盾构推进技术控制(实际经验分享)

盾构推进技术控制(实际经验分享)
盾构推进技术控制(实际经验分享)

一、测量人员

1、法面

法面指的是与隧道轴线垂直的一个平面,实际施工中若管片法面与隧道法面重合,盾构机与轴线夹角较小的情况下,盾构机千斤顶作用在管片环面上的推力是垂直和均匀的,这样可以减小径向分力,从而减小管片错台和破损,在盾构机上下坡及左右转弯时,保持一定的法面超前量,利于盾构姿态调整、管片上浮以及盾尾间隙的控制,通过实际测量每一环管片的法面,跟理论法面对比,然后通过贴片调整法面偏差是很有必要的,所以要求跟班测量人员必须测量每一环管片的法面,及时告知盾构司机及工班长法面偏差,通过贴片及调整C 块位置纠正管片法面。

坡度及转弯半径不一样,法面超前量也不一样,目前隧道以22‰的坡度下坡,半径800米左转,就需要保持法面上长及右长,经计算得知,目前需保持上长13.2cm,右长4.5mm,当实际测出的法面与该数据有偏差时,就需要调整。

法面要求一环一测,并形成资料。

2、侧滚

侧滚是指盾构机本体或管片向左或者向右旋转,当侧滚角度较大时,会造成管片扭转、盾构超挖及姿态偏差等一系列问题,一般来说当侧滚值超过20mm时,要反转刀盘或者调整千斤顶分区油压进行

右对称的两根千斤顶,测量千斤顶之间的高差来确定侧滚值,按照经验数据,当高差超过2cm时要进行调整。

这就需要测量人员将侧滚数据及时告知盾构司机来进行调整。

侧滚数据要求每班一测,并形成记录。

3、盾构机控制画面上显示的盾体倾角值与测量画面上显示的坡度偏差值不对应,需要测量人员定期人工复核盾构机实际倾角,并形成记录。盾构机控制画面上显示的侧滚值与测量画面上显示的侧滚角是否对应,也需定期进行人工复核。

4、姿态表上数据要求补充完善,目前仅仅只有姿态数据,其他全是空白。

5、倒九环数据要求每班一测。

6、要求所有测量数据真实有效。

二、盾构司机

1、操作要点

⑴盾构机要平稳推进,每一环姿态调整不要过急、过大,每一环姿态的调整量控制在3~5mm。

⑵盾构机与轴线的垂直坡度偏差不要大于3‰,水平角度偏差不要大于0°10′19″。

⑶姿态调整时,对应分区千斤顶力差不要超过30﹪,力差过大容易造成管片受力不均,从而发生错台、碎裂。

⑷出土量尽量控制在理论出土量的97%~98%。

⑸转弯时水平姿态尽量保持在偏左或偏右2cm左右,左转弯时姿态偏左,右转弯时姿态偏右,直线段时尽量靠近轴线。

2、姿态调整

⑴垂直姿态调整

姿态调整不要过于频繁。

在与轴线偏差不大于3‰的情况下,不需要进行姿态调整,平稳推进即可,推进过程中需注意盾尾间隙,在间隙不允许的情况下,优先保证间隙。

在下坡推进时,为防止因为盾构自重栽头,一般盾首应比盾尾

高5mm左右,保持一个抬头的趋势。

这种情况下姿态需调整,把握几个原则:

①当盾构机与轴线坡度偏差超过3‰或盾尾偏离轴线15mm时进行调整;

②每环纠偏量控制在3~5mm(1.2‰~2‰);

③按照规范,纵坡最大纠偏量:盾构推进后实际纵坡–已成隧道管片纵坡。

⑵水平姿态调整

直线段调整:

当盾构机与轴线水平夹角不大于0°10′19″度时,不需要进行姿态调整,保持平推即可。

这种情况下姿态需调整,把握几个原则:

①当盾构机与轴线角度偏差超过0°10′19″度或盾尾偏离轴线15mm时进行调整;

②每环纠偏量控制在3~5mm(45″~1′15″);

③按照规范,平面最大纠偏量:盾构与管片允许的水平夹角×

两腰对称的千斤顶的中心距。

曲线段调整:

曲线段掘进时,盾构机盾尾贴近设计轴线,盾首偏离轴线进行

三、技术人员

时刻关注隧道质量问题,观察管片有无错台及破损情况,分析原因,并及时跟工班长、盾构司机协商解决。

掘进指令注意要点:

⑴指令上要注明需保持的法面超前量;

⑵掘进速度给定范围值,如30~50mm;

⑶注明目前穿越地质及地面上方管线、建筑物情况;

⑷在即将进入竖曲线时,根据竖曲线半径,通知工班长提前贴片进行调整;

⑸根据现场错台情况,注明管片拼装时需外翻还是内翻,外翻及内翻部位;

⑹注明贴片部位。

四、工班长

1、管片拼装前,盾尾积水及杂物要清理干净;

2、管片拼装前,弹性密封垫上面泥土需清理干净;

3、时刻关注盾尾间隙,通知盾构司机进行姿态调整或者通过贴片、调整C块位置进行调整;

4、分析造成管片错台成因,观察已脱出盾尾管片有无外翻或者内翻现象,在拼装时可以考虑预先对管片进行外翻或者内翻;

5、因弹性密封垫较厚,两环管片经千斤顶压缩后,除密封垫压实外,环缝之间仍有较大间隙,这也是造成管片外翻、内翻错台的一个原因,在拼装时考虑在环缝之间粘贴较厚的传力衬垫来较小错台;

6、螺栓与螺栓孔壁之间有一定活动量,这是造成错台的另一个原因,可以考虑在螺栓上套上PVC管来减少螺栓活动量;

7、千斤顶顶在管片上时,同时顶在弹性密封垫上,因密封垫较厚,千斤顶靴板与管片环缝之间形成夹角,考虑在千斤顶顶在环缝的位置上粘贴超过弹性密封垫厚度的传力衬垫或者其他东西来减小夹角,拼装下一环管片时撕掉。

盾构质量控制要点

第一章盾构施工质量控制要点 1.1 盾构掘进施工 1.1.1 盾构设备制造质量,必须符合设计要求,整机总装调试合格,经现场试掘进50?100m距离合格后方可正式验收。 1.1.2 盾构组装时的各项技术指标应达到总装时的精度标准,配套系统应符合规定,组装完毕经检查合格后方可使用,盾构使用应经常检查、维修和保养。 1.1.3 盾构掘进施工必须严格控制排土量、盾构姿态和地层变形。 1.1.4 盾构进出洞时应视地质和现场以及盾构形式等条件对工作井洞内外的一定范围内的地层进行必要的地基加固,并对洞圈间隙采取密封措施,确保盾构的施工安全。 1.1.5 在盾构推进施工中应及时进行各项中间隐蔽工程的验收,并填写下列记录: (1 )竖井井位坐标; (2)竖井预留的洞圈制作精度和就位后标高、坐标; (3)预制管片的钢模质量; (4)盾构推进施工的各类报表; (5)内衬施工前,应对模板、预埋件等进行检查验收。 1.1.6 盾构机进出竖井洞前,必须对洞口土体进行加固处理,以防止洞门打开时土体和地下水涌入竖井内引起地面坍陷和危及盾构施工。

