第七章框架结构配筋计算

第七章框架结构配筋计算
第七章框架结构配筋计算

第七章 框架结构配筋计算

7.1 框架梁配筋计算

7.1.1截面尺寸

考虑现浇板的共同作用,梁的计算截面按如下规定计算:

(1)在负弯矩作用下按矩形截面计算:边跨: b ×h 0=300mm ×515mm (h 0=h-35) 中跨: b ×h 0=300mm ×265mm (h 0=h-35) (2)在正弯矩作用下按T 形截面计算:边跨: 'f b ×h 0=1500mm ×515mm (h 0=h-35)

中跨: 'f b ×h 0=1000mm ×265mm (h 0=h-35)

7.1.2材料强度

混凝土等级: C25 f c =11.9N/mm 2 t f =1.27 N/mm 2 钢筋等级: 纵向受力筋 HRB335 y f =300 N/mm 2

箍筋 HPB235 y f =210 N/mm 2

7.1.3配筋率

纵向受力筋: 支座截面 min ρ=0.25%(55t y f f >?=0.233%) max ρ=2.5%

跨中截面 min ρ=0.2%(55t y f f >?=0.191%) 箍筋: 沿梁全长 sv ρ=0.26t yv f f ?=0.00157

加密区 应满足规范要求。

7.1.4计算公式

(1)正截面抗弯

200

s s s

c y s M M

A f bh f h αγγ=→=→= (7-1) 经判断'''0()2

f c f f h M f b h h ≤-,故'f b b =,计算T 形截面时只需将上公式中的b 换成'f b 即可。

(2)斜截面抗剪

①无震组合下: 1

000.7 1.25sv CS t yv

nA V f bh f h S

=+

(7-2) 截面条件:00.7CS t V f bh = (7-3)

②有震组合下:

0010.42 1.25sv b t yv RE A V f bh f h s γ??=

+????

(7-4) ()01

0.2b c c RE

V f bh βγ=

截面条件: (7-5)

7.1.5具体配筋计算

(1)抗弯承载力计算 ① 梁纵筋配筋计算

表7-1 梁配筋计算表

表7-3 梁配筋计算表

表7-5 梁配筋计算表

② 梁纵筋配筋率验算

因为第五层梁的配筋最少,故只需验算第五层梁的配筋率就行

边跨: 支座:509

1000.31300550ρ=

?%=%>0.25%? 满足

跨中:509

1000.31300550ρ=?%=%>0.20%? 满足

中跨: 支座:509

1000.57300300ρ=?%=%>0.25%? 满足

跨中:308

1000.34300300

ρ=?%=%>0.20%? 满足

(2)框架梁抗剪计算

① 调整剪力b V 计算

框架梁抗剪计算中,设计剪力取组合m ax V 和调整剪力b V 的较大值,b V 计算如下:

()

l

r vb b b b Gb n M M V V l η??+??=+????

(7-6) ()10.52Gb G k k n V g q l γ??

=+????

(7-7)

RE γ=0.85 vb η=1.1 G γ=1.2

表7-6 梁端调整剪力b V

三层框架结构工程设计综合实例讲解

建筑工程 设计说明 一、建筑层数:三层结构形式:框架结构 建设总高度:12.45m 安全等级:二级 室内外高差:450mm 屋面防水等级:二级 耐火等级:二级设计抗震烈度:8度 二、1.尺寸单位:图中尺寸单位除注明者外,柱高以米计,其他均以毫米计。 2.室内±0.0001高出室外0.45m,±0.000相应的绝对标高放线时由甲方与施工单位现场确定。 3.墙体材料:250厚混凝土砌块。 4.地面排水:a.各有水房间找1%坡,坡向地漏。 b.入口处平台向室外找坡1%,找坡后完成面高处低于室内完成面20mm。 5.门窗:a.外门窗坐樘中。 b.内门坐樘开启方向为平开。 c.所有开启扇处均加以设纱扇、纱窗。 6.油漆维护:所有外露铁件均刷银粉漆,做法图集。 7.构造柱做法详见图16。 8.防潮层做法:在墙体0.060处铺设20厚1∶2水泥砂浆加5%防水粉。 三、建筑构造用料做法: 1.地面:地16#陶瓷地砖地面用于卫生间外地面见详细做法 地26#陶瓷地砖卫生间地面用于卫生间见详细做法 2.楼面:楼16#陶瓷地砖楼面用于除卫生间外楼面 楼26#陶瓷地砖卫生间楼面用于卫生间 楼36#PVC塑胶卷材楼面(做详见说明)用于净化区部分楼面 3.踢脚:踢脚16#.面砖踢脚用于除卫生间外楼地面部分 4.墙裙:裙16#釉面砖墙裙用于卫生间部分 5.室内墙面:内墙16#水泥砂浆墙面用于除踢脚墙裙以外部分 6.天棚:顶16#.彩钢板吊顶吊顶采用50厚彩钢复合析,内填不燃材料 顶26#.水泥砂浆顶棚要求耐火等级不低于1.0小时,用于净化区,吊顶高2.2m。 7.外墙面:外墙16#涂料外墙面见立面图 涂料16#乳胶漆 8.屋面:屋16#.高聚改性沥青卷材防水层面 9.台阶:台16#.地砖面层台阶

