硬氮化和软氮化工艺等方面的比较

硬氮化和软氮化工艺等方面的比较
硬氮化和软氮化工艺等方面的比较

硬氮化和软氮化工艺等方面的比较

我在外工作多年,在工作中经常会遇到客户送来的产品需要氮化处理。但当我们问到是氮化或软氮化时,他们就不知到了。因为他们都是机械设计方面的技术人员,对热处理知识了解的不是太多。所以,我们就得耐心的给他们讲解氮化和软氮化的区别和性能,包括生产成本等等。所以,有必要将氮化和软氮化的工艺特点及主要应用范围进行了整理,供机械设计方面的工程技术人员在产品设计过程中参考。

一、硬氮化和软氮化方法、特点及主要应用范围。

二、国家标准对软氮化和硬氮化工艺方面的要求:

1、GB/T18177-2000《钢的气体渗氮》(硬氮化)根据不同的渗层有多种工艺供选择。

2、⑴JB/T4155-1999《气体氮碳共渗》(软氮化)一般只有一个工艺范围供选择,常用的共渗温度为540-570℃,保温2-4H,处理过程要注意炉温波动及渗剂的加入量;工件进炉后,排气速度宜快,升温速度要控制,必要时可采取预热措施。

⑵对表面色泽有要求的工件,在升温阶段及共渗后冷却过程中,必须在渗氮气氛或其它保护气氛中进行。

三、检测方面:

1、GB/T18177-2000《钢的气体渗氮》中检验方法中规定:

⑴裂纹、开裂等可用肉眼判别,也可采用磁粉或渗透探伤等方法鉴别。

⑵表面硬度检验:根据产品要求以及渗层深度采用不同的负荷。

⑶渗层脆性检验:共5级,一般零件1-3级合格,重要零件1-2级合格。

⑷渗氮层疏松检验:共5级,一般零件1-3级合格,重要零件1-2级合格。

⑸渗氮扩散层中氮化物检验:共5级,一般零件1-3级合格,重要零件1-2级合格。

2、JB/T4155-1999《气体氮碳共渗》(软氮化)中检验方法中规定:

⑴表面硬度及渗层深度见下表

气体氮碳共渗后的表面硬度和渗层深度

⑵化合物疏松层是其必检项目。共5级,一般零件1-3级合格,重要零件1-2级合格。

四、软氮化和硬氮化之间的比较:

1、渗层组织:软氮化后的渗层组织与气体氮化相似,由化合物层和扩散层组成。但由于软氮化表面层中没有ξ相,即渗层中的化合物层不是Fe2N,而是含有一定量碳的Fe3N,这种化合物的脆性较小,故一般软氮化的化合物层韧性较好(这也是标准中不检验脆性的原因)。所以,渗层脆性较小。次层是含氮的扩散层。合金钢渗层中还有合金氮化物,其性质较稳定,但渗层较碳钢浅。

2、软氮化后的表面硬度与气体氮化相接近。对碳钢来说,可获得较高的表面硬度。

3、耐磨性:软氮化能显著提高零件的耐磨性,为不仅由于氮化物本身具有高的硬度和耐磨性,而且软氮化使表面摩擦系数大幅度下降。软氮化渗层还具有良好的抗咬合能力。

4、软氮化可以大大提高零件的疲劳强度,这是由于固溶强化与表层压应力的作用。一般可提高60-80%,低合金钢可提高30-50%,铸铁提高20-60%。

5、由于活性碳原子的存在对氮化起着催渗作用,从而使软氮化速度比气体氮化大为提高,但软氮化在1-3小时内增加最快,超过6小时渗层深度增加极微。表面硬度也在2-3小时内出现最大值。所以软氮化时间一般采用2-3小时。

6、一般软氮化都采用快冷的方式冷却(一般油冷),而且快冷和缓慢冷却对于碳钢及低合金钢来说,两者都要相差10HRC左右。所以,软氮化快冷较好,但变形大。

7、气体软氮化的不足之处是渗层较薄,硬度梯度比较陡,不宜在重载条件下工作。但对一些不承受大载荷不需要抗疲劳、耐磨、抗咬合的零件,软氮化的效果十分显著。

如有侵权请联系告知删除,感谢你们的配合!