1.1.7 隧道洞口土体加固方法、范围和封门形式应根据地质、洞口尺寸、覆土厚度和地面环境等条件确定。 1.1.8 检查盾构始发的准备工作,测量盾构机始发的姿态(盾构机垂直姿态略高于设计轴线0~30mm防止“栽头”),检查盾构机防滚转措施及负环管片、始发台的稳定性;检查反力架刚度。最后一层钢筋的割除,应自下而上进行才比较安全。 1.1.9 盾构工作竖井地面上应设防雨棚,井口应设防淹墙和安全栏杆。 1.1.10 在盾构推进过程中应控制盾构轴线与设计轴线的偏离值,使之在允许范围内。 1.1.11 盾构中途停顿较长时,开挖面及盾尾采取防止土体流失的措施。 1.1.12 盾构掘进临近工作竖井一定距离时应控制其出土量并加强线 路中线及高程测量。距封门500mn左右时停止前进,拆除封门后应连续掘进并拼装管片。 1.1.13 盾构掘进速度,应与地表控制的隆陷值、进出土量、正面土压平衡调整值及同步注浆等相协调,如盾构停歇时间较长时,必须及时封闭正面土体。 1.1.14 盾构机到达检查进站的准备工作,测量盾构机接收架位置和 盾构机姿态(盾构机垂直姿态略高于设计轴线0~ 30mm防止“栽头”), 确保两个姿态一致(接收架垂直姿态要略低于盾构姿态,以使盾构顺利爬上接收架);检查接收台的固定牢靠,防止盾构在推力作用下发生位移;检查进站前约10 环的管片是否对纵向进行加强连接,防止盾构在推力下降时发生管片“松脱” 渗水和减轻盾构姿态发生突变时的管片错台、破损。盾构机应慢速进站,直到盾构安全上到托架。 1.1.15 盾构掘进中遇有下列情况之时,应停止掘进,分析原因并采取措施:

地铁建筑施工质量控制要点

精心整理 地铁施工质量控制要点 一、明挖法施工 1、围护结构施工 1)地下连续墙施工控制要点: (1)导墙施工。控制测量放线的中心线精度和标高误差;检查沟槽土体土质及其稳定性;控制导墙成型后内水平间距、竖向间距、牢固程度和控制支撑拆除时间;控制内墙面与地墙纵轴线平行度、垂直度、平整度及导墙净间距符合要求。 (2)泥浆制作。泥浆配合比满足现场地质的要求;每幅槽段对泥浆指标(比重、黏度、pH值、含砂率);控制对循环(废弃)泥浆的处理。 (3)成槽施工。单元槽段分幅位置测定;成槽过程观测周边地面变形情况、槽段内泥浆液面高度;控制好槽段深度、宽度、垂直度和长度等;测定第一次清孔后槽底泥浆指标。 (4)钢筋笼制作和吊放。应控制纵横向钢筋点焊接质量、钢筋桁架焊接质量、吊点焊接质量、吊筋长度;预埋件位置、数量、规格和安装固定情况,保护垫块位置、数量;入槽后平面位置、标高和固定情况。 (5)接头管吊放。控制接头管入槽位置、深度,开始拔管时间、每次拔管长度、最终拔管时间。 (6)浇筑混凝土。导管应提前做气(水)密性试验并满足要求。钢筋笼就位后放入导管并再次进行槽段清孔换浆;初灌量满足要求;确保连续浇筑,控制浇筑面高差、浇筑速度和最终混凝土面标高;控制试块制作批次、数量。 2)灌注桩施工控制要点: (1)桩位放样控制,护筒埋设深度和中心位置要正确。 (2)泥浆制作。泥浆配合比满足现场地质的要求;每幅槽段对泥浆指标(比重、黏度、pH值、含砂率);控制对循环(废弃)泥浆的处理。 (3)钻孔施工:控制钻头位置、钻盘水平度、钻杆垂直度;控制成孔深度,清空后孔底沉渣厚度、孔底泥浆指标等符合要求。 (4)钢筋笼制作和吊放。应控制纵横向钢筋点焊接质量、加强箍筋焊机质量、吊点焊接质量、吊筋长度、上下接头处主筋错开长度、保护层垫块放置的位置及数量。 (5)浇筑混凝土。导管应提前做气(水)密性试验并满足要求。钢筋笼就位后放入导管并再次进行槽段清孔换浆;初灌量满足要求;确保连续浇筑,控制浇筑面高差、浇筑速度和最终混凝土面标高;控制试块制作批次、数量;严禁将导管提离混凝土面。 3)基坑开挖、回填: (1)钢支撑钢管的直径、管壁厚度等尺寸必须符合设计要求. (2)钢支撑轴力预加应力的测试元件和仪器、仪表设备应齐全,并经有资质单位标定合格后才允许使用. (3)施工监测的实施情况,监测标点布设应符合设计要求,全部标点必须取得初始读数,记录清楚后,方可开始基坑开挖.

盾构施工质量控制要点

盾构施工质量控制要点 一、盾构法隧道施工质量控制要点 (一)审查盾构施工总体方案,需重点注意的内容 1.施工场地总平面布置图; 2.盾构推进方案(始发、掘进、到站或掉头); 3.盾构推进计划; 4.管片的质量控制; 5.施工测量方案、沉降监测方案; 6.同步注浆和二次补浆的质量控制; 7.盾构设备性能参数及操作方法; 8.出土方案和弃土安排; 9.端头和联络通道地层加固方案; 10.建筑物、管线等调查及保护方案; 11.补充地质勘探方案; 12.洞门密封及处理方案; 13.盾构设备组装调试; (二)进场设备检查 应对进入施工现场的各种设备进行检查,包括注浆设备、起吊设备、管片运输设备、管片防雨设施、给排水系统、供电设备等。在盾构始发井前,这些设备应处于可正常工作的状态。 (三)控制测量复核 盾构施工前,应对所使用的水准点和控制点进行复核,确认

没问题后才可使用。 (四)临时管片安装和盾构设备推进前的检查 应对以下方面进行检查,确认没问题后,才可以开始安装临时管片和进行盾构设备推进。 1.盾构设备定位; 2.反力架安装; 3.洞口橡胶密封条和端墙凿除; 4.临时管片固定方式; 5.盾构设备操作方式; 6.同步注浆和二次补浆方式; 7.垂直运输和水平运输设备及其运输方法; (五)盾构设备掘进与管片拼装检查 1.在盾构设备推进前,承包商应提交详细的施工进度安排 报监理和业主批准; 2.监理应通过承包商提供的施工进度报表和现场检查来判 断盾构设备的掘进与管片拼装的情况,出现异常情况时 须及时分析原因,必要时采取相应措施; (六)进场管片检查 1.要求承包商在管片安装之前,必须有专人对以下内容进 行检查,并填写检查表(检查表应有承包商提交给监理 备案):(1)管片表面损坏情况;(2)管片生产日期;(3) 管片类型编号;(4)止水带封条的粘贴(位置和牢固性);