浅谈midas FEA在双孔涵洞结构计算中的应用

浅谈midas FEA在双孔涵洞结构计算中的应用 发表时间:2016-07-15T16:19:19.160Z 来源:《基层建设》2016年8期作者:黄德胜 [导读] 文中通过工程实例详细介绍了midas FEA结构计算软件对青年运河大边塘排洪涵洞的设计过程,对类似工程有很强的参考性。 摘要:为保证排洪涵洞处堤防安全,采用midas FEA结构计算软件对排洪涵洞进行建模计算,分析结构内力与变形,结合现场施工及后期运行管理经验,保证不影响涵洞功能与安全的前提下,进一步优化结构设计,确保涵洞经济、安全、适用。文中通过工程实例详细介绍了midas FEA结构计算软件对青年运河大边塘排洪涵洞的设计过程,对类似工程有很强的参考性。 关键词:青年运河;灌区;midas;FEA;排洪涵洞 1 引言 湛江市雷州青年运河灌区原设计标准低、配套设施不完善、管理手段落后、工程维护资金严重不足等,经过近50年的运行,工程设施老化损坏、渠道渗漏严重、险情不断,工程效益逐年衰减,1997年起该灌区被列为实施续建配套的全国重点大型灌区之一。2011年1月湛江市雷州青年运河灌区续建配套与节水改造工程(运河部分)开工建设至今。 东运河1#(大边塘)排洪涵为拆除原址重建建筑物,位于东运河桩号4+434,于2014年1月-2月施工,尚未完工,2014年5月20日发生决堤损毁。 2014年6月17日至6月27日期间,广东省水利厅对湛江市雷州青年运河灌区续建配套与节水改造工程进行了稽查,2014年7月24日,广东省水利厅发文《广东省水利厅关于湛江市雷州青年运河灌区续建配套与节水改造工程稽查整改意见的通知》(粤水农水【2014】26号),文中提出:对全部渠下涵进行补充渗流计算和涵洞洞径相关计算,全面复核其安全性,进而完善方案。 2 工程概况 湛江市雷州青年运河灌区是自鹤地水库引水灌溉的大(2)型灌区,灌区位于广东省西南部的雷州半岛北部,北以九洲江南岸为界,南至南渡河北岸,东北至化州鉴江西岸及吴川塘缀河之西,西南至北部湾,东南濒临广州湾。灌区原设计可灌溉面积200万亩,现状实际灌溉面积100.1万亩,工程同时承担廉江市区、遂溪县城、湛江市赤坎区、麻章区及霞山区生活及工业用水供水任务。灌区涵盖湛江市及茂名市所属的9个县、市、区,分别为:廉江市、遂溪县、雷州市、吴川市、湛江市区的麻章区、赤坎区、坡头区、霞山区和茂名市辖的化州市。该灌区建成于1960年,灌区工程由运河部分(包括主河、四联河、东海河、西海河、东运河、西运河)、灌溉流量1m3/s及以上的干、支渠道和灌溉流量1m3/s以下支、斗、农、毛渠等工程组成。六条运河共长277.659km,恢复灌溉面积大于1万亩的干、支渠54条,总长700.54km。 3 工程地质条件 根据初步设计阶段勘察成果,参考临近位置钻孔资料,东运河大边塘排洪涵洞处分布地层主要有第四系人工填土层(Q4s)、第四系冲积层(Q4al)、第四系中更新统北海组洪冲积层(Q2pal)、第四系湛江组河湖沉积层(Q1mc)组成。各土层力学指标详见表1~2。 4 设计基本情况 原排洪涵洞位于雷州青年运河灌区的东运河中上游,桩号为4+434。 原排洪涵洞与东运河相交,近似垂直穿过东运河底部。原排洪涵洞的设计规模为2(孔)×2.0m(净宽)×1.9m(净高),为浆砌石侧墙,钢筋砼盖板涵,涵洞进水口高程与河底高程基本持平,功能是排洪涝。 原排洪涵洞的集水面积为12.0km2,属于小范围的平原区,田面高程在23.7m~29.4m(珠基,以下同),河长5.0km,比降1.8‰。

涵洞力学计算书很全面

2米净跨径.686米填土暗盖板涵整体计算 一.盖板计算 1.设计资料 汽车荷载等级:城-B级;环境类别:Ⅱ类环境; 净跨径:L =2m;单侧搁置长度:0.35m;计算跨径:L=2.3m;填土高:H=.686m; 盖板板端厚d 1=30cm;盖板板中厚d 2 =30cm;盖板宽b=0.99m;保护层厚度c=4cm; 混凝土强度等级为C30;轴心抗压强度f cd =11.73Mpa;轴心抗拉强度f td =1.04Mpa; 主拉钢筋等级为HRB400;抗拉强度设计值f sd =330Mpa; 主筋直径为20mm,外径为22mm,共11根,选用钢筋总面积A s =0.003456m2 盖板容重γ 1=25kN/m3;土容重γ 2 =21kN/m3 根据《公路圬工桥涵设计规范》(JTG D61-2005)中7.0.6关于涵洞结构的计算假定:盖板按两端简支的板计算,可不考虑涵台传来的水平力 2.外力计算 1) 永久作用 (1) 竖向土压力 q=γ 2 ·H·b=21×.686×0.99=14.26194kN/m (2) 盖板自重 g=γ 1·(d 1 +d 2 )·b/2/100=25×(30+30)×0.99/2 /100=7.43kN/m 2) 由车辆荷载引起的垂直压力(可变作用) 根据《公路桥涵设计通用规范》(JTG D60-2004)中4.3.4的规定: 计算涵洞顶上车辆荷载引起的竖向土压力时,车轮按其着地面积的边缘向下做30°角分布。当几个车轮的压力扩散线相重叠时,扩散面积以最外面的扩散线为准

根据《公路桥涵设计通用规范》(JTG D60-2004)中4.3.1关于车辆荷载的规定:车辆荷载顺板跨长 L a =0.2+2·H·tan30=0.2+2×.686×0.577=0.99m 车辆荷载垂直板跨长 L b =1.9+2·H·tan30=1.9+2×.686×0.577=2.69m 车轮重 P=280kN 车轮重压强L p=P/L a /L b =280/0.99/2.69=104.83kN/m2 3.内力计算及荷载组合 1) 由永久作用引起的内力 跨中弯矩 M 1 =(q+g)·L2/8=(14.26+7.43)×2.32/8=14.34kNm 边墙内侧边缘处剪力 V 1=(q+g)·L /2=(14.26+7.43)×2/2=21.69kN 2) 由车辆荷载引起的内力 跨中弯矩 M 2=p·L a ·(L-L a /2)·b/4=104.83×0.99×(2.30-0.99/2)×0.99/4=46.44kNm 边墙内侧边缘处剪力 V 2=p·L a ·b·(L -L a /2)/L )=104.83×0.99×0.99×(2.00-0.99/2)/2.00=77.43kN 3) 作用效应组合 根据《公路桥涵设计通用规范》(JTG D60-2004)中4.1.6关于作用效应组合的规定:跨中弯矩 γ0M d =0.9(1.2M 1 +1.4M 2 ) =0.9×(1.2×14.34+1.4×46.44)=74.00kNm 边墙内侧边缘处剪力 γ0V d =0.9(1.2V 1 +1.4V 2 ) =0.9×(1.2×21.69+1.4×77.43)=120.98kN 4.持久状况承载能力极限状态计算

