Rei=11446 (>10000) Pri=

789

.5910

005.11018.43

3=???=

?-k

Cp μ

hi=0.8

0.4

0.023R e P r

k

di

=0.023×

()3703

71144602

.05989.04

.08.0=??w/㎡·℃

②壳程对流传热系数h o = ()

2

3

1g 0.725

n d r ta tw -/4

ρλ

【】μ

将588根管排列nc=7

.262

1

n 21n 75

.075

.075

.0=+??+++??++nz

n n z n

设壁温为31摄氏度。

ho=()

23

1g 0.725n d r ta tw -/4

ρλ

】μ

=0.72525

.03

23.47025.0000476.06.241897

.081.976.74810003.962??

?

?

?

????????=1417w/㎡·℃

壁温校正,据经验公式:

si

i

i w so

w R h t t R h t t +-=+-110

③污垢热阻

参考附录,管内,外侧污垢热阻分别取Rsi=0.000172㎡·℃/w, Rso=0.00008598㎡·℃/

所以=w t 32.7 与估计值不超过2摄氏度,符合设计要求。

ho

Rso di

do Rsi

dihi

do K 11

+

++=

K=1417

102

.0025.0000172.000008598.002

.03703025

.01

+

?++?

=705.7

K 计/K 选=705.7/571=1.23故所选换热器符合要求,安全系数为:

23

571

571

7.705=-%

设计结果为选固定管板式换热器加膨胀节,型号:G800I-0.6-110 (八)接管

(1)料液蒸汽进口接管: Vs=

2

.1360072.14166?=3.28 取u=35m/s,

则接管内径d=

35

14.328.344??=u

V

π=0.345m

根据管子规格,取标准管径为15377?φmm 的普通无缝钢管。

核算流速:i d =377-15?2=0.347m s m u /7.34347

.014.328.342

=??= 校核合格.

(2)冷却水进、出口接管 Vs=

2

.998360077.325905?=0.0907h m /3

取 u=2.5m/s ,

则接管内径d=

5

.214.30907.044??=

u

V

π=0.215m

根据管子规格,取标准管径为14245?φmm 的普通无缝钢管。 核算流速:i d =245-14?2=0.217m s m u /50.2215

.014.30907.042

=??= 校核合格.

(3)料液冷凝液出口接管 Vs=3600

76.74872.14166?=0.00526h m /3

取u=1.5m/s ,

d=

5

.114.300526.044??=

u

V

π=0.0668m

根据管子规格,取标准管径为0.476?φmm 的普通无缝钢管。 核算流速:i d =76-4.0?2=0.068m s

m u /45.1068

.014.30526.042

=??= 校核合格.

2.2.2 原料液预热器的设计计算

(一)确定设计方案

1.选择换热器的类型

两流体的温度变化情况:预热器中用120℃水蒸汽对52℃原料液进行加热,加热至81.9℃。可选管板式换热器。

蒸汽换热器的选型计算

一换热器结构形式的选择 螺旋板式操作温度在300~400℃以下,整个换热器焊为一体,密封性良好螺旋板换热器直径在1.5m之内,板宽200~1200mm,板厚2~4mm,两板间距5~25mm,可用普通钢板和不锈钢制造,目前广泛用于化工、轻工、食品等行业。其具有以下特点: (1)总传热系数高由于流体在螺旋形通道内受到惯性离心力的作用和定距柱的干扰,低雷诺数(Re=1400~1800)下即可达到湍流,允许流速大(液体为2m/s,气体为20m/s),故传热系数大。 (2)不易结垢和堵塞由于流速较高且在螺旋形通道中流过,有自行冲刷作用,故流体中的悬浮物不易沉积下来。 (3)能利用低温热源由于流道长而且两流体可达到完全逆流,因而传热温差大,能充分利用温度较低的热源。 (4)结构紧凑由于板薄2~4mm,单位体积的传热面积可达到150~500m2/m3。 相对于螺旋板式换热器,板式换热器处理量小,受密封垫片材料性能的限制,其操作温度一般不能高于200℃,而且需要经常进行清洗,不适于用在蒸汽冷凝的场合。 综上原因,选择螺旋板式换热器作为蒸汽冷凝设备。 二大流量换热器选型参数 1 一次侧介质质量流量 按最大质量流量14t/h进行计算 2 饱和蒸汽压力 换热器饱和蒸汽入口处的最高压力在2.0MPa左右 3 饱和蒸汽温度 饱和蒸汽最高温度按照214℃进行计算 3 温度t℃ 0 2 4 6 8 压力密度压力密度压力密度压力密度压力密度