盾构施工质量保证措施

1.1管片质量保证措施 (1)管片生产质量保证措施 1)严格控制管片模具的精度,按照精度要求对管片钢模定期进行检查和校正。 2)要求混凝土所使用的原材必须符合设计及施工规范的要求,应有出厂合格证和相应的试验报告。 3)严格审查管片生产工艺和质量保证措施,认真做好过程控制。指派专门的管片质量检查人员每周不定期去构件厂检查管片生产过程的质量、原材料及生产工艺的控制情况,要求构件厂提供从原材、生产及试验的所有资料,并结合检查记录分析等形成质量周报,并报业主及监理等单位。 4)要严格做好出厂检验及现场的验收工作,事先制定出厂检查及现场质量验收标准。 5)事先计划好现场管片的存放、运输及拼装作业。要有管片的使用计划。 (2)管片拼装质量保证措施 1)选取管片时要多方面考虑,选取管片时也要本着“勤纠偏、小纠偏”的原则进行,以减小片拼装时的错台。 2)确保质量合格、管片类型符合工程师指令的管片才准进洞。 3)严格按指定的拼装工艺进行拼装。 4)拼装过程中经尺量管片错台符合拼装要求后,再将管片就位。 (3)管片衬砌防水质量保证措施 1)确保管片的自身防水符合设计要求,并对管片弹性密封垫入洞前进行严格的验收。 2)严格控制拼装工艺,提高管片拼装的质量。 3)在管片拼装前先于弹性密封垫上涂抹润滑剂,以减少弹性密封垫在拼装中出现的错位。 4)安装管片螺栓接头前检验止水垫圈完整方可安装螺栓。 5)盾构掘进时盾尾空隙注浆要严格控制配比,以形成稳定均匀的管片防水层。

(1)盾构施工轴线控制措施 1)所使用盾构机须装备有高度现代化的自动实时监控测量指引系统。 2)在盾构隧道施工之前,要严格按要求建立起一套严密的人工测量和自动测量控制系统,根据自动的精度和工程的精度要求决定人工控制测量和复核的内容及频率。 3)认真做好盾构机的操作控制,按“勤纠偏、小纠偏”的原则,通过严格的计算,合理选择和控制各千斤顶的行程量,从而使盾构和隧道轴线在容许偏差范围内,切不可纠偏幅度过大,以控制隧道平面与高程偏差而引起的隧道轴线折角变化不超过0.4%。 4)合理使用超挖刀和铰接千斤顶来控制盾构机轴线,从而实现对隧道轴线的线形控制。 5)管片的类型和拼装方式的控制,依据隧道中线和设计中线以及盾构机和管片的关系,通过计算修正曲线来确定管片的类型和超前量。 (2)盾构施工沉降控制措施 认真进行现场环境条件的调查,并结合线路的走向做好地面的监测工作。准备进行的与沉降有关的监测项目有:地表沉降监测、地面建(构)筑物变形监测、地下管线变形监测、河底沉降监测、隧道收敛监测。 1)监测点的观测频率、范围与数据处理 2)盾尾注浆压力和注浆量是直接影响地面沉降的关键因素,在施工中要严格按规定程序和下达的施工指令进行注浆操作,精确控制注浆压力和注浆量。 3)严格控制盾构机的姿态 在盾构掘进施工过程中,盾构姿态变幅越大,盾构机越难控制,对地面沉降的影响也越大,要坚持“勤监测、勤纠偏、小纠偏”的原则,尽量实现盾构的平缓推进;严禁一次性大幅度纠偏,造成过大超挖和对周围土层的扰动。每次盾构机的纠偏量应不超过3cm(0.5%D)。 1.3联络通道施工质量保证措施 (1)测量放线准确,从地面引测后,尽早从隧道内进行检测。 (2)衬砌之间的防水板接缝严密,焊钢筋时设隔垫板保护。

盾构姿态控制

土压平衡盾构机困难状况下的操纵及纠偏 董宇 摘要:为了能使操纵手更熟练的操纵盾构机,本文根据自身工作实践对盾构困难状况下操纵及纠偏的理解与广大技术工作者探讨。 关键字:轴线;纠偏;趋势 1 前言 盾构机是一种很笨重的机具,操纵及纠偏是受很多技术参数制约的,怎样合理地把这些参数科学的统一起来,是影响盾构机操纵及纠偏的关键,下面就这些参数的调节及注意事项通过具体情况进行阐述。 2 盾构操纵及各影响参数 推力对掘进的影响 ⑴如果推进过程中出现一侧推力比另一侧推力大,但推进油缸的行程显示却是推力小的一侧变化快,这种现象多出现在小半径施工,增加推力,使得压差变大,以满足转弯的需要,用降低掘进速度的办法来保证掘进的连续性,同时也避免刀盘被卡死。 ⑵管片拼装的好坏会影响推进油缸的有效推力,所以要充分挖掘盾构机的有效推力,要避免不必要的推力损失,这也解释了为什么有时加大推力而速度依然无法获得提升。 铰接对掘进的影响 在纠偏过程中一侧的铰接拉得太长是件很头痛的事情,收铰接会加大不利的趋势,严重时这环的纠偏可能前功尽弃,一定要做到收铰接时间不可太长,压力不要太高,尽量把趋势从正值纠到负值(或负值到正值),并使之过2个趋势点再收铰接,这样就会把姿态调到了有利的一侧,这时收铰接才会对姿态纠偏起到事半功倍的效果。 速度对掘进的影响 ⑴如果掌子面裂隙水丰富,或是在通过含水丰富地层时,要全速前进,在出土量有保证的前提下,尽可能提高掘进速度,这样做的好处是快速通过含水层,避免过多的水涌出。