城市道路箱涵结构计算书

L p 图1-1一、设计资料 (一)概况:***道路工程经过凤凰水库溢洪道处设置箱涵,箱涵净跨L 0=8.0米,净高h 0=10.5米,路基红线范围内长49米,箱涵顶最大填土厚度H=3.6米,填土的内摩擦角φ为24°,土体密度γ1=20.2KN/m 3,设箱涵采用C25混凝土(f cd =11.5MPa )和HRB335钢筋(f sd =280MPa)。桥涵设计荷载为城-A 级,用车辆荷载加载验算。结构安全等级二级,结构重要性系数γ0=1.0。地基为泥质粉砂岩,[σ0]=380kPa ,本计算书主要内容为结构设计与地基应力验算。 (二)依据及规范 1、《城市桥梁设计荷载标准》(CJJ77-98) 2、《公路桥涵设计通用规范》(JTG D60-2004) 3、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 4、《公路桥涵地基与基础设计规范》(JTGD63-2007) 二、设计计算 (一)截面尺寸拟定(见图1-1) 箱涵过流断面尺寸由水利部门提供,拟定顶板、底板厚度δ=100cm (C 1=50cm ) 侧墙厚度 t =100cm (C 2=50cm ) 故 L P =L 0+t=8+1=9m h p =h 0+δ=10.5+1=11.5m (二)荷载计算 1、恒载 恒载竖向压力 P =γ1H+γ2δ=20.2×3.6+25×1 =97.72kN/m 2 恒载水平压力 顶板处: e p1=γ1Htan 2(45o -φ/2) =20.2×3.6×tan 2(45o -24o /2)=30.67 kN/m 2 底板处:e p2=γ1(H +h )tan 2(45o -φ/2)=20.2×(3.6+12.5)×tan 2 (45o -24o /2) =137.15kN/m 2 2、活载 城-A 级车辆荷载轴重按《城市桥梁设计荷载标准》4.1.3条确定,参照《公 路桥涵设计通用规范》第4.3.4条2款,计算涵洞顶车辆荷载引起的竖向土压力,车轮扩散角30o 。 1) 先考虑按六车道(7辆车)分布,横向折减系数0.55 一个汽车后轮横向分布宽 >1.3m/2 0.60/2+3.6 tan30o =2.38m >1.8m/2 故,两列车相邻车轴有荷载重叠,按如下计算横向分布宽度

箱涵模板支架计算书

箱涵模板支架计算书 一、方案选择 1、通道涵施工顺序 通道涵分三次浇筑,第一次浇至底板内壁以上500mm,第二次浇至顶板以下500mm,第三次浇筑剩余部分。 2、支模架选择 经过分析,本通道涵施工决定采用满堂式模板支架,采用扣件式钢筋脚手架搭设。 顶板底模选用18㎜厚九层胶合板,次楞木为50×100,间距为300㎜,搁置在水平钢管?48×3.5上,水平钢管通过直角扣件把力传给立柱?48×3.5,立柱纵、横向间距均为500×500㎜,步距 1.8m。侧壁底模为18㎜九层胶合板,次楞木50×100,间距为200㎜,主楞采用?48×3.5钢管,间距为400mm。螺栓采用?12,间距400mm。满堂支架图如下:

具体计算如下。 二、顶板底模计算 顶板底模采用18mm厚胶合板,木楞采用50×100mm,间距为300mm。 按三跨连续梁计算 1.荷载 钢筋砼板自重:0.6×25×1.2=18KN/㎡(标准值17.85KN/㎡) 模板重:0.3×1.2=0.36KN/㎡(标准值0.30 KN/㎡) 人与设备荷载:2.5×1.4=3.50KN/㎡ 合计:q=21.9KN/㎡ 2.强度计算 弯矩:M==0.1×21.9×0.32=0.197KN·m q: 均布荷载 l:次楞木间距 弯曲应力:f ==(0.197×106)/(×1000×182)=3.64 N/mm2 M: 弯矩 W: 模板的净截面抵抗矩,对矩截面为bh2 b: 模板截面宽度,取1m h: 模板截面高度,为18mm 因此f<13.0 N/mm2 ,符合要求。 3.挠度计算

W==(0.677×(17.85+0.3)×3004)/(100×9.5×103×1000×183/12) < =0.216㎜<300/400=0.75㎜,符合要求. q:均布荷载标准值 E: 模板弹性模量,取9.5×103 I:模板的截面惯性矩,取 三、顶板下楞计算 楞木采用50×100mm,间距为300,支承楞木、立柱采用?48×3.5钢管,立柱间距为500mm。 楞木线荷载:q=21.9×0.3=6.57KN/㎡(标准值18.15×0.3=5.45N/mm2) (1)、强度计算 弯矩:M==0.1×6.57×0.52=0.164KN·m : 楞木截面宽度 弯曲应力:f ==(0.164×106)/(×50×1002)=1.968N/mm2 因此f<13.0 N/mm2,符合要求。 (2)、挠度计算 W==(0.677×(17.85+0.3)×5004)/(100×9.5×103×1000×183/12) < =0.194㎜<500/400=1.25㎜,符合要求. 四、支承顶板楞木水平钢管计算 顶板支承钢管线荷载:q=25.28×0.5=12.64KN/㎡(标准值

老庄结构之框架实例

第一个实例的问题汇总 一、结构布置时框架柱两侧需有框架梁拉结 特别是边跨开洞、有楼电梯间等情况,更需要控制扭转变形框架刚度需要均衡分布 单跨框架

框架布置局部砖混 二、结构计算时的偶然偏心 1、《高规》 2、对于《抗规》中的建筑结构,《抗规》没有明确规定在计算单向水平地震作用时是否应该计算偶然偏心的影响,抗规文中根本没有“偶然偏心”一词,仅5.2.3条文说明中出现:

SATWE软件尚不具备将边榀框架乘以增大系数来考虑水平地震作用扭转影响的功能,故这种增大系数在实际工程中应用起来并不方便。 抗规条文说明3.4.2: 李国胜在《多高层钢筋混凝土结构设计中疑难问题的处理及算例》3.13条明确指出:高层建筑结构水平地震作用下的最大位移,应在单向水平地震作用下,不考虑偶然偏心的影响,采用考虑扭转耦联振动影响的振型分解反应谱法进行计算,并应采用刚性楼板假定。 三、梁柱偏心和柱与节点的偏心

四、框架梁贯通面钢筋的选择 而次梁和楼板是共同承担竖向荷载的不承担地震水平力,无需粗钢筋贯通,架立箍筋即可 梁截面高度:1、窗户;2、连续梁1/15~1/18;3、配筋率2%以下;4、配筋不超过2排;

次梁4米以下跨度用200,6米以下跨度用250,8米左右跨度用250或300(注意面积配箍率);框架梁6米左右跨度可用250,8米左右跨度可用300或350(400)(四肢箍)。 五、纵筋配筋率 非框架梁 最小配筋率用h,最大配筋率 六、箍筋 框架梁

注意纵筋直径的8倍; Psv=肢数x单肢面积/(截面宽x箍筋间距) 七、梁架立钢筋 八、柱 1、刚度需要; 2、轴压比 加密区与纵筋直径有联系

柱配筋计算

柱配筋计算 1)如果随意放大梁的配筋,有可能会导致梁的配筋率大于1%,此时按照规范要求是需要进行双排布置钢筋的,这时候由于as发生了变化,as相比原来配筋计算时用到的as增大,导致受压区高度h0变小,这样实际上可能会导致增加的钢筋量有可能达不到用新的as计算的钢筋量,可能造成计算配筋结果偏小。 2)如果随意在计算配筋基础上加大支座处的梁受拉配筋会导致梁端计算的截面相对受压区高度发生变化,有可能无法满足规范要求的相对界限受压区高度,或者构造配筋要求,这样就无法保证梁构件的延性。原来计算出的受拉、受压面积是按照对应抗震等级要求下的构造面积及相对界限受压区高度双控的结果。 3)如果随意在计算配筋基础上加大支座处的梁受拉配筋会导致梁端部实际受弯承载力变大,对于强柱弱梁的实现不利。软件中强柱弱梁的处理是按照柱端部地震作用组合下的弯矩乘以对应抗震等级下的调整系数,得到柱计算配筋。实际上梁的实际受弯承载力还应该包括在翼缘范围内板钢筋的作用,仅按照直接放大柱端组合弯矩调整系数方式很难实现强柱弱梁,如果再增大梁端受拉钢筋,由于柱钢筋不变,会进一步导致强柱弱梁更难以实现。

4)如果随意在计算配筋基础上加大支座处梁受拉配筋会导致梁端部实际受弯承载力变大,这也不利于梁端塑性铰机制的出现。有可能由于钢筋的增加导致梁端部实际受弯承载力大于跨中,出现梁出现塑性铰时跨中先于支座部位。规范中对梁配筋要求梁跨中弯矩不小于按照简支梁计算的跨中弯矩设计值的50%,也是期望在竖向荷载下,梁跨中受弯承载力高于支座部位。如果加大梁端计算钢筋,规范这条有可能就名存实亡了。 5)如果随意在计算配筋基础上加大支座处梁受拉配筋,增大到当实际配筋大于2%时,梁端加密区的最小直径要增大2mm,因此,如果增加钢筋量有可能会导致对箍筋的配置有一定的影响,这容易被设计师忽略掉。

箱涵计算书

已知计算条件: 涵洞的设计安全等级为三级,取其结构重要性系数:.9 涵洞桩号= K16+170 箱涵净跨径= 3米 箱涵净高= 3.1米 箱涵顶板厚= .6米 箱涵侧板厚= .6米 板顶填土高= 0米 填土容重= 18千牛/立方米 钢筋砼容重= 25千牛/立方米 混凝土容重= 22千牛/立方米 水平角点加厚= 0米 竖直角点加厚= 0米 涵身混凝土强度等级= C25 钢筋等级= II级钢筋 填土内摩擦角= 30度 基底允许应力= 250千牛/立方米 顶板拟定钢筋直径= 18毫米 每米涵身顶板采用钢筋根数= 6根 底板拟定钢筋直径= 20毫米 每米涵身底板采用钢筋根数= 5根 侧板拟定钢筋直径= 18毫米 每米涵身侧板采用钢筋根数= 5根 荷载基本资料: 土系数 K = 1.04 恒载产生竖直荷载p恒=17.46千牛/平方米恒载产生水平荷载ep1=.82千牛/平方米 恒载产生水平荷载ep2=26.62千牛/平方米 汽车产生竖直荷载q汽=583.33千牛/平方米 汽车产生水平荷载eq汽=15.66千牛/平方米 计算过程 重要说明: 角点(1)为箱涵左下角,角点(2)为箱涵左上角,角点(3)为箱涵右上角,角点(4)为箱涵右下角 构件(1)为箱涵顶板,构件(2)为箱涵底板,构件(3)为箱涵左侧板,构件(4)为箱涵右侧板 1>经过箱涵框架内力计算并汇总,结果如下(单位为:千牛.米):a种荷载(涵顶填土及自重)作用下:

涵洞四角节点弯矩和构件轴力: MaA = MaB = MaC = MaD = -1 / (K + 1) * P * Lp^2 / 12 = -9.299244kN.m Na1 = Na2 = 0kN Na3 = Na4 = P * Lp / 2 = 31.428kN a种荷载(汽车荷载)作用下: MaA = MaB = MaC = MaD = -1 / (K + 1) * M顶板端部 = -35.19036kN.m Na1 = Na2 = 0kN Na3 = Na4 = V顶板端部 = 91kN b种荷载(侧向均布土压力)作用下: 涵洞四角节点弯矩和构件轴力: MbA = MbB = MbC = MbD = -K / (K + 1) * P * hp^2 / 12 = -.474149kN.m Nb1 = Nb2 = P * Lp / 2 = 1.517kN Nb3 = Nb4 = 0kN c种荷载(侧向三角形土压力)作用下:

多层住宅框架结构设计实例与分析

多层住宅框架结构设计实例与分析 摘要:本文基于现行规范,结合近年来参与的油田住宅项目工程实例,利用概念设计,对多层住宅框架结构的梁、柱等重要结构构件设计以及电算过程中需注意的问题进行了总结探讨,为以后类似的工程设计积累经验。 关键字:现浇板共同作用梁铰接轴压比剪跨比 Abstract:Based on the present regulation, in this paper, according to the oil field house project construction sample, through the concept design, it is necessary to conclude and discuss in the multi-layer house frame construction beam, column design and zooming process for references. Key Words: cast plate combined action; beam pin joint; axel pressure ratio; snip span ratio 一、概述 胜南社区南苑新区二期住宅,以90型2单元为例,七层框架结构,建筑物总高度为19.8m,总建筑面积为2668m2。抗震设防烈度为七度、设计地震分组为第二组,设计基本地震加速度值为0.10g。场地土类型为软弱场地土,场地类别为III类。钢筋混凝土结构抗震等级:三级;地基基础设计等级:丙级;结构的设计使用年限:50年。二、梁设计 在框架梁的弹性受力分析和承载力计算时,是否考虑现浇板的共同作用效应?如果和对梁端跨进行调整?下面结合本工程从概念设计的角度做粗浅的探讨,以利于工程的优化设计。 2.1关于现浇板共同作用的考虑 目前框架结构均采用梁板整体现浇,在水平荷载作用下,通过框架梁和现浇板的共同受弯来约束柱顶的转动,使柱子产生自上而下的反弯曲。由于梁板的共同作用,不仅提高了框架梁的截面刚度,还提高了梁端负弯矩承载能力。在现浇板共同作用下,对梁的设计采取以下措施进行调整: 2.1.1为实现“强柱弱梁”的目的,形成具有延性的结构,梁端弯矩在SATWE 程序的调整信息下调整,梁端弯矩的条幅系数取0.85; 2.1.2 本工程现浇楼板采用刚性楼板假定,考虑到现浇楼板对梁抗扭的有利作用,对梁的扭矩进行折减,折减系数取0.4; 2.1.3 梁和楼板连成一体按照“T”形截面梁工作,因此对梁的刚度进行放大,边框架梁刚度放大系数取1.2,中间框架梁取1.4.

梁板柱配筋计算书

截面设计 本工程框架抗震等级为三级。根据延性框架设计准则,截面设计时,应按照“强柱弱梁”、“强剪弱弯”原则,对内力进行调整。 框架梁 框架梁正截面设计 非抗震设计时,框架梁正截面受弯承载力为: M u 1 s f c bh02(9-1-1)抗震设计时,框架梁正截面受弯承载力为: M u E 1 s f c bh02 / RE(9-1-2)因此,可直接比较竖向荷载作用下弯矩组合值M 和水平地震作用下弯矩组合值M 乘以抗震承载力调整系数后RE的大小,取较大值作为框架梁截面弯矩设计值。即 M Max M u , RE M uE(9-1-3)比较 39 和表 43 中的梁端负弯矩,可知,各跨梁端负弯矩均由水平地震作用 控制。故表 39 中弯矩设计值来源于表 43,且为乘以RE后的值。 进行正截面承载力计算时,支座截面按矩形截面计算;跨中截面按T 形截面计算。 T 形截面的翼缘计算宽度应按下列情况的最小值取用。 AB 跨及 CD 跨: b f 1 3l0 =7.5/3=2.5m; b f b s n0.3 [ 4.20.5 (0.25 0.3)] 4.2m b f b12h f0.3 12 0.3 1.86m h f h00.1 , 故取b f =1.86m 判别各跨中截面属于哪一类T 型截面:一排钢筋取 h0=700-40=660mm,

两排钢筋取 h0=700-65=635mm, 则 f c b f h f h0h f 2=14.3×1860×130×(660-130/2) =2057.36kN.m 该值大于跨中截面弯矩设计值,故各跨跨中截面均属于第一类T 形截面。BC 跨: b f 1 3l0 =3.0/3=1.0m; b f b s n =0.3+8.4-0.3=8.4m; b f b12h f 0.312 0.131.86m ; h f h00.1, 故取b f =1m 判别各跨中截面属于哪一类T 型截面: 取h0=550-40=510mm, 则 f c b f h f h0 h f 2=14.3 ×1000×130×( 510-130/2)=827.26kN.m 该值大于跨中截面弯矩设计值,故各跨跨中截面均属于第一类T 形截面。各层各跨框架梁纵筋配筋计算详见表 49 及表 50。 表格 49 各层各跨框架梁上部纵筋配筋计算 层号 AB 跨BC 跨CD 跨 -MABz-MABy-MBCz-MBCy-MCDz-MCDy 负弯矩 M ( kN·m)-213.6-181.8-188.86-188.86-181.18-213.6 M bh0.1140.0970.1010.1010.0970.114 1 f c0 s2 1(12s ) 0.1210.1020.1070.1070.1020.121 4 0.9710.9490.9470.9470.9490.971 s 0. 5 1(12s ) 配筋 As(m m2)925.84803.52839.35839.35803.52925.84实配钢筋3C203C203C203C20 3 负弯矩 M ( kN·m)-370.84-319.2-347.48-347.48-319.92-370.84