45万吨年丙烷脱氢制丙烯(PDH)装置工艺操作规程(UOP C3 Oleflex 工艺)

45万吨/年丙烷脱氢制丙烯(PDH)装置 工艺技术规程 (UOP C3 Oleflex 工艺) 2018年11月13日

目录 1 预处理工段 (1) 2 丙烷脱氢反应工段 (1) 3 催化剂再生工段 (4) 4 冷箱分离工段 (8) 5 SHP工段 (9) 6 精馏工段 (9) 7 PSA工段 (10) 8 全厂系统(蒸汽凝液系统) (12) 9 丙烷低温储罐及其辅助系统 (12) 10 中间罐区 (13) 11 火炬 (14) 12 空压站及氮气辅助系统 (17) 13 本项目涉及的主要化学反应 (19)

1 预处理工段 来自新鲜丙烷进料加热器(21E0601)的新鲜丙烷原料先进入进料保护床(21D0101-1/2),在此用树脂吸附剂除去氮化物和有机金属化合物。这两台保护床可以通过调整进出料管道来改变两台保护床的前后。接着丙烷原料流过汞脱除器(21D0102)除汞,然后进入进料干燥器(21D0103-1/2))以脱除原料中的水分(原料中如果含水将在分离系统结冰,就可能堵塞系统。这两台干燥器一般在系统开车时用来干燥进料,正常运行时可不用。进料干燥器装填分子筛以从丙烷中脱除水分。 进料干燥器设计为每周再生一次,再生用干燥的丙烷气来完成,丙烷在进料干燥再生蒸发器(21E0120)中用蒸汽先加热到60℃,然后用原料干燥再生过热器(21E0122)加热到232℃左右,以与丙烷进料相反的方向进入进料干燥器去再生干燥床层,然后进入进料干燥再生冷凝器(21E0102),被冷凝后送到进料干燥再生收集器(21D0104),在此水与再生丙烷分离,丙烷用进料干燥再生泵(21P0101)输送到在线操作的干燥器入口,废水送至反应工段与含硫废液混合后一并送至含硫/盐污水处理装置处理。 2 丙烷脱氢反应工段 (1)原料预热及反应 自冷箱分离工段回收冷量后的原料丙烷送至热联合进料换热器(21E0201-1/2/3/4)内与出反应器的粗产品气进行换热进一步提高进料温度同时降低粗产品的温度。预热后的原料气中注入少量的二甲基二硫。经预热的物料经过进料加热炉(21F0201),加热至~615℃后自反应器底部进入第一反应器(21R0201),原料气穿过反应器内件与反应器顶部流下的催化剂接触后发生脱氢反应。从第一反应器出来的物料进入第一中间加热炉(21F0202)。由于脱氢反应是吸热反应,因此需要在过程中补充物料放出的热量。物料再次被加热至~622℃后进入第二反应器(21R0202)继续进行脱氢反应,之后物料依次进入第二中间加热炉(21F0203)、第三反应器(21R0203)、第三中间加热炉(21F0204)、第四反应器(21R0204),从第四反应器出来的反应粗产品再次经过热联合进料换热器中与混合原料换热回收热量后,送至反应产物压缩部分。 在反应物料依次进入反应器的同时,来自催化剂连续再生工段的净化气(从

渗氮与氮化处理

渗氮 渗氮,是在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。常见有液体渗氮、气体渗氮、离子渗氮。传统的气体渗氮是把工件放入密封容器中,通以流动的氨气并加热,保温较长时间后,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入工件表层内,从而改变表层的化学成分和组织,获得优良的表面性能。如果在渗氮过程中同时渗入碳以促进氮的扩散,则称为氮碳共渗。常用的是气体渗氮和离子渗氮。 原理应用 渗入钢中的氮一方面由表及里与铁形成不同含氮量的氮化铁,一方面与钢中的合金元素结合形成各种合金氮化物,特别是氮化铝、氮化铬。这些氮化物具有很高的硬度、热稳定性和很高的弥散度,因而可使渗氮后的钢件得到高的表面硬度、耐磨性、疲劳强度、抗咬合性、抗大气和过热蒸汽腐蚀能力、抗回火软化能力,并降低缺口敏感性。与渗碳工艺相比,渗氮温度比较低,因而畸变小,但由于心部硬度较低,渗层也较浅,一般只能满足承受轻、中等载荷的耐磨、耐疲劳要求,或有一定耐热、耐腐蚀要求的机器零件,以及各种切削刀具、冷作和热作模具等。渗氮有多种方法,常用的是气体渗氮和离子渗氮。 钢铁渗氮的研究始于20世纪初,20年代以后获得工业应用。最初的气体渗氮,仅限于含铬、铝的钢,后来才扩大到其他钢种。从70年代开始,渗氮从理论到工艺都得到迅速发展并日趋完善,适用的材料和工件也日益扩大,成为重要的化学热处理工艺之一。