⑵在掘进过程中脱顶现象是时有发生的事情,可通过增大速度的方法把脱顶的油缸伸出来,以达到所有推进油缸都顶在管片上,一次不行,可多次重复此方法,一定会见效的。这种情况多出现速度不是很快,扭距忽大忽小的硬岩状况中。速度不宜过快也不宜过慢,更不要走走停停,可以在扭距大的情况下减小速度达到减小扭距的办法,不要停机等扭距降下来在掘进。 刀盘转速及扭距对掘进的影响 刀盘的转速要满足的条件便是与掌子面的充分切削,基本操作原则是黏土层用低转速,硬岩用高转速,同时注意推力的调整,以提高或降低刀盘对土体的惯入度。扭距不可太大,超过200bar不但应该提高泡沫剂等的用量,也要通过降低掘进速度的措施,来保证刀具不被严重磨损。 3 盾构纠偏 管片点位的选择对纠偏的影响 根据盾构机的走向,即满足的关键点为管片的轴线要与盾构机的轴线重合,在考虑纠偏调整的时候应考虑几点注意事项,首先要根据推进油缸的行程分析,封顶块要拼装在行程最短的一侧,其次要看盾构机的姿态,例如盾构机向右,而右侧的行程又最大,那就得要看第三个考虑的因素--铰接,这个因素也是最容易让人忽略的一个,如果右侧铰接最小,那么拼装时所要优先考虑的是拼装在行程最短处的两侧,使得管片有向右的趋势,减小管片与盾构机轴线之间的夹角,如果左侧的铰接最小,那么拼在行程最短处也是可以的,因为盾构机已经有向左的趋势了。 当盾构机转弯方向与姿态方向相反时,如果趋势过大,超过±8,从施工过程来看,急纠的危害是巨大的,如果从开始就调大推力压差,产生的结果是后点还是向外侧偏移,掘进过程中发现初始阶段大概推进400mm的时候,把压差调得适当,即保证的状态为维持前后点,使得后点有向内侧移动的趋势,然后再调大压差,就会容易使前点向外侧移动,顺利完成纠偏,同时这样也避免了过多的超挖。 盾构机的纠偏 实践发现,如果水平纠偏,最好先把垂直姿态稳住,再水平纠偏,也就是说要一个方向纠完,再纠另一方向,而实际的情况多是水平、垂直同时出现的,

盾构施工控制要点

盾构施工准备 技术准备 了解工程条件,包括水文地质条件、施工场地条件、管片运输与渣土消纳条件、噪音影响、供电、供水、排污条件、民扰、扰民问题、拆迁占地等; 地面建筑物与地下管线调查,地下管线必须逐一现场核实;在盾构掘进前必须进行地下空洞探测; 编制施工组织设计和临电施工组织设计 风险源识别与分析,编制专项方案(包括工程自身风险和盾构开仓检查、换刀带来的风险) 编制项目进度计划(特殊地层必须考虑刀盘、刀具检修以及由其引起的施工占地协调、管线改移等对整个工程工期的影响) 制定盾构施工过程管理措施与控制目标 编制盾构施工辅助工程专项施工方案(包括盾构机及龙门吊、砂浆搅拌站等大型设备运输、组装及解体方案、盾构始发和接收端头加固方案、始发与接收方案、联络通道和其它附属工程施工方案、弃土坑施工方案、盾构防水等、需要中途进行刀盘刀具检修的还需编制专项方案) 建立质量保证体系与绿色、环保和文明施工体系 物资准备 盾构机及大型运输、吊装设备选用 盾构施工配套垂直运输设备、水平运输设备选型与采购(龙门吊、塔吊、电瓶车、管片车、渣土车等),需注意点 制造与采购工期,一般在6个月左右 电瓶车选择必须考虑多个工程的使用以及隧道纵坡对其牵引力的影响 浆液制备与泵送设备(搅拌站、浆液输送泵、浆液车) 盾构始发、过站、接收用钢结构(反力架、反力环、机座、过站小车) 盾构机后配套管线及运输通道(供水管、排水管、盾构机供电电缆、隧道内照明、轨道、枕木、走道板、管钩等) 盾构配件及耗材(刀具、常用配件、盾尾密封油脂、泡沫、膨润土、润滑油脂等)现场临时用电、临时用水材料,应急发电设备。 场地内装载、搬运设备(装载机、叉车、挖掘机) 工地通用机械(空压机、电焊机、切割机等) 人员准备 建立组织机构 制定岗位职责 管理人员安全教育、业务培训 作业工人安全教育、业务培训 持证上岗 所有人员签订劳动合同,办理工伤等各项保险 场地布置 盾构施工场地布置应统筹考虑,协调合理,绿色施工。主要包括:垂直运输系统、

盾构机姿态控制与纠偏

土压平衡盾构机姿态控制与纠偏

目录 一、姿态控制 (3) 1 、姿态控制基本原则 (3) 2、盾构方向控制 (3) 3、影响盾构机姿态及隧道轴线的主要因素 (6) 二、姿态控制技术 (10) 1 、滚动控制 (10) 2 、盾构上下倾斜与水平倾斜 (11) 三、具体情况下的姿态控制 (12) 1 、直线段的姿态控制 (12) 2 、圆曲线段的姿态控制 (13) 3 、竖曲线上的姿态控制 (14) 4 、均一地质情况下的姿态控制 (15) 5 、上下软硬不均的地质且存在园曲线段的线路 (15) 6 、左右软硬不均且存在园曲线段的线路 (15) 7 、始发段掘进调向 (16) 8 、掘进100m 至贯通前50m 的调向 (16) 9 、贯通前50米的调向 (17) 10 、盾构机的纠偏 (17) 11 、纠偏的方法 (18) 四、异常情况下的纠偏 (19) 1 、绞接力增大,行程增大 (19) 2、油缸行程差过大 (20) 3、特殊质中推力增加仍无法调向 (20) 4 、蛇形纠偏 (22) 5 、管片上浮与旋转对方向的影响 (22) 五、大方位偏移情况下的纠偏 (23)

一、姿态控制 1 、姿态控制基本原则 盾构机的姿态控制简言之就是,通过调整推进油缸的几个分组区的推进油压的差值,并结合绞接油缸的调整,使盾构机形成向着轴线方向的趋势,使盾构机三个关键节,是(切口、绞接、盾尾)尽量保持在轴线附近。以隧道轴线为目标,根据自动测量系统显示的轴线偏差和偏差趋势把偏差控制在设计范围内,同时在掘进过程中进行盾构姿态调整,确保管片不破损及错台量较小。通常的说就是保头护尾。测量系统主要的几个参数:盾首(刀盘切口)偏差:刀盘中心与设计轴线间的垂足距离。盾尾偏差:盾尾中心与设计轴线间的垂足距离。趋势:指按照当前盾构偏差掘进,每掘进1m产生的偏差,单位mm/m 。滚动角:指盾构绕其轴线发生的转动角度。仰俯角:盾构轴线与水平面间的夫角。 2、盾构方向控制 通过调节分组油缸的推进力与油缸行程从而实现盾构的水平调向和垂 直调向。不同的盾构油缸分组不同,分组的数量越多越利于调向。所有的油缸均自由的方式对调向最为有利。 方向控制要点: ( 1 )控制要点:以盾尾位置为控制点

盾构质量控制要点

第一章盾构施工质量控制要点 1.1盾构掘进施工 1.1.1 盾构设备制造质量,必须符合设计要求,整机总装调试合格,经现场试掘进50~100m距离合格后方可正式验收。 1.1.2 盾构组装时的各项技术指标应达到总装时的精度标准,配套系统应符合规定,组装完毕经检查合格后方可使用,盾构使用应经常检查、维修和保养。 1.1.3 盾构掘进施工必须严格控制排土量、盾构姿态和地层变形。1.1.4 盾构进出洞时应视地质和现场以及盾构形式等条件对工作井洞内外的一定范围内的地层进行必要的地基加固,并对洞圈间隙采取密封措施,确保盾构的施工安全。 1.1.5 在盾构推进施工中应及时进行各项中间隐蔽工程的验收,并填写下列记录: (1)竖井井位坐标; (2)竖井预留的洞圈制作精度和就位后标高、坐标; (3)预制管片的钢模质量; (4)盾构推进施工的各类报表; (5)内衬施工前,应对模板、预埋件等进行检查验收。 1.1.6 盾构机进出竖井洞前,必须对洞口土体进行加固处理,以防止洞门打开时土体和地下水涌入竖井内引起地面坍陷和危及盾构施工。