双孔箱涵计算书

园中路双孔箱涵计算书 一、设计资料 箱涵净跨径L 。=2X 4m 净高Ho =3.6m ,箱涵顶面铺装沥青砼 0.05m+C40细石砼层0.2m (平 均),两端填土 r=18KN/m 3 ,①=30°,箱涵主体结构砼强度等级为 C30,箱涵基础垫层采用 C10 砼,受力钢筋采用 HRB335钢筋,地基为粉质粘土,汽车荷载为城 -B 。 J /I vr 1 1 二、 设计依据 《公路钢筋砼及预应力砼桥涵设计规划》 (JTG D62-2004 ) 三、 内力计算 1、荷载计算 1)恒载 恒载竖向压力 p 1=r 1 ? H+r 2?3 =24 X (0.05+0.2)+25 X 0.4=16KN/m 2 恒载水平压力: a 1=a 2+2H=0.25+2X 0.25 X tan30 ° =0.54m b 1=b 2+2H=0.6+2X 0.25 X tan30 ° =0.89m 60 车辆荷载垂直压力 q 车= = —— =124.84KN/m 2 a b] 0.54 0.89 2 车辆荷载水平压力 e 车=q 车?tan (45 ° - Y /2)=124.84 3) 作用于底板垂直均布荷载总和 q 1=1.2q 恒1+1.4q 车1 q 车 1=124.84 KN/m q 1=1.2q 恒计 1.4q 车 1=1.2 X 25+1.4 X 124.84=204.78 KN/m 顶板处:p 2= 1 H tan 2 (45 2) 2 =1.5KN/m 底板处:p 3= 1 (H 2)活载 2 h) tan (45 —)=27.87KN/m X 0.333=41.61KN/m q 恒 1=p 1 ++ r H (2d 3 dj B =16+25 3.6(2 °.3 °.3) 8.9 =25KN/m

框架结构经典工程案例

蓬皮社艺术文化中心 设计者解释他的设计意图时说:“我们把建筑看作同城市一样的、灵活的、永远变动的框架。……它们应该适应人的不断变化的要求,以促进丰富多样的活动。 平面分析 建筑表面面积:约90,000平方米;体积:430,000立方米; 楼层高度:共8层,其中6层为地上建筑;共166米长,42米高,60米宽;室内面积:每层7,500平方米的巨大平台;2000年1月1日维修后重新开放,增加了8,000平方米的空间; 整座建筑占地7500平方米,建筑面积共10万平方米。 顶层平面图 总平面图

整座建筑共分为四大部分,分别为:公共图书馆,建筑面积约16000平方米;现代艺术博物馆,约18000平方米;工业美术设计中心,除音乐和声响研究中心单独设置外,其他部分集中在一个长166米、宽44.8米、高7米的巨大空间。它的每一 层面积都有7500平方米,整座建筑上下均衡,占地l公顷,由13根立柱和84根长48米、重72吨的钢梁构成桁架,由28根圆形钢管柱支承。 交通流线分析 外部交通流线图 蓬皮杜中心前院,占据了总建筑面积的一半,这座被誉为意大利复兴时期,理想城市回想的广场,今天已经成为了巴黎人享受午后阳光的理想场所之一。在广场上人们没有任何的限制,这是属于他们自己的免费空间。他和意大利西耶那的康波大广场异曲同工,有一个平缓的坡度,吸引着路人慢慢走到入口。建筑师认为“把面积全都用上是错误的,真正的城市空间是前院,正是前院使蓬皮杜中心的成功成为可能。有了前院,人们才有城市归属感。入口是城市的延续,而前院则展示了城市的生活,正是前院把人们引向了蓬皮杜。

建筑是把通常设在内部的功能部分全部设在建筑外面,每一层面向前院的方位,都设有宽阔的人行走廊,外层有大型电梯,通过半透明的大管道,参观者能够上到顶楼,就像是在骑游乐场的木马。 剖面分析 建 筑 物 的 底 层 是 一 个 大通间,天花上也同样布满了蓝色和黄色的管道,空间上部的各色指示牌,已暗示着时代的转型,给人一种新颖与激动的印象。3层以上是现代艺术展览馆部分,进入展厅后,迎面就是一幅巨大的黑白画面,这种大大小小的黑色圆盘组合画象征着机器时代的特征,在白色塑料板的背后还打着灯光,使得画面对比更加强烈,而且具有立体感。转向右面的对景是一幅红绿相间对比强烈的抽象图案,它似乎在说明当代社会和艺术是丰富多彩的,艺术家的

新规范双孔箱涵计算书

双孔箱涵计算书 园中路双孔箱涵计算书一、设计资料 箱涵净跨径L。=2×4m,净高H。=3.6m,箱涵顶面铺装沥青砼0.05m+C40细石砼层0.2m 3(平均),两端填土r=18KN/m,Φ=30?,箱涵主体结构砼强度等级为C30,箱涵基础垫层 采用C10砼,受力钢筋采用HRB335钢筋,地基为粉质粘土,汽车荷载为城-B。 二、设计依据 《公路钢筋砼及预应力砼桥涵设计规划》(JTG D62-2004) 三、内力计算 1、荷载计算 1)恒载 2 恒载竖向压力p=r?H+r?δ=24×(0.05+0.2)+25×0.4=16KN/m211 恒载水平压力: ,2,2顶板处:p=,H,tan(45,) =1.5KN/m ,212 ,2,2底板处:p= =27.87KN/m ,(H,h),tan(45,),312 2)活载 a=a+2H=0.25+2×0.25×tan30?=0.54m 12 b=b+2H=0.6+2×0.25×tan30?=0.89m 12 G60,2 车辆荷载垂直压力q===124.84KN/m车0.54,0.89a,b11 22 车辆荷载水平压力e=q?tan(45?-Ψ/2)=124.84×0.333=41.61KN/m车车 3)作用于底板垂直均布荷载总和q=1.2q+1.4q恒车111 25,3.6,(2,0.3,0.3)rH(2dd),,,34q=p++=16+=25KN/m 恒11B8.9

q=124.84 KN/m 车1 q=1.2q+1.4q=1.2×25+1.4×124.84=204.78 KN/m 恒车111 9 4)作用于顶板垂直均布荷载总和q=1.2q+1.4q恒车222 q= 16KN/m 恒2 q=124.84 KN/m 车2 q=1.2q+1.4q=193.98 KN/m 恒车222 5)作用于侧墙顶部的水平均布荷载总和q=1.2q+1.4q恒车333 q= 1.5KN/m 恒3 q=41.61 KN/m 车3 q=1.2q+1.4q=60.05 KN/m 恒车333 6)作用于侧墙底部的水平均布荷载总和q=1.2q+1.4q恒车444 q= 27.87KN/m 恒4 q=41.61 KN/m 车4 q=1.2q+1.4q=91.7KN/m 恒车444 2、恒载固端弯矩计算 22q,L16,4.31恒2FM,,,,,,24.65KN,m AC恒1212 FFM,,M,24.65KN,m 恒恒CAAC 22q,L25,4.31恒1FM,,,,38.52KN,m BD恒1212 FFM,,M,,38.52KN,m 恒恒DBBD 2222q,L(q,q),L1.5,4(27.87,1.5),42恒3F2恒4恒3M,,,,,16.06KN,m AB恒12301230 2222q,L(q,q),L1.5,4(27.87,1.5),42恒3F2恒4恒 3M,,,,,,,,23.10KN,mBA恒122012203、活载固端弯矩计算 22q,L124.84,4.31车2FM,,,,,,192.36KN,m AC车1212