4 一次侧(高温侧)、二次侧(低温侧)的进出口温度 热侧入口温度 T1=214℃ 热侧出口温度 T2=50℃ 冷侧进口温度 t1=40℃ 冷侧出口温度 t2=60℃ 三 总传热量(单位:kW)计算 有相变传热过程计算公式为: )t -(t .)T -(T .r .122S c c h h h c q c q q Q =+= 其中r .h q 是饱和蒸汽凝结所放出的热量; )T -(T .2S h h c q 是饱和水温度降至目标温度时所需放出的温度;)t -(t .12c c c q 是冷却水吸收的热量。 式中:Q ------换热量,KW h q ------饱和蒸汽的质量流量,Kg/s ,此处取14t/h 即3.89 Kg/s r ----------蒸汽的汽化潜热,KJ/Kg ,2.0MPa 、214℃条件下饱和蒸汽的气化潜 热值为890.0KJ/Kg S T ----------饱和蒸汽入口侧压力下水的饱和温度,在2.0MPa 时,水的饱和温度 为214℃

板式换热器选型参数表

选择板式换热器要注意以下三个事项 1、板式换热器板型的选择板片型式或波纹式应根据换热场合的实际需要而定。对流量大允许压降小的情况,应选用阻力小的板型,反之选用阻力大的板型。根据流体压力和温度的情况,确定选择可拆卸式,还是钎焊式。确定板型时不宜选择单板面积太小的板片,以免板片数量过多,板间流速偏小,传热系数过低,对较大的换热器更应注意这个问题。艾瑞德每种规格的板片,均具有至少两个板型,采用热混合技术,可以综合换热器的传热和压降,使其运行在最佳工作点。内旁通,双流道技术和不等流通截面积装配为两侧介质流量相差较大的工况提供了完美的解决方案。ARD艾瑞德板式换热器(江阴)有限公司板式换热器有AB系列、AM系列、AL系列、AP系列、AS系列等几大系列百余种板型。各种型号都有深波纹、浅波纹、大角度、小角度等,完全确保满足不同用户的需要,特殊工况可按用户需要专门设计制造。 2、流程和流道的选择流程指板式换热器内一种介质同一流动方向的一组并联流道,而流道指板式换热器内,相邻两板片组成的介质流动通道。一般情况下,将若干个流道按并联或串联的费那个是连接起来,以形成冷、热介质通道的不同组合。流程组合形式应根据换热和流体阻力计算,在满足工艺条件要求下确定。尽量使冷、热水流道内的对流换热系数相等或接近,从而得到最佳的传热效果。因为在传热表面两侧对流换热系数相等或接近时传热系数获得较大值。虽然板式换热器各板间流速不等,但在换热和流体阻力计算时,仍以平均流速进行计算。由于“U”形单流程的接管都固定在压紧板上,拆装方便。 3、压降校核在板式换热器的设计选型使,一般对压降有一定的要求,所以应对其进行校核。如果校核压降超过允许压降,需重新进行设计选型计算,直到满足工艺要求为止。 艾瑞德板式换热器(江阴)有限公司是专业生产可拆式板式换热器(PHE)、换热器密封垫(PHE GASKET)、换热器板片(PHE PLATE)并提供板式

蒸汽散热器选型计算书

散热器选型计算说明书 一、根据客户提供的工艺参数: 蒸汽压力:10kgf/cm2温度:175℃ 热空气出风温度150℃温差按15℃,闭式循环 烤箱内腔尺寸:716*1210*4000MM 风量G=6000-7000M3/H 补新风量为20% 二、选型计算: 1.满足工艺要求的总负荷 Q1=0.24Gγ(Δt)=0.24×6500×0.9×15 =21060Kcal/h Q2=0.24Gγ(Δt2)=0.24×6500×20%×1.0×125 =39000 Kcal/h 总热负荷Q=Q1+Q2=60060Kcal/h 2.根据传热基本方程式Q=KA△Tm △T m=△Tmax - △Tmin ln△Tmax/△Tmin =(100-20)-(175-150) ln(75/30) =47.4℃ 则换热面积A=Q / ψK△Tm 根据我公司产品性能及工艺要求,初选换热系数K=33Kcal/h·m2·℃ 则换热面积A=60060 / 1.0×(33×47.4) =38.4m2 设计余量取18% 则总换热面积A=45m2