1.1.7 隧道洞口土体加固方法、范围和封门形式应根据地质、洞口尺寸、覆土厚度和地面环境等条件确定。 1.1.8 检查盾构始发的准备工作,测量盾构机始发的姿态(盾构机垂直姿态略高于设计轴线0~30mm,防止“栽头”),检查盾构机防滚转措施及负环管片、始发台的稳定性;检查反力架刚度。最后一层钢筋的割除,应自下而上进行才比较安全。 1.1.9 盾构工作竖井地面上应设防雨棚,井口应设防淹墙和安全栏杆。 1.1.10在盾构推进过程中应控制盾构轴线与设计轴线的偏离值,使之在允许范围内。 1.1.11 盾构中途停顿较长时,开挖面及盾尾采取防止土体流失的措施。 1.1.12 盾构掘进临近工作竖井一定距离时应控制其出土量并加强线路中线及高程测量。距封门500mm左右时停止前进,拆除封门后应连续掘进并拼装管片。 1.1.13 盾构掘进速度,应与地表控制的隆陷值、进出土量、正面土压平衡调整值及同步注浆等相协调,如盾构停歇时间较长时,必须及时封闭正面土体。 1.1.14 盾构机到达检查进站的准备工作,测量盾构机接收架位置和盾构机姿态(盾构机垂直姿态略高于设计轴线0~30mm,防止“栽头”),确保两个姿态一致(接收架垂直姿态要略低于盾构姿态,以使盾构顺利爬上接收架);检查接收台的固定牢靠,防止盾构在推力作用下发

盾构姿态控制

复合地层长距离小半径曲线隧道盾构姿态控制 一、工程概况 大连市地铁二号线西安路站~交通大学站区间,本区间隧道起讫里程为DK16+803.630~CK18+462.893。本区间主要采用盾构法施工,在靠近交通大学站一端采用矿山法。本盾构区间隧道起讫里程为DK16+803.630~DK18+130.000,右线全长1326.370m,区间在DK16+796.63处设盾构始发井,在DK18+135.5处设盾构接收井。 西安路站至交通大学站区间平面线路出西安路站后沿南北向向南,通过半径为300m的曲线转入偏东西方向,再通过半径450m曲线接入黄河路,到达交通大学站。区间纵断布置形式呈“V”字形,最大纵坡为25‰。区间为双线地下隧道,左右线路为上下重叠至区间终点左右线逐渐分离并行。盾构段隧道开挖断面直径为6m,盾构隧道衬砌的管片采用厚300mm,宽1200mm,每环由6片管片拼装而成,拼装方式采用错缝拼装。 图1-1 西安路站至交通大学站区间平面

二、工程重、难点 2.1小半径(300m半径)曲线始发 由于受线路和现场条件限制,盾构机设计在线路为300m小半径曲线段上的竖井始发进洞,保证开挖隧道轴线在规范允许范围内是一项技术难题。 2.2复合地层长距离小半径R300曲线掘进 在硬岩地层或岩土复合地层小半径曲线掘进,对盾构掘进姿态的控制提出极高的要求。主要问题有: (1)风化岩地层基本无压缩性,在风化岩中刀具磨损较快,当边缘滚刀磨损5-8mm后盾构即出现卡盾及转向困难趋势;在曲线外侧超差时盾构需要以更小的转弯半径才能回正; (2)掘进中对盾构姿态控制的要求高,操作者对超差趋势需极其敏感。边缘滚刀的磨损检查及更换频率高。 (3) 推进油缸的推力方向为线路的切线方向,因此对管片有1个向外的分力,导致管片发生偏移,故油缸推力要合理设置 (4) 转弯过程中,盾尾和管片有一定的夹角,导致盾尾密封刷局部防水效果不理想,易发生盾尾漏浆。 (5)盾尾密封刷局部受压容易使盾尾密封损坏,同时管片外边缘易受损,铰接油缸及纠偏强度需合理设置 2.3长距离硬岩段掘进施工 相比上软下硬、砂层推进中可能导致的地面环境灾害,在长距离硬岩段中掘进主要的困难在于盾构穿越硬层时会出现刀具磨损快、掘进效率低下以及管片上浮等问题。硬岩段地层推进时管片脱出盾尾后上浮现象明显,下坡变坡段时尤盛。出现管片上浮的原因在于赋存与岩层中的地下水、壁后注浆浆液以及向工作面注入的改良性液体等汇集到盾尾处,这些带有一定压力的液体会使脱出盾尾的管片悬浮。在此过程中,应根据管片测量成果,对盾构姿态进行预压,保证在管片浮动后,成型隧道轴线与设计轴线偏差保持在规范允许范围内。

盾构施工控制要点

地铁隧道盾构法施工质量控制重点及措施 摘要:盾构工法是我国城市地铁隧道建设的主要工法,施工人员熟悉和掌握地铁隧道的施工质量控制重点及方法,对保证隧道的安全生产及质量具有重大意义。 关键词:盾构工法;施工质量;控制重点;措施 引言 我国城市地铁隧道建设正步入快速发展的轨道,由于盾构工法具有工期短、造价低、施工领域宽、自动化程度高等特点,因此得到广泛应用。就沈阳地铁2号线土压平衡盾构的施工实践,论述盾构隧道质量的控制方法,并对一些质量控制重点及方法进行探讨。 1 盾构始发阶段 1.1 盾构端头井土体加固(始发)等相关质量控制 在盾构始发时,提高地基强度,防止沉陷,防止地下水突出及土砂等流入端头井内,需进行洞圈周围土体的加固和改良。常用方法有搅拌桩法、药液注入法、冻结法等。无论采取何种方法,加固和改良的效果是质量控制的关键。 (1)加固效果要通过在不同部位、不同深度钻心取样等手段进行验证,确保满足设计要求。 (2)降低地下水位。在始发期间,端头井周围地 下水位要降至洞圈以下1.5—2m,要实施实时监测,并有备用降水井和降水设备。

