无线通信信道均衡技术的研究讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
论文题目:无线通信信道均衡技术的研究
摘要
在移动通信领域中,码间干扰始终是影响通信质量的主要因素之一。为了提高通信质量,减少码间干扰,在接收端通常采用均衡技术抵消信道的影响。由于信道响应是随着时间变化的,通常采用自适应均衡器。自适应均衡器能够自动的调节系数从而跟踪信道,成为通信系统中一项关键的技术。本篇论文在对无线通信信道进行研究的基础上,阐述了信道产生码间干扰的原因以及无码间干扰的条件,介绍了时域均衡的原理。深入研究了均衡器的结构和自适应算法,在均衡器的结构中主要介绍了2种自适应均衡器结构即线性横向均衡器和判决反馈均衡器,并对这几种结构进行了比较。对于系数调整算法主要介绍了常用的几种算法,包括LMS算法、盲均衡常用的恒模算法(CMA),并讨论了它们各自的优缺点。最后选用线性横向均衡器结构与上述2种系数调整算法,利用MATLAB 进行仿真,并对结果进行分析与比较,实验结果为CMA算法整体较LMS算法好。
在移动通信领域中,码间干扰始终是影响通信质量的主要因素之一。为了提高通信质量,减少码间干扰,在接收端通常采用均衡技术抵消信道的影响。由于信道响应是随着时间变化的,通常采用自适应均衡器。自适应均衡器能够自动的调节系数从而跟踪信道,成为通信系统中一项关键的技术。本篇论文在对无线通信信道进行研究的基础上,阐述了信道产生码间干扰的原因以及无码间干扰的条件,介绍了时域均衡的原理。深入研究了均衡器的结构和自适应算法,在均衡器的结构中主要介绍了2种自适应均衡器结构即线性横向均衡器和判决反馈均衡器,并对这几种结构进行了比较。对于系数调整算法主要介绍了常用的几种算法,包括LMS算法、盲均衡常用的恒模算法(CMA),并讨论了它们各自的优缺点。最后选用线性横向均衡器结构与上述2种系数调整算法,利用MATLAB进行仿真,并对结果进行分析与比较,实验结果为CMA算法整体较LMS算法好。关键字:均衡器LMS CMA MATLAB
第一章绪论 (3)
第二章信道、码间干扰及均衡技术简介 (5)
第三章移动通信中均衡算法的研究 (6)
第四章均衡器的仿真与实现 (10)
第五章总结 (10)
通常信道特性是一个复杂的函数,它可能包括各种线性失真、非线性失真、交调失真、衰落等。同时由于信道的迟延特性和损耗特性随时间做随机变化,因此,信道特性往往只能用随机的过程来进行描述。例如,在蜂窝式移动通信中,电磁波会因为碰撞到建筑物或者其他物体而产生反射、散射、绕射,此外发射端和接收端还会受到周围环境的干扰,从而产生时变现象,其结果为信号能量会不止一条路径到达接收天线,我们称之为多径传播。数字信号经过这样的信道传输后,由于受到了信道的非理想特性的影响,在接收端就会产生码间干扰(ISI),使系统误码率上升,严重情况下使系统无法继续正常工作。理论和实践证明,在接收系统中插入一种滤波器,可以校正和补偿系统的特性,减少码间干扰的影响。这种起补偿作用的滤波器称为均衡器。校正可以从时域和频域两个不同的角度来考虑:频域均衡是利用可调滤波器的频率特性来弥补实际信道的幅频特性和群延时特性,使包括均衡器在内的整个系统的总频率特性满足无码间干扰传输条件。时域均衡是从时间响应的角度考虑,使包括均衡器在内的整个传输系统的冲击响应满足无码间干扰的条件。频域均衡满足奈奎斯特定理的要求,仅在判决点满足无码间干扰的条件相对宽松一些。