根据空气阻力小,风速较低,受风面积较大的原则,初选风速V=4m/s 则所需排管受风表面积=6500 /(3600×4)=0.45m2 根据客户提供空间尺寸,推荐参数800×500mm,受风面积为: 0.4m2 所以,初选散热器换热面积为45 m2 表面管数:11根. ¢18X2.0-38不锈钢铝复合管. 排数:8排. 3.性能复核计算: 1)此散热器净通风截面积为0.4m2 2)实际风速V=6500/(3600×0.4×0.55)=8.2m/s 查表知此温度下的空气比重γ=0.95KG/M3 5)根据我公司的散热管性能曲线图,当片距为3.0mm Vr=7.8kg/ m2·s时,散热管的空气阻力h=3.6mmWg 6)该散热排管8排,其空气阻力h=3.6×8=29mmWg 此空气阻力远小于900Pa 的风压,所以,我公司所选型号: SGL-8R-11-800-Y,换热面积为45 m2, 迎风尺寸:800X500mm。符合设计要求。 以上选型供参考。 广州捷玛换热设备有限公司 2017-03-02

换热器的选型和设计指南(全)

热交换器的选型和设计指南 1 概述 (1) 2 换热器的分类及结构特点。 (1) 3 换热器的类型选择 (2) 4 无相变物流换热器的选择 (11) 5 冷凝器的选择 (13) 6 蒸发器的选择 (14) 7 换热器的合理压力降 (17) 8 工艺条件中温度的选用 (18) 9 管壳式换热器接管位置的选取 (19) 10 结构参数的选取 (19) 11 管壳式换热器的设计要点 (23) 12 空冷器的设计要点 (32) 13 空冷器设计基础数据 (35)

1 概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2 换热器的分类及结构特点。 表 2-1 换热器的结构分类

3 换热器的类型选择 换热器的类型很多,每种型式都有特定的应用围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1) 热负荷及流量大小 2) 流体的性质 3) 温度、压力及允许压降的围 4) 对清洗、维修的要求 5) 设备结构、材料、尺寸、重量 6) 价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100°C以下到 1100°C高温。此外,它还具有容量大、

热交换器的选型和设计指南(20210201114130)

热交换器的选型和设计指南内容 1 概述 2 换热器的分类及结构特点 3 换热器的类型选择 4 无相变物流换热器的选择 5 冷凝器的选择 6 蒸发器的选择 7 换热器的合理压力降 8 工艺条件中温度的选用 9 管壳式换热器接管位置的选取 10 结构参数的选取 11 管壳式换热器的设计要点 12 空冷器的设计要点 13 空冷器设计基础数据

1概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法2换热器的分类及结构特点。 3换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器, 如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1)热负荷及流量大小 2)流体的性质 3)温度、压力及允许压降的范围 4)对清洗、维修的要求 5)设备结构、材料、尺寸、重量 6)价格、使用安全性和寿命

在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安 全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。 针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现 降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型 式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的 合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术 经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到 41.5MPa ,温度可 以从-100 °以下到1100°C 高温。此外,它还具有容量大、结构简单、造价低廉、清洗方便 等优点,因此它在换热器中是最主要的型式。 特殊型式的换热器 特殊型式的换热器包括有:板式换热器、空冷器、多管式换热器、折流杆式换热器、板翅式换 热器、螺旋板式换热器、蛇管式换热器和热管换热器等。它们的使用是受设计温度和设计压 力限制的。在下图中给出了特殊型式的换热器的适用范围,可供参考。 7001 -------------------------------------------- , 600- 500- 400 300- 表3- 1特殊型式换热器的使用范围 1C 0

板式换热器选型计算书

目录 1、目录 1 2、选型公式 2 3、选型实例一(水-水) 3 4、选型实例二(汽-水) 4 5、选型实例三(油-水) 5 6、选型实例四(麦芽汁-水) 6 7、附表一(空调采暖,水-水)7 8、附表二(空调采暖,汽-水)8 9、附表三(卫生热水,水-水)9 10、附表四(卫生热水,汽-水)10 11、附表五(散热片采暖,水-水)11 12、附表六(散热片采暖,汽-水)12

板式换热器选型计算 1、选型公式 a 、热负荷计算公式:Q=cm Δt 其中:Q=热负荷(kcal/h )、c —介质比热(Kcal/ Kg.℃)、m —介质质量流量(Kg/h )、Δt —介质进出口温差(℃)(注:m 、Δt 、c 为同侧参数) ※水的比热为1.0 Kcal/ Kg.℃ b 、换热面积计算公式:A=Q/K.Δt m 其中:A —换热面积(m 2)、K —传热系数(Kcal/ m 2.℃) Δt m —对数平均温差 注:K值按经验取值(流速越大,K值越大。水侧板间流速一般在0.2~0.8m/s 时可按上表取值,汽侧 板间流速一般在15m/s 以时可按上表取值) Δt max - Δt min T1 Δt max Δt min Δt max 为(T1-T2’)和(T1’-T2)之较大值 Δt min 为(T1-T2’)和(T1’-T2)之较小值 T T1’ c 、板间流速计算公式: T2 其中V —板间流速(m/s )、q----体积流量(注意单位转换,m 3/h – m 3/s )、 A S —单通道截面积(具体见下表)、n —流道数 2、板式换热器整机技术参数表: 计压力1.0Mpa 、垫片材质EPDM 、总换热面积为9 m 2 板式换热器。 注:以上选型计算方法适用于本公司生产的板式换热器。 选型实例一(卫生热水用:水-水) Ln Δt m =