(3)临时墙拆除。这是在盾构施工中最应引起注意的一道作业,有很大的危险性。国内外有多种始发掘进的方法:①根据地基改良等情况保持始发井前面土体稳定的同时,拆除临时挡土墙进行掘进。②将始发部位做成双层墙结构,边拔除前面的墙边掘进。③用盾构机边直接切削临时墙边掘进。现在多采用第一种方法。拆除临时墙时应掌握门封的具体结构,制定针对性的措施。拆除临时墙的时间应在盾构机调试达到稳定推进条件后。临时墙与盾构机间应预留不小于1.2m的作业空间。拆除临时墙前应钻梅花型探孔(不少于5点)观察,观察时间不少于12h。考虑到综合因素,始发推进尽量选在白天上午。目前正在开发一种盾构机刀盘直接切削的新材料来替代钢筋,可以不必拆除临时墙,无需释放土体应力,就可以使盾构机安全推进,值得关注。 (4)出洞止水密封装置安装。帘布橡胶板上的安装螺栓必须齐全紧固,防翻卷装置加工牢固,帘布橡胶板紧贴洞门,防泥水流失。 (5)始发出洞应做如下工作:①洞门凿除后,盾构机应迅速靠上洞口土体。②观察洞口有无渗漏,如有应及时封堵(应急封堵材料及排水设备)。③盾构机土仓内不得有砼块、钢筋等,临时墙周边钢筋不得伸入盾构切削圆周内。④第一正环拼装时检查最后一负环管片的位置、真圆度等。⑤控制推进千斤顶的使用情况,防止盾构机磕头或上飘。⑥严格控制负环管片的真圆度。 1.2 盾构始发设备 1.2.1 盾构机基座质量控制重点 (1)位置及尺寸。基座设置前,应对洞中的实际净尺、平面位置、直径及高程进行复核,确定基座的位置和高程。盾构姿态的调整,

《北京市轨道交通建设工程盾构施工安全质量管理办法(征求

《北京市轨道交通建设工程盾构施工安全质量管理办法(征求意见稿)》的起草说明 一、制定背景 近年来,我市轨道交通工程建设高速发展,截止至2019年底,全市运营里程达到近700公里,运营线路涉及11个市辖区。今年,全市轨道交通工程在建线路16条(段),在建里程达到了305公里,连续三年超过300公里,在建规模位居全国前列。 盾构法是一种使用盾构机在地下进行隧道掘进的施工方法,具有对地面交通影响小、机械化程度高、作业迅速等优点,正逐渐成为轨道交通工程区间隧道开挖的主要施工方法。当前,全市轨道交通工程在施盾构区间已达20段,地下同时在用盾构机达到38台,工程规模不断扩大的同时,人、机、物、环境的不确定性因素逐步显现,安全质量风险压力日渐突出。因此,为了规范盾构机管理,加强盾构施工风险管控,消除事故隐患,确保盾构施工安全质量,我们起草了《北京市轨道交通建设工程盾构施工安全质量管理办法(征求意见稿)》。 二、制定依据 本办法主要依据《中华人民共和国建筑法》(中华人民共和国主席令第四十六号)、《建设工程安全生产管理条例》(国务院令第393号)、《建设工程质量管理条例》(国务院令第279号)、

《北京市建设工程质量条例》(市人大常委会公告〔十四届〕第14号)、《危险性较大的分部分项工程安全管理规定》(中华人民共和国住房和城乡建设部令第37号)、《城市轨道交通工程安全质量管理暂行办法》(建质〔2010〕5号)、《城市轨道交通工程质量安全检查指南》(建质〔2016〕173号)、《城市轨道交通工程土建施工质量标准化管理技术指南》(建办质〔2018〕65号)、《城市轨道交通工程建设安全生产标准化管理技术指南》(建办质〔2020〕27号)等法律、法规和政策文件要求,结合我市实际制定。 三、起草过程 一是按照国家和本市有关轨道交通建设工程法律法规和文件,明确参建各方职责,以安全风险分级管控和事故隐患排查治理为核心,以盾构机安全使用为重点,以流程管理为总线制定该办法相关条款。二是在办法起草过程中,对土压平衡式、泥水平衡式等盾构机的使用、施工掘进管理及盾构机改造等内容,多次进行现场调研,理清管理脉络及关键点。三是充分征求各参建单位、北京盾构工程协会、委内相关处室等部门意见,反复修改完善。其中,召开专题研讨会8次,书面征求意见1次,收到50余家单位(部门)的150余条意见,经充分讨论后吸纳了其中部分意见。四是拟通过互联网向社会公众公开征求意见,吸纳相关意见对办法进行进一步完善。

盾构管片拼装和姿态控制的要点

盾构管片拼装和姿态控制的要点盾构管片拼装质量和姿态控制是相互关联,密不不可分的。为保证拼装质量和姿态,我们可以从人、机、物、法、环几个方面进行控制。 1、人的控制首先人是控制工程质量的第一因素,在这里我认为主要是责任心和技能素质。责任心与自身所受的教育,家庭责任感和社会责任感及公司的管理制度有很大的关系。你的用心操作和一丝不苟的作风,将直接影响到拼装质量。所以拼装 负责人和机械操作手要掌握质量标准,以质量求进度,质量不达标准不进行下一环的拼装。 在技能方面,你们公司是第一次在上海做盾构,盾构机又是新购进的,人员也是新配备的,机械性能等方面都需要调试和一个熟悉的过程。这里固然有有利的因素,那就是机械性能先进,自动化程度高。但我们也要看到不利的因素,就是新的人员要驾御这匹性能还不完全熟悉的盾构机。一是需要专家的现场指导,二是在干中学学中干。并要结合实际,积累经验,达到熟练操作的程度。 2、管片拼装 1)、管片拼装的前期准备盾构推进的后座应与后壁密实贴紧,后座的环面应与推进轴线垂直,同时开口段的上半部应设有稳固的后座支撑体系。 盾构在基座导轨上推进时应同步垫实管片脱出盾尾后与导轨之间的空隙,不使管片下沉,垫实材料宜用木楔。 盾构的出洞施工由于后座条件的限制,一般盾构的上部千斤顶在一定期间内不能使用,为此要精心调整盾构正面土体反力以少用或不用底部范围千斤顶,防止盾构上飘以及后座因受力不均而遭破坏。当上飘较大而开口副环又没到位时,要临时在上部加支撑和使用上部千斤顶。. 盾构管片的第一环(包括副环),管片的横向轴线一定要垂直于隧道设计的纵向轴线。这一环致关重要,首次拼装一定要千万注意。 施工人员要加强对前一环管片环面进行质量检查和确认,及时通知地面管片进行调整接缝弹性密封垫厚度的调整。同时本环的第一块管片定位前,应观察管片与盾构四周的空隙情况及上环管片的成果报表来决定本环的纠偏方法和纠偏量,然后确定本环第一块的拼装位置。 送到盾构后续车架内的管片,要按先后顺序——由下而上,待拱底块管片就位

盾构施工控制测量

中铁三局西南公司盾构施工作业指导书 盾构施工控制测量 中铁三局西南公司盾构工程段

1.盾构施工控制测量 1.1目的和适用范围 为了保证盾构机准确定位始发,根据设计蓝图计算出的隧道中心线在规范偏差允许范围内掘进并准确贯通,制定本作业指导书。 本作业指导书适用于采用盾构施工的区间隧道工程。 1.2 工作内容及技术要点 盾构施工测量主要分为四部分:地面控制、联系测量、洞内控制和竣工测量,具体内容及技术要求见表1.2-1。 表1.2-1 盾构施工测量内容及技术要点 1.3 测量前准备工作 1.3.1盾构施工前,项目部应成立专门的测量组织机构,测量人员应具备相应的测量技能等级及执业资格。 1.3.2项目应配置精度满足要求的测量仪器,全站仪测角精度不低于2″,测距精度不低于Ⅱ级(5~10mm)。