随着数字信号的处理理论和超大规模集成电路的发展,时域均衡器已成为当今高速数字通信中所使用的主要方法。调整滤波器抽头系数的方法有手动调整和自动调整。如果接收端知道信道特性,例如信道冲击响应或频域响应,一般采用简单的手动调整方式。由于无线通信信道具有随机性和时变性,即信道特性事先是未知的,信道响应是时变的,这就要求均衡器必须能够实时地跟踪通信信道的时变特性,可以根据信道响应自动调节抽头系数,我们称这种可以自动调整滤波器抽头系数的均衡器为自适应均衡器。 1.2国内(外)研究现状均衡技术最早应用于电话信道,由于电话信道频率特性不平坦和相位的非线性引起时间的弥散,使用加载线圈的均衡方法来改进传送语音用的双绞线电缆的特性。最常用于均衡的线性滤波器是一个横向滤波器,称为线性均衡。有两种常用的方法确定均衡器的抽头系数:迫零(ZF)准则和最小均方误差(MMSE)准则。研究表明,线性均衡器对于像固定电话这样的信道来说性能良好,因此这种算法被广泛应用到各种码间干扰不是很严重的场合。然而随着移动通信技术的发展,这种均衡算法的弱点逐渐暴露出来。因此人们把研究的重点放在了
实现简单、性能较好的非线性均衡器上。判决反馈均衡器(DFE)和最大似然序列估计(MLSE)就是两种非线性均衡器。判决反馈均衡器包括一个从功能上讲反馈滤波器用于从当前估计值中除去由先前被检测符号引起的那部分符号间干扰。而最大似然序列估计(MLSE)方法实质就是在极大似然序列估计的基础上采用自适应信道估计器为序列检测提供信道信息。因此这两种非线性均衡方法与线性均衡方法相比其性能有很大的改善。由于在很多系统中衰落信道是随机时变的,故需要研究自适应地跟踪信道时变特性的均衡器,这促进了自适应均衡技术的发展。基于训练序列的自适应均衡器最早在二十世纪六十年代提出。
传统的自适应均衡技术往往使用导频训练信号,即在传输的数据中加入一个时隙,在此时隙中传输一个在接收端已知的训练信号,然后根据自适应算法,在接收端调整均衡器,使均衡器的输出是与已知的参考训练最相近的匹配。其技术己经被用在很多数字通讯系统中,例如:高速率电话系统,卫星通信系统,数字蜂窝移动通信系统等。至今广泛应用的自适应算法有最小均方(LMS)算法和盲均衡算法(CMA)等,他们的收敛特性和均衡性能己经被人们深入的研究。目前常见的自适应均衡器结构有格形结构、横向结构和网络结构(神经网络均衡器)。基于训练序列的自适应均衡方法的不足是传输训练序列占用了宝贵的信道容量,降低了系统的传输效率。因此二十世纪八十年代以来,无需训练序列的盲均衡技术开始得到迅速的发展。现在出现的典型的盲均衡算法如下:基于Bussagang技术的盲均衡算法、基于高阶统计量的盲均衡算法、基于二阶矩的盲均衡算法[8]等。盲均衡的优点是可以降低发送训练序列所增加的额外开销,适用于不可能发送训练序列的情况;而其缺点是需要较多的观测数据,收敛速度较慢。近年来,半盲均衡算法也引起了人们的极大研究兴趣。半盲均衡就是同时利用盲方法所用的信息和来自已知符号的信息来完成信道均衡的方法。典型的无线通信系统中一般都会发送一些已知信号用作信道估计和同步的训练数据,或作为分隔突发数据的保护间隔,为了不显著降低系统的性能,嵌入的数据都不是太长。这种情况下,传统的基于训练序列的均衡算法没有足够长的信号序列可用,而应用纯盲均衡又有些浪费这些数据信息。半盲均衡和识别算法集成了基于训练序列的算法和纯盲算法的优点,可以很好地应用于这类通信系统中,克服了两种算法分别独立使用