换热器的选型和设计指南全

热交换器的选型和设计指南 2换热器的分类及结构特点。...................... 3换热器的类型选择......................... 4无相变物流换热器的选择....................... 5冷凝器的选择............................ 6蒸发器的选择........................... 7换热器的合理压力降......................... 8工艺条件中温度的选用....................... 9管壳式换热器接管位置的选取..................... 10结构参数的选取.......................... 11管壳式换热器的设计要点...................... 12空冷器的设计要点........................ 13空冷器设计基础数据........................

1概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2换热器的分类及结构特点。 表2-1换热器的结构分类

3换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1)热负荷及流量大小 2)流体的性质 3)温度、压力及允许压降的范围 4)对清洗、维修的要求 5)设备结构、材料、尺寸、重量 6)价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1 管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到 41.5MPa,温度可以从-100 ° C以下到1100° C高温。此外,它还具有容量大、结构简单、造价低廉、清洗方便等优点,因此它在换热器中是最主要的型式。 3.2 特殊型式的换热器 特殊型式的换热器包括有:板式换热器、空冷器、多管式换热器、折流杆式换热器、板翅式换热器、螺旋板式换热器、蛇管式换热器和热管换热器等。它们的使用

换热器选型详解讲解

换热器选型详解 各种类型的换热器作为工艺过程必不可少的设备,如何根据不同的工艺生产流程和生产规模,设计出投资省、能耗低、传热效率高、维修方便的换热器是一项非常重要的工作。 换热器分类 按工艺功能分类 冷却器、加热器、再沸器、冷凝器、蒸发器、过热器、废热锅炉等。按传热方式和结构分类 间壁传递热量式和直接接触传递热量式,其中间壁传热式又分为管壳式、板式、管式、液膜式等其他形式的换热器。 从工艺功能选择换热器 冷却器 间壁式冷却器 ☆当传热量大时,可以选择传热面积和传热系数较大的板式换热器比较经济,但是板式换热器的使用温度一般不大于150℃,压降较大。 ☆对于压降和温度压力较高的情况,选用管壳式换热器较为合理。 ☆板翅式换热器由于翅片的作用,适用于气体物料的冷却,其使用温度一般也小于150℃。

☆空冷器适用于高温高压的工艺条件,其热物流出口温度要求比设计温度高15~20℃。 直接接触式冷却器 ☆适用于需要急速降低工艺物料的温度、伴随有吸收或除尘的工艺物料的冷却、大量热水的冷却和大量水蒸气的冷凝冷却等工况。 加热器 高温情况:当温度要求高达500℃以上时可选用蓄热式或直接火电加热等方式。 中温情况:对于150~300℃工况一般采用有机载热体作为加热介质。分为液相和气相两种。 低温情况:当温度小于150℃时首先考虑选用管壳式换热器,只有工艺物料的特性或者工艺条件特殊时,才考虑其他形式,例如热敏性物料加热多采用降膜式或波纹板式换热器。 再沸器 图1 四种再沸器类型

多采用管壳式换热器,分为强制循环式、热虹吸式和釜式再沸器三种。其设计温差一般选用20~50℃,单程蒸发率一般为10%~30%。

板式换热器选型与计算方法(DOC)

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

板式换热器选型计算

板式换热器选型计算 板式换热器是一种高效紧凑型热交换设备,它具有传热效率高、阻力损失小、结构紧凑、拆装方便、操作灵活等优点,目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、造纸、食品、城镇小区集中供热等各个行业和领域,因此掌握板式换热器的选型计算对每个工程设计人员都是非常重要的。目前板式换热器的选型计算一般分为手工简易算法、手工标准算法及计算机算法三种,以下就三种算法的特点进行简要的说明。 一、手工简易算法 计算公式:F=Wq/(K*△T) 式中F —换热面积m2 Wq—换热量W K —传热系数W/m2·℃ △T—平均对数温差℃ 根据选定换热系统的有关参数,计算换热量、平均对数温差,设定传热系数,求出换热面积。选定厂家及换热器型号,计算板间流速,通过厂家样本提供的传热特性曲线及流阻特性曲线,查出实际传热系数及压降。若实际传热系数小于设定传热系数,则应降低设定传热系数,重新计算。若实际传热系数大于设定传热系数,而实际压降大于设定压降,则应进一步降低设定传热系数,增大换热面积,重新计算。经过反复校核,直到计算结果满足换热系统的要求,最终确定换热器型号及换热面积大小。这种算法的优点是计算简单,步骤少,时间短;缺点是结果不准确,应用范围窄。造成结果不准确的原因主要是样本所提供的传热特性曲线及流阻特性曲线是一定工况条件下的曲线,而设计工况可能与之不符。此外样本所提供的传热特性曲线及流阻特性曲线仅为水―水换热系统,在使用中有很大的局限性。 以下给出佛山显像管厂总装厂房低温冷却水及40℃热水两套换热系统实例加以说明采用手工简易算法得出的计算结果与实测结果的差别:

二、手工标准算法 计算方法与步骤 (一)工艺条件 热介质 进出口温度℃Th1 Th2 流量m3/h Qh 压力损失(允许值)MPa △Ph 冷介质 进出口温度℃Tc1 Tc2 流量m3/h Qc 压力损失(允许值)MPa △Pc (二)物性参数 物性温度℃Th=(Th1+Th2)/2 Tc=(Tc1+Tc2)/2介质重度Kg/m3γh γc 介质比热KJ/kg·℃Cph Cpc 导热系数W/m·℃λh λc 运动粘度m2/s νh νc

换热器设计

换热器设计: 一:确定设计方案: 1、选择换热器的类型 两流体温度变化情况,热流体进口温度130°C,出口温度80°C;冷流体进口温度40°C,出口温度65°C。该换热器用自来水冷却柴油,油品压力0.9MP,考虑到流体温差较大以及壳程压强0.9MP,初步确定为浮头式的列管式换热器。2、流动空间及流速的确定 由于冷却水容易结垢,为便于清洗,应使水走管程,柴油走壳程。从热交换角度,柴油走壳程可以与空气进行热交换,增大传热强度。选用Φ25×2.5 mm 的10号碳钢管。 二、确定物性数据 定性温度:可取流体进口温度的平均值。 壳程柴油的定性温度为 T1=130°C,T2=80°C,t1=40°C,t2=65°C T=(130+80)/2=105(°C) 管程水的定性温度为 t=(40+65)/2=52.5(°C) 已知壳程和管程流体的有关物性数据 柴油105°C下的有关物性数据如下: ρ=840 kg/m3 密度 定压比热容C o=2.15 kJ/(kg·k) 导热系数λo=0.122 W/(m·k) 粘度μo=6.7×10-4N·s/m2 水52.5°C的有关物性数据如下: ρ=988 kg/m3 密度 i C=4.175 kJ/(kg·k) 定压比热容 i λ=0.65 W/(m·k) 导热系数 i

粘度 μi =4.9×10-4 N·s/m 2 三、计算总传热系数 1.热流量 m 0=95000(kg/h) Q 0= m 0C o Δt o =95000×2.15×(130-80)=10212500kJ/h=2836.8(kw) 2.平均传热温差 m t '?=(Δt 1-Δt 2 )/ln(Δt 1/Δt 2)=[(130-65)-(80-40)]/ln[(130-65)/(80-40)]=51.5(°C) 其中Δt 1=T 1-t 2,Δt 2=T 2-t 1。 3.水用量 W c =Q 0/(C i Δt i )=10212500/[4.175×(65-40)]=97844.3kg/h=27.18kg/s 平均温差 1 221t t T T R --= =406580 130--=2 1112t T t t P --= =40 1304065--=0.28 选择卧式冷凝器,冷凝在壳程,为一壳程四管程,查图可得t ??=0.88。 m t m t t '??=???=0.88×51.5=45.32°C 管子规格5.225?φ,L=3m 。 管束排列方式:正三角形排列。 一壳程四管程三角形管束排列方式285.2175.011==n K ,。 四、传热面积初值计算 取总传热系数K=335W/(m 2.°C) 18632 .45335108.28363 =??=?=m t K Q F m 2 一管子面积 3102031???==-ππL d F i =0.1884m 2 管子数 9871884 .01861=== F F N t 管子中心距 o d t 25.1==1.25×25=31.25mm ,取t=32mm

换热器地选型和设计指南设计(全)

目录 热交换器的选型和设计指南 1 概述 (1) 2 换热器的分类及结构特点。 (1) 3 换热器的类型选择 (2) 4 无相变物流换热器的选择 (11) 5 冷凝器的选择 (13) 6 蒸发器的选择 (14) 7 换热器的合理压力降 (17) 8 工艺条件中温度的选用 (18) 9 管壳式换热器接管位置的选取 (19) 10 结构参数的选取 (19) 11 管壳式换热器的设计要点 (23) 12 空冷器的设计要点 (32) 13 空冷器设计基础数据 (35)

1 概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2 换热器的分类及结构特点。 表 2-1 换热器的结构分类