1.3.3盾构施工前,应编制测量方案,并按程序经过审查、批准后方可实施。1.4 测量作业 1.4.1 交接桩及复测 1 项目中标后,交接桩资料包括平面控制点坐标及高程以及相应的“点之记”,经业主方代表(或者业主委托的第三方测量(以下简称“业主测量队”)单位代表)、施工承包方代表签字确认后生效,并到各控制桩点现场确认。 2 施工承包方完成接桩后,应及时编写复测方案并组织实施。复测成果上报监理及业主(或业主测量队)审查。如发现有交桩控制点精度不满足要求,应在复测报告中明确申请业主测量队进行复测确认。 3 一条区间隧道交桩控制点应不少于6个,即在隧道两端各有2个以上平面控制点和1个以上水准点。 4 按照精密导线的要求进行控制导线复测,具体要求按照《城市轨道交通工程测量规范》(GB 50308-2008)“3.3精密导线测量”执行。 1.4.2 地面控制点加密 1 加密导线点与交桩控制点宜形成附合导线,附合导线的边数宜少于12个,相邻的短边不宜小于长边的1/2,个别短边的边长不应小于100m。 2受条件限制,加密导线点与交桩控制点只能形成闭合导线时,应在《城市轨道交通工程测量规范》(GB 50308-2008)要求基础上增加至少一倍的观测频率。 3 加密水准点应设置在施工影响范围之外且比较稳固的地方,至少每半年对加密水准点与交桩水准点进行一次联测。 1.4.3 平面联系测量 1 平面联系测量一般可采用一井定向(如图 1.4.3-1)、两井定向(如图1.4.3-2),投点方式可采用钢丝或者投点仪。 2一井定向联系三角形测量具体要求按照《城市轨道交通工程测量规范》(GB 50308-2008)“9.3联系三角形测量”执行。 3 两井定向联系测量 1)在盾构施工时,可以利用车站两个端头井或者是一个端头井和中间的出土口位置进行两井定向。

盾构施工质量控制

盾构施工质量控制 SANY GROUP system office room 【SANYUA16H-

工程质量检查管理办法暨争创优质工程管理办法 (盾构部分) 根据现行轨道交通试行规范、国家规范及北京市有关规范、标准。依据《建设结构长城杯工程质量评审标准》的有关规定,结合本项目部盾构施工的特点,对盾构施工质量检查和施工中的质量控制要点,进行分解,为争创结构长城杯奠定基础。 一、法律法规相关文件: 《市政基础设施工程资料管理规程》(DBJ01-71-2003) 《地下铁道工程施工及验收规范》(GB50299-1999) 《市政基础设施工程质量检验与验收统一标准》(DBJ01-90-2004)《排水管(渠)工程施工质量检验标准》(DBJ01-13-2004) 《盾构隧道工程施工质量验收标准(试行)》2004.09 《隧道工程施工质量验收标准(试行)》2004.12 《预制钢筋混凝土盾构管片质量验收标准》(QGD-003-2004) 《地铁暗挖隧道注浆施工技术规范》(DBJ01-96-2004) 《防水工程施工质量验收标准(试行)》 《北京地铁施工监控量测技术要求(试行)》 《地下铁道、轻轨交通工程测量规范》(GB50309-1999) 二、主控项目有: 掘进、管片安装、注浆、测量与监控、管片进厂检验、管片拼装。 三、盾构隧道施工现场质量管理资料: 盾构隧道工程施工现场质量管理应有相应的施工技术标准、健全的质量管理体系和施工质量检验制度。 施工单位汇总技术质量管理资料并填写《隧道工程施工现场质量管理检查记录》(表式C1-5)

四、掘进施工

1、盾构机在始发竖井内正式掘进前,必须对洞口经改良的土体作质量检测,并对盾构机轴线位置作复核、检查。 2、机械开挖时,每次开挖长度应与每环管片的宽度相适应,挖土速度应与盾构机械推进进度、出土能力匹配。 3、盾构机掘进中,用激光准直系统对盾构机轨迹连续观测。 4、初始掘进30m-50m长度,应加密对盾构机轴线的测量与监控,及时调整盾构机位置,使管道的中线、高程符合设计要求。 5、盾构机每推进一环,进行一次管片环的中线、高程测量。同时应测量盾构机轴线位置及绕轴线偏离转角,依据测量结果进行纠偏。 6、高程、中线纠偏应在推进中进行。纠偏过程宜增加测量密度,宜采用调向千斤顶纠偏。 7.应在推进中对盾构旋转进行纠正,纠正应采用设定的措施。 五、管片安装 1、管片安装过程中,第一块管片环向定位要准确,管片圆环旋转不得超过标准,确保相邻两管片接头的环面平正,内弧面平正,纵缝的管片端面密贴。 2、拼装前应清理盾尾底部;管片安装设备应处于正常状态。 3、管片下井前,应由专人核对编组、编号;对管片进行清理、粘贴止水材料、检查合格后,将管片与联接件配套送至工作面;管片质量要求应符合有关规定。 4、拼装时,应采取措施保护管片,衬垫及防水胶条不受损伤。

盾构隧道施工中盾构机的姿态控制

盾构隧道施工中盾构机的姿态控制 盾构隧道施工中盾构机的姿态控制包括机体滚转控制和前进方 向的控制, 在掘进过程中, 盾构机操作人员根据激光自动导向系统 在电脑屏幕上显示的数据, 通过合理选择各分区千斤顶及刀盘转向 等来调整盾构机的姿态。盾构机姿态控制操作原则有两条: (1)机体滚角值应适宜, 盾构机滚角值太大, 盾构机不能保持 正确的姿态, 影响管片的拼装质量, 此时, 可以通过反转刀盘来减 少滚角值。 (2) 盾构机的前进方向水平向右偏, 则需要提高右侧千斤顶分 区的推力; 反之, 则需要提高左侧千斤顶分区的推力。如果盾构机机头向下偏, 则需要提高下部千斤顶分区的推力; 反之亦然。 盾构机姿态控制的一般细则 一般情况下, 盾构机的方向纠偏应控制在±20mm 以内, 在缓和 曲线及圆曲线段, 盾构机的方向纠偏应控制在±30mm 以内。尽量保 持盾构机轴线与隧道设计轴线平行, 否则, 可能会因为姿态不好而 造成盾尾间隙过小和管片错台裂缝。当开挖面土体较均匀时, 盾构机姿态控制比较容易, 一般情况下方向偏角控制在±5mm?m 以内。当开挖面内的地层左、右软硬不均而且又是处在曲线段时,盾构机姿态控 制比较困难。此时, 可降低掘进速度, 合理调节各分区的千斤顶推力, 有必要时可考虑在硬岩区使用超挖刀(备有超挖刀的盾构机) 进行超挖。当盾构机遇到上软下硬土层时, 为防止盾构机“抬头”, 要保持下俯姿态; 反之, 则要保持上仰姿态。掘进时要注意上下两端和左右两侧的千斤顶行程差不能相差太大, 一般控制在±20mm 以内。在曲