箱涵计算书

目录 1 计算依据与基础资料 (1) 1.1 工程概况 (1) 1.1.1截面尺寸 (1) 1.1.2填土情况 (1) 1.2 标准与规范 (1) 1.2.1 标准 (1) 1.2.2 规范 (1) 1.3 主要材料 (2) 1.4 设计要点与参数 (2) 1.5 计算软件 (2) 2 计算模型简介 (3) 2.1 计算模型 (3) 2.2 荷载施加 (3) 3 箱涵结构计算 (4) 3.1 荷载组合 (4) 3.2 箱涵受力计算 (4) 3.2.1 箱涵弯矩 (4) 3.2.2 箱涵剪力 (5) 3.2.3 箱涵轴力 (6) 3.2.4 箱涵配筋验算 (7) 4地基承载力验算 (32)

4.1荷载计算 (32) 4.2地基应力 (32)

1 计算依据与基础资料 1.1 工程概况 道路在桩号K1+000处设置两孔6x3.5m箱涵,箱涵结构中心线与道路中线的法线逆交13.5度,箱涵全长46m 1.1.1截面尺寸 净跨径:6m 净高:3.5m 顶板厚:0.6m 底板厚:0.65m 侧墙厚:0.6m 倒角:0.15x0.15m 基础:15cmC15素混凝土垫层;50cm浆砌片石垫层; 基础宽度:14.8m 1.1.2填土情况 箱涵覆土厚度:1.729m 土的内摩擦角:30° 填土容重:18KN/m3 1.2 标准与规范 1.2.1 标准 桥梁结构安全等级为一级; 设计荷载:汽车荷载:公路-I级,人群荷载:根据《桥梁设计准则》要求。 跨径:2孔6.0x3.5m钢筋砼箱涵; 箱涵总长:46m; 横坡:根据道路设计进行设置。 地震烈度:7度; 环境条件Ⅰ类; 地震荷载:地震基本烈度为7度,动荷载峰值加速度0.1g,Ⅱ类场地。 1.2.2 规范 《公路桥涵设计通用规范》(JTG D60-2004); 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004);

四层框架结构设计计算书实例汇总

多层框架设计实例 某四层框架结构,建筑平面图、剖面图如图1所示,试采用钢筋混凝土全现浇框架结构设计。 1.设计资料 (1)设计标高:室内设计标高±0.000相当于绝对标高4.400m,室内外高差600mm。(2)墙身做法:墙身为普通机制砖填充墙,M5水泥砂浆砌筑。内粉刷为混合砂浆底,纸筋灰面,厚20mm,“803”内墙涂料两度。外粉刷为1:3水泥砂浆底,厚20mm,马赛克贴面。 (3)楼面做法:顶层为20mm厚水泥砂浆找平,5mm厚1:2水泥砂浆加“107”胶水着色粉面层;底层为15mm厚纸筋面石灰抹底,涂料两度。 (4)屋面做法:现浇楼板上铺膨胀珍珠岩保温层(檐口处厚100mm,2%自两侧檐口向中间找坡),1:2水泥砂浆找平层厚20mm,二毡三油防水层。 (5)门窗做法:门厅处为铝合金门窗,其它均为木门,钢窗。 (6)地质资料:属Ⅲ类建筑场地,余略。 (7)基本风压:(地面粗糙度属B类)。 (8)活荷载:屋面活荷载,办公楼楼面活荷载,走廊楼面活 荷载。 图1 某多层框架平面图、剖面图 2.钢筋混凝土框架设计 (1)结构平面布置如图2所示,各梁柱截面尺寸确定如下。

图2 结构平面布置图 边跨(AB、CD)梁:取 中跨(BC)梁:取 边柱(A轴、D轴)连系梁:取 中柱(B轴、C轴)连系梁:取 柱截面均为 现浇楼板厚100mm。 结构计算简图如图3所示。根据地质资料,确定基础顶面离室外地面为500mm,由此求得底层层高为4.3m。各梁柱构件的线刚度经计算后列于图3。其中在求梁截面惯性矩时考虑 到现浇楼板的作用,取(为不考虑楼板翼缘作用的梁截面惯性矩)。 边跨(AB、CD)梁:

10框架柱的配筋计算10教程

框架柱的配筋计算 选取第一层柱进行计算和配筋: 1.柱的正截面承载力计算 柱的配筋采用对称式(以利于不同方向的地震作用),为便于施工,柱子纵向钢筋绑扎接头,应避开箍筋加密区。搭接、锚固及截断见混凝土结构施工整体平面整体表示方法制图规则和构造详图,03G101—1。 柱截面尺寸为550550mm mm ?,'35s s a a mm ==,055035515h mm =-=。 (1)确定钢筋和混凝土的材料强度及几何参数 采用30C 混凝土,2300/y f N mm =,214.3/c f N mm =,采用335HRB 级钢筋, '2300/y y f f N mm ==,21.43/t f N mm =,1 1.0α=,0.55b ξ=。 a. A 轴线外柱 查柱组合表可以知道A 轴线外柱 max 129.72M KN m =?,max 1322.85N KN =。 (2)判断大小偏心受压 0.50.514.35505502162.88b c N f A KN ==???= 0.52162.88 1.64 1.01322.851322.85 b c N f A N ===>,截面破坏时为大偏心受压破坏。 原始偏心距 3 0129.7210981322.85 M e mm N ?=== 附加偏心距 550 18.32030 30 a h e mm ===<,取20a e mm = 初始偏心距 i 09820118a e e e mm =+=+= 1max max 0.52162.88 1.64 1.0132 2.85 b c N f A N N ξ= ===>,取1 1.0ξ= 0 2 1.150.01 1.150.01 6.0 1.09 1.0l h ξ=-=-?=>,取2 1.0ξ= 底层框架柱的计算长度为 00 1.03300 33006.05550 l H l h == ==>所以需要考虑偏心距增大系数220120 1 11()1 6.0 1.0 1.0 1.11118 14001400515i l e h h ηξξ=+ =+???=?? /2 1.11118550/235370.98i s e e h a mm η=+-=?+-= (3)求s A 和's A