3 换热器的类型选择 换热器的类型很多,每种型式都有特定的应用围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1) 热负荷及流量大小 2) 流体的性质 3) 温度、压力及允许压降的围 4) 对清洗、维修的要求 5) 设备结构、材料、尺寸、重量 6) 价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100°C以下到 1100°C高温。此外,它还具有容量大、

换热器的选型原则

换热器选型时需要考虑的因素很多,主要是流体的性质;压力、温度及允许压降的范围;对清洗、维修的要求;材料价格;使用寿命等。 目前应用^广泛的是列管式换热器,常用的分固定管板式和浮头式两种。一般要根据介质的性质、流量、腐蚀性、允许压降、操作温度与压力、结垢情况和检修清洗等要素决定选用列管换热器的型式。从经济角度看,只要工艺条件允许,应该优先选用固定管板式换热器。但遇到以下两种情况时,应选用浮头式换热器。①壳壁与管壁的温差超过70℃;壁温相差50~70℃。而壳程流体压力大于0.6MPa时,不宜采用有波形膨胀节的固定管板式换热器。②壳程流体易结垢或腐蚀性强时不能采用固定管板式换热器。 换热管规格选择 ①管子的外形:列管换热器的管子外形有光滑管和螺纹管两种。一般按光滑管设计。当壳程膜系数低,采取其他措施效果不显著时,可选用螺纹管,它能强化壳程的传热效果,减少结垢的影响。 ②管子的排列方式:相同壳径时,采用正三角形排列要比正方形排列可多排布管子,使单位传热面积的金属耗量降低。一般壳程流体不易结垢或可以进行化学清洗的场合下,推荐用正三角形排列。必须进行机械清洗的场合,则采用正方形排列。 ③管子直径:管径越小换热器越紧凑、越便宜。但管径越小换热器压降越大。为了满足允许的压力降一般选用Ф19mm的管子。对于易结垢的物料,为方便清洗,采用外径为25mm的管子。对于有气液两相流的工艺物流,一般选用较大的管径。直径小的管子可以承受更大的压力,

而管壁较薄,有利传热;相同的壳径,可以排较多的小管子,使传热面积增大,单位传热面积的金属耗量降低。所以,在管程结垢不是很严重,又允许压力降较高的情况下,采用Φ19mm×2mm的管子是合理的。 ④管长:无相变换热时,管子较长,传热系数增加。在相同传热面积时,采用长管管程数较少,压力降小,而且每平方米传热面积的性价比也高。但是,管子过长给制造带来困难。壳径较大的换热器采用较长的管子可降低单位传热面积的金属耗量,更为经济。因此,一般选用管长4~6m。对于大面积或无相变的换热器可以选用8~9m的管长。管心距:管心距小、设备紧凑,但将引起管板增厚、清洁不便、壳程压降增大,一般选用范围为管外径的1.25~1.5倍。

板式换热器选型所需的参数及原则

1板式换热器选型所需要的参数主要有:两种介质的成份、进出口的温度、流量。如果不能提供流量的必须要提供换热量,如果用于供热行业的,没有流量也可以提供换热面积及所用于的地区(因为地区不一样,单位平米的供热量也不一样)。 2设计的原则是经济合理。以达到换热效果为最终目的,由于现在的市场竞争非常的激烈,同等条件下,往往价格是很多业主考虑是否采用哪家供应商的最主要标准。在这种情况下,面积和型号的选择显得尤为重要。 3必须对本公司产品要相当的了解,对每一种型号的参数和使用范围都要烂熟于心。作为一个合格的技术人员,必须要对所有的型号都非常的熟悉,不仅仅是常用的型号,在一些特殊的工况中老型号反而占有很大的优势。 4不能依赖设计软件,软件的选型都有很大的局限性。型号比较固定,如果养成这样的习惯,将无法适应目前市场多变的环境。

艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。 ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚 /Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

最新板式换热器选型手册

1、板式换热器本身原因 很多用户在购买换热器时只提供换热面积,没有换热量、介质流量、进出口温度等具体数据,结果导致所购买的板式换热器尽管型号面积没错,但流程组合不合理,板式换热器也达不到预想的效果,即使在此基础上加大面积也没用。 2、系统配置原因 板式换热器仅仅起到热量转换作用,遵循能量导恒定律,即热侧放走的热量等于冷侧吸收的热量,很多情况下,热侧来自于发热系统的热量没有足够的冷侧冷却水带走,如水量不够、水温不够,导致热侧温度下不来,如果是这种原因,换热器再大也没用。 艾瑞德依靠英国ARD艾瑞德板式换热器(江阴)有限公司的先进换热技术和生产制造技术,并结合英国ARD艾瑞德板式换热器(江阴)有限公司独有的A 系列板型,致力于ARD艾瑞德板式换热器(江阴)有限公司板式换热器在中国市场的推广和应用。且用户自己独特的选型软件根据不同工况测算出最适合的换热器面积,使其达到最优换热效果。