线段掘进时, 一般情况下根据曲线半径的不同让盾构机向曲线内侧偏移一定量, 偏移量一般取10~ 30mm。在盾构机姿态控制中, 推进油缸的行程控制是重点。对于1.5m 宽的管片, 原则上行程控制在1700~ 1800mm 之间, 行程差控制在0~ 40mm 内, 行程过大, 则盾尾刷容易露出, 管片脱离盾尾较多, 变形较大; 行程差过大, 易使盾体与管片之间的夹角增大, 易造成管片的破损、错台。 不同地质环境中盾构机掘进姿态的控制技术 1. 淤泥质土层中盾构机掘进姿态的控制盾构机在软弱土层中掘进时, 由于地层自稳性能极差, 为控制盾构机水平和垂直偏差在允许范围内, 避免盾构机蛇形量过大造成对地层的过量扰动, 宜将盾构机掘进速度控制在30~40mm?m in 之间, 刀盘转速控制在1. 5r?m in 左右。在该段地层中掘进时, 四组千斤顶推力应较为均衡, 避免掘进过程中千斤顶行程差过大, 否则, 可能会造成推力轴线与管片中心轴线不在同一直线上。在掘进过程中应根据实际情况加注一定量的添加剂,以保持出土顺畅, 尽量保持盾构机的连续掘进, 同时, 要严格控制同步注浆量, 以保证管背间隙被有效填充。 2.砂层中盾构机掘进姿态的控制盾构机在全断面富水砂层中掘进, 由于含水砂层的自稳性极差, 含水量大, 极易出现盾构机“磕头”现象, 同时, 在含水砂层中盾构机也易出现上浮现象。为避免盾构机在含水砂层中掘进出现“磕头”现象, 在推进过程中盾构机应保持向上抬头的趋势, 如果发现有“磕头”趋势,应立即调节上下部压力, 维持盾构机向上的趋势。为避免盾构机在含水砂层中掘进出现上浮现象, 在盾构机掘进时应减小刀盘转速, 减小对周围砂层的扰动。

盾构机在淤泥质地层中推进如何控制盾构机姿态的研究

盾构机在淤泥质地层中推进应如何控制好盾构机姿态的方法和研究 作者:李懂懂 引言 随着城市的快速发展,我国各大城市都在进行建设地铁。盾构法施工技术得到了广泛的应用。当盾构机在不同地质条件推进时盾构姿态的控制是有所差别的。 东方大道站~独墅湖南站盾构区间左线1772.729m、右线1794.2m。总长度为3566.929m。 本区间线路始于东方大道站东端,下穿花泾港河道后线路稍向北偏,下穿独墅湖公园、赏湖路、规划地块(一类居住用地)及苏州运河后,线路转向北下穿过规划地块(二类居住用地)后折向启月街到达独墅湖南站。区间线路共有两段曲线,半径分别为2000m、450m,左右线路中心线间距13.0~16.5m。 区间隧道纵坡呈“V”字型,最大坡度25‰,最小坡度3.5‰。与车站相连端的竖曲线半径为3000m,其余半径为5000m。隧道埋深10.8~19.1m,下穿苏州运河段隧道最小埋深约11.6m。

图2.1 东方大道站~独墅湖南站区间平面示意图

图2.2 东方大道站~独墅湖南站区间地质断面示意图 1.淤泥质土层中盾构机掘进姿态的控制 盾构机在软弱土层中掘进时, 由于地层自稳性能极差, 为控制盾构机水平和垂直偏差在允许范围内, 避免盾构机蛇形量过大造成对地层的过量扰动, 宜将盾构机掘进速度控制在30~40mm?m in 之间, 刀盘转速控制在1. 5r?m in 左右。在该段地层中掘进时, 四组千斤顶推力应较为均衡, 避免掘进过程中千斤顶行程差过大, 否则, 可能会造成推力轴线与管片中心轴线不在同一直线上。在掘进过程中应根据实际情况加注一定量的添加剂,以保持出土顺畅, 尽量保持盾构机的连续掘进, 同时, 要严格控制同步注浆量, 以保证管片背后间隙被有效填充。盾构机在这种地

浅析盾构姿态控制(王春光)

浅析盾构机姿态控制——王春光2004.7.15(初稿) 在盾构隧道施工中,盾构机的姿态控制是至关重要的,它直接关系到隧道的施工质量,所以在进行隧道轴线控制中,除了要做好严格的测量及检验工作,更要对盾构机的姿态控制充分的重视起来,由于盾构施工是由盾构机在深层土体进行暗挖的一种施工工艺,盾构机所处土层的土质情况、隧道轴线的平面及高程的设计情况、管片形式及施工中选型、管片的楔形处理等因素都直接影响到盾构机的姿态控制,从而对隧道的成型产生至关重要的影响。鉴于此,我们对盾构机的姿态控制以及隧道轴线的控制作了比较充分的分析研究,希望对今后的盾构施工能够起到一些有益的帮助。 一、盾构机型式及参数 1、盾构机概述 本次工程中所使用的盾构机为土压平衡式盾构机,根据天津市区地层土质情况进行设计生产,适用于含有大量粘土、粉砂或低含水量粉土的地层,通过刀盘切削土体在后部土仓中屯积,形成切削土压力抵抗刀盘前端土体压力,形成土压平衡,缓解地面沉降,进行掘进。盾构机的操作主要为“计算机监控,手动操作”,即通过盾构机上的PLC及计算机系统进行盾构机掘进过程中各种数据参数的采集处理,在操作面板及计算机显示器上进行显示,由盾构机操作手根据所显示的数据资料情况进行手动控制,对盾构的掘进状态进行操作控制,所以对盾构机操作手(俗称盾构司机)的操作熟练程度及对盾构机及其工作原理以及盾构纠偏原理的理解等各方面的要求都比较高。比较适合于对盾构工程比较熟悉的操作人员,对于比较全面系统地掌握盾构机掘进过程的操作理念有很高的要求。

2、 盾构机相关参数(与盾构机姿态控制有关) ● 盾构机型号:德国HERRENKNECHT S-225 土压平衡式盾构机 ● 盾构外径:Φ6390mm ● 盾构长度:8500mm ● 推进千斤顶:16×2个,编为四组:A 组(2#、3#、4#、5#)、B 组(6#、7#、8#、9#、10#)、C 组(11#、12#、13#、14#)、D 组(15#、 16#、1#)。编组情况如图1。 图1:推进千斤顶编组图 ● 推进千斤顶行程:2200mm ● 铰接型式:被动式铰接 ● 铰接千斤顶数量:14个,分别在3#、5#、10#、12#千斤顶设行程传感器。布置情况如图2: C D B A

相关文档
最新文档