箱涵结构计算书

箱涵结构计算书 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、示意图: 二、基本设计资料 1.依据规范及参考书目: 《水工混凝土结构设计规范》(SL 191-2008),以下简称《规范》 《建筑地基基础设计规范》(GB 50007—2002) 《水工钢筋混凝土结构学》(中国水利水电出版社) 《公路桥涵设计通用规范》JTJ D60-2004,以下简称《通规》 《涵洞》(中国水利水电出版社出版,熊启钧编著) 中国建筑工业出版社《高层建筑基础分析与设计》(宰金珉、宰金璋)2.几何信息: 箱涵孔数n = 1 孔净宽B = 2.900 m 孔净高H = 2.500 m 底板厚d1 = 0.500 m 顶板厚d2 = 0.500 m 侧墙厚d3 = 0.400 m 加腋尺寸t = 0.250 m 3.荷载信息: 埋管方式:上埋式 填土高Hd = 3.200 m 填土种类:密实砂类土、硬塑粘性土内摩擦角φ = 36.0 度水下内摩擦角φ = 32.0 度 填土容重γ = 22.000 kN/m3填土浮容重γs = 18.000 kN/m3 汽车荷载等级:公路-Ⅱ级 4.荷载系数: 可变荷载的分项系数γQ1k= 1.20 可变荷载的分项系数γQ2k= 1.10 永久荷载的分项系数γG1k= 1.05 永久荷载的分项系数γG2k= 1.20 构件的承载力安全系数K = 1.35

5.材料信息:

混凝土强度等级: C15 纵向受力钢筋种类: HRB335 纵筋合力点至近边距离as = 0.040 m 最大裂缝宽度允许值ωmax = 0.250 mm 6.荷载组合: 7.荷载组合下附加荷载信息: 8.约束信息: 第1跨左侧支座约束:铰支 第1跨右侧支座约束:铰支 9.地基土参数: 按弹性地基上的框架进行箱涵内力计算。 地基模型:弹性半空间模型 地基土的泊松比μo = 0.200 地基土的变形模量Eo = 20.00 MPa 三、荷载计算 1.垂直压力计算 顶板自重q v2= d2×25 = 12.500kN/m 垂直土压力计算公式如下: q v1 = K s×γ×H d 工况:正常使用,顶板上的垂直土压力q v1 = 84.053kN/m 作用于顶板上的垂直压力qt = q v1+q v2 = 96.553kN/m 2.侧向水平土压力计算 水平土压力计算公式如下: q h= γ×H×tan2(45°-φ/2) 3.汽车荷载 由《通规》第4.3.1条规定并考虑车辆荷载的相互作用得到:q q = 8.676 kN/m,顶板承受汽车荷载 汽车荷载产生的对称作用于侧墙两侧水平土压力为: q qh = q q×tan2(45°-φ/2) = 2.25 kN/m 4.荷载单位及方向规定 垂直、平行集中荷载单位:kN 弯矩单位:kN·m 均布荷载、三角形、倒三角形等线性分布荷载单位:kN/m

《框架结构》——案例

第二单元形状与结构 5、框架结构 教学目标:1、认识实际生活中的框架结构,了解框架结构的特点。 2、认识三角形的稳定性,掌握用三角形加强框架的方法。了解斜杠的“拉” 和“推”的作用。 3、设计、制作一个可以支撑重物的框架结构,培养学生动手能力。 教学用具:一次性木筷、橡筋、剪刀、图文资料 教学过程: 一、导入新课 1、展示各种框架结构的图片,问:你们认识这些是什么建筑吗?这些建筑在构造上有什么共同的特点? 2、这种骨架式构造叫框架结构。今天我们就来研究框架结构。 二、认识框架结构的特点 1、谈话:你们还知道哪些框架结构的物体?这些框架起了什么作用?(如果改成实体的结构会怎样?) 学生回答。(能支撑起物体,花费的材料又少) 2、提问:观察框架中最小的格子是什么形状的?为什么大都做成三角形? 学生根据已有知识经验进行猜测。 三、研究简单框架 1、实践体会 ⑴利用筷子捆三角形框架和长方形框架 ⑵观察它们受到力的作用时有什么不同? ⑶哪一个容易变形? ⑷可以把长方形框架加固吗? 2、根据要求分组操作,并作好各种形状框架的记录。 3、思考:⑴增加的斜杆起什么作用? (起到“拉”“推”的作用,使框架不变形) ⑵为什么巨大的框架中都有三角形?(三角形最稳定) 四、做一个坚固的正方体框架 1、思考:我们如何制作一个坚固的正方体框架呢? 2、讲述:制作一个较复杂的结构,应当先画草图,计算材料。运用我们的数学知识,计算需要多少横杆、竖杆、斜杆? 学生画草图,计算需要多少材料。 3、提问:做一个坚固的正方体框架要多少根横杆?多少根竖杆?多少根斜杆?它们的长短一样吗? 学生汇报计算结果。 4、思考:从节约材料方面考虑,哪些地方最需要斜杆,哪些地方不一定需要斜杆? 学生思考并交流。 5、学生分组制作,教师巡回指导。 6、提问:每根斜杆起什么作用?框架中有多少个三角形? 学生举例说明斜杆的加固作用。 7、比一比,哪组的正方体框架的承重最多,用的材料最少。

相关文档
最新文档