艾瑞德板式换热器(江阴)有限公司是专业生产可拆式板式换热器(PHE)、换热器密封垫(PHE GASKET)、换热器板片(PHE PLATE)并提供板式换热器维护服务(PHE MAINTENANCE)的专业换热器厂家。艾瑞德(ARD艾瑞德板式换热器(江阴)有限公司)在全球设有多个标准化工厂及库存中心,服务和销售网点遍布全球。 ARD艾瑞德板式换热器(江阴)有限公司拥有世界上最先进的设计和生产技术以及最全面的换热器专业知识,一直以来ARD艾瑞德板式换热器(江阴)有限公司致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,目前已有超过50,000台的板式换热器良好地运行于各行业,ARD艾瑞德板式换热器(江阴)有限公司已发展成为可拆式板式换热器领域的全球领导者。 ARD艾瑞德板式换热器(江阴)有限公司同时也是板式换热器配件(换热器板片和换热器密封垫)领域全球排名第一的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、日阪/HISAKA、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰 /DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号的板式

换热器的选型和设计指南全)

热交换器的选型和设计指南

1概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。 2换热器的分类及结构特点。 表2-1换热器的结构分类

换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1)热负荷及流量大小 2)流体的性质 3)温度、压力及允许压降的范围 4)对清洗、维修的要求 5)设备结构、材料、尺寸、重量 6)价格、使用安全性和寿命 在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 3.1管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100°C以下到1100°C高温。此外,它还具有容量大、结构简单、造价低廉、清洗方便等优点,因此它在换热器中是最主要的型式。

3.2特殊型式的换热器 特殊型式的换热器包括有:板式换热器、空冷器、多管式换热器、折流杆式换热器、板翅式换热器、螺旋板式换热器、蛇管式换热器和热管换热器等。它们的使用是受设计温度和设计压力限制的。在下图中给出了特殊型式的换热器的适用范围,可供参考。 表3-1特殊型式换热器的使用范围 3.3特殊型式的换热管 特殊型式的换热管包括有低翅管、高通量管(UCC)、Thermoexcell-E、C(日立)及槽管等。 3.4常用换热器 下表中概括地描述了常用换热器的型式及应用条件和特点。 表3-4换热器的类型及应用

换热器的设计选型与使用

换热器的设计选型与使用 李 红 (新疆钢铁设计院 乌鲁木齐830022) 摘 要 针对几种间壁传热换热器的特点及使用情况作以阐述,以供在换热器设计选型作比较。 关键词 换热器 设计选型 使用 能源是当前人类面临的重要问题之一,能源开发及转换利用已成为各国的重要课题,而换热器是能源利用过程中必不可少的设备,几乎一切工业领域都要使用,化工、冶金、动力、交通、航空与航天等部门应用尤为广泛。近几年由于新技术发展和新能源开发利用,各种类型的换热器越来越受到工业界的重视,而换热器又是节能措施中较为关键的设备,因此,无论是从工业的发展,还是从能源的有效利用换热器的合理设计、制造、选型和运行都具有非常重要的意义。 1 换热器的分类 1.1 直接传热式换热器。一种不需传热壁面,由冷流体与热流体直接接触进行换热的操作过程的换热器,此类换热器常用于工业生产中。 1.2 间壁传热式换热器。冷、热流体通过管子、板等壁面进行热量交换的传热操作过程的换热器,是最普通的也最常用的换热器,冷、热流体都是流体,可以是空气、烟气、蒸汽、水。这是本文重点进行讨论的换热器类型。 1.3 蓄热式换热器。系间歇传热,在废热再生器中是切实可行有效的回收废热的方式,常被用于回收燃烧气体的废热以及蒸汽等用量不均时作为调节手段。 2 几种换热器的特点及使用 在实际设计选型中,往往是已知高温流体与低温流体的两侧进出口温度,在做工艺设计选型时,需要考虑的是有尽可能小的换热面积下,有尽可能大的换热速率,以及较低的设备造价及施工费。另外,在操作运行及维护清洗较方便的前提下考虑换热器的设计选型。 传热基本方程式: Q=UAΔt K cal/h; 式中:U为传热系数,K cal/m2.h.℃;A为传热面积,m2;Δt为通过两种流体边界层的平均温度。 换热器的给热系数h,K cal/m2.h.℃和流速u,m/ s有如下关系: 管程给热系数h t: 层流区 (Re≤2100) h t∝u0.33 t 过渡流区(2100≤Re≤10000)h t∝u0.33~0.8 t 紊流区 (Re≥10000)h t∝u0.8t 壳程给热系数h g: 壳程流体因垂直流过管束,所以流型较乱,层流、 紊流区没有明显的区别:h t∝u0.55 g 对应的压力降ΔP、kg/cm2,管程和壳程大体相同: 层流、过渡流区 ΔP∝u1.0t 紊流区ΔP∝u1.8t 从上式可以看出,在一定的流速下,雷诺数越大,传热系数越大,同时,压力降也越大。 2.1 管壳式换热器。管壳式换热器是最常用的普通结构,它包括:固定管板式换热器、U型管壳式换热器、带膨胀节式换热器、浮头式换热器、分段式换热器、套管式换热器等。 固定管板式换热器具有结构简单、重量轻、造价低等优点;缺点就是由于热膨胀而引起管子拉弯。U 型管壳式换热器就是克服此缺点将管子作成“U”型,一端固定另一端活动,使得换热器不受膨胀的影响,结构较简单,重量轻,其缺点是不能机械清洗、管子不便拆换、单位容量及单位质量的传热量低,适用于温差大、管内流体介质比较干净的场合。 带膨胀节式换热器可解决膨胀问题,用膨胀接头的结构,故适用温差大的流体和高压流体,因为可将接头拆下来进行清洗,所以可处理易结垢流体,而对低压气体则不适宜,但其缺点就是制造复杂。 浮头式管壳换热器,其浮头不与外壳相连,可自由伸缩,这样既解决了热膨胀的问题,也方便清洗,检修时可将管芯抽出即可。 62新 疆 有 色 金 属 第1期

板式换热器选型

板式换热器选型计算书 目录 1、目录 1 2、选型公式 2 3、选型实例一(水-水) 3 4、选型实例二(汽-水) 4 5、选型实例三(油-水) 5 6、选型实例四(麦芽汁-水) 6 7、附表一(空调采暖,水-水)7 8、附表二(空调采暖,汽-水)8 9、附表三(卫生热水,水-水)9 10、附表四(卫生热水,汽-水)10 11、附表五(散热片采暖,水-水)11 12、附表六(散热片采暖,汽-水)12

板式换热器选型计算 1、选型公式 a 、热负荷计算公式:Q=cm Δt 其中:Q=热负荷(kcal/h )、c —介质比热(Kcal/ Kg.℃)、m —介质质量流量(Kg/h )、Δt —介质进出口温差(℃)(注:m 、Δt 、c 为同侧参数) ※水的比热为1.0 Kcal/ Kg.℃ b 、换热面积计算公式:A=Q/K.Δt m 其中:A —换热面积(m 2)、K —传热系数(Kcal/ m 2.℃) Δt m —对数平均温差 K 值表: 介质 水—水 蒸汽-水 蒸汽--油 冷水—油 油—油 空气—油 K 2500~4500 1300~2000 700~900 500~700 175~350 25~58 注:K值按经验取值(流速越大,K值越大。水侧板间流速一般在0.2~0.8m/s 时可按上表取值,汽侧板 间流速一般在15m/s 以内时可按上表取值) Δt max -Δt min T1 Δt max Δt min Δt max 为(T1-T2’)和(T1’-T2)之较大值 Δt min 为(T1-T2’)和(T1’-T2)之较小值 T2’ T1’ c 、板间流速计算公式: q T2 A S n 其中V —板间流速(m/s )、q----体积流量(注意单位转换,m 3 /h – m 3 /s )、 A S —单通道截面积(具体见下表)、n —流道数 2、板式换热器整机技术参数表: BR0.05 BR0.1 BR0.25 BR0.3 BR0.35 BR0.5 BR0.7 BR1.0 BR1.35 最高使用压力Mpa 2.5 使用温度范围℃ -19~200 装机最大换热面积 5 15 30 65 80 120 220 350 500 最大流量m 3 /h 10 25 40 120 150 250 430 650 1730 标准接口法兰DN 25 40 65 80 100 125 150 250 350 单板换热面积m 2 0.051 0.109 0.238 0.308 0.375 0.55 0.71 1.00 1.35 平均流道截面积m 2 0.000494 0.000656 0.00098 0.00118 0.00119 0.001691 0.002035 0.0286 0.004 设备参考质量Kg 87 290 485 870 980 1800 2800 3700 7200 型号说明:BR0.3-1.0-9-E 表示波形为人字形、单板公称换热面积0.3m 2 、设计压力1.0Mpa 、垫片材质EPDM 、总换热面积为9 m 2 板式换热器。 注:以上选型计算方法适用于本公司生产的板式换热器。 选型实例一(卫生热水用:水-水) Ln Δt m = V= 型 号 设 备 参 数

相关文档
最新文档