气体渗氮 一般以提高金属的耐磨性为主要目的,因此需要获得高的表面硬度。它适用于38CrMoAl等渗氮钢。渗氮后工件表面硬度可达HV850~1200。渗氮温度低,工件畸变小,可用于精度要求高、又有耐磨要求的零件,如镗床镗杆和主轴、磨床主轴、气缸套筒等。但由于渗氮层较薄,不适于承受重载的耐磨零件。 气体参氮可采用一般渗氮法(即等温渗氮)或多段(二段、三段)渗氮法。前者是在整个渗氮过程中渗氮温度和氨气分解率保持不变。温度一般在480~520℃之间,氨气分解率为15~30%,保温时间近80小时。这种工艺适用于渗层浅、畸变要求严、硬度要求高的零件,但处理时间过长。多段渗氮是在整个渗氮过程中按不同阶段分别采用不同温度、不同氨分解率、不同时间进行渗氮和扩散。整个渗氮时间可以缩短到近50小时,能获得较深的渗层,但这样渗氮温度较高,畸变较大。 还有以抗蚀为目的的气体渗氮,渗氮温度在 550~700℃之间,保温 0.5~3小时,氨分解率为35~70%,工件表层可获得化学稳定性高的化合物层,防止工件受湿空气、过热蒸汽、气体燃烧产物等的腐蚀。 正常的气体渗氮工件,表面呈银灰色。有时,由于氧化也可能呈蓝色或黄色,但一般不影响使用。 离子渗氮

零件的氮化处理相关知识

氮化处理 又称为扩散渗氮。气体渗氮在1923年左右,由德国人Fry首度研究发展并加以工业化。由於经本法处理的制品具有优异的耐磨性、耐疲劳性、耐蚀性及耐高温,其应用围逐渐扩大。例如钻头、螺丝攻、挤压模、压铸模、鍜压机用鍜造模、螺桿、连桿、曲轴、吸气及排气活门及齿轮凸轮等均有使用。 一、氮化用钢简介 传统的合金钢料中之铝、铬、钒及钼元素对渗氮甚有帮助。这些元素在渗氮温度中,与初生态的氮原子接触时,就生成安定的氮化物。尤其是钼元素,不仅作为生成氮化物元素,亦作为降低在渗氮温度时所发生的脆性。其他合金钢中的元素,如镍、铜、硅、锰等,对渗氮特性并无多大的帮助。一般而言,如果钢料中含有一种或多种的氮化物生成元素,氮化后的效果比较良好。其中铝是最强的氮化物元素,含有0.85~1.5%铝的渗氮结果最佳。在含铬的铬钢而言,如果有足够的含量,亦可得到很好的效果。但没有含合金的碳钢,因其生成的渗氮层很脆,容易剥落,不适合作为渗氮钢。 一般常用的渗氮钢有六种如下: (1)含铝元素的低合金钢(标准渗氮钢) (2)含铬元素的中碳低合金钢 SAE 4100,4300,5100,6100,8600,8700,9800系。 (3)热作模具钢(含约5%之铬) SAE H11 (SKD – 61)H12,H13 (4)肥粒铁及麻田散铁系不锈钢SAE 400系 (5)奥斯田铁系不锈钢 SAE 300系 (6)析出硬化型不锈钢 17 - 4PH,17 – 7PH,A – 286等 含铝的标准渗氮钢,在氮化后虽可得到很高的硬度及高耐磨的表层,但其硬化层亦很脆。相反的,含铬的低合金钢硬度较低,但硬化层即比较有韧性,其表面亦有相当的耐磨性及耐束心性。因此选用材料时,宜注意材料之特徵,充分利用其优点,俾符合零件之功能。至於工具钢如H11(SKD61)D2(SKD – 11),即有高表面硬度及高心部强度。 二、氮化处理技术: 调质后的零件,在渗氮处理前须澈底清洗乾净,兹将包括清洗的渗氮工作程序分述如下: (1)渗氮前的零件表面清洗 大部分零件,可以使用气体去油法去油后立刻渗氮。但在渗氮前之最后加工方法若採用抛光、研磨、磨光等,即可能产生阻碍渗氮的表面层,致使渗氮后,氮化层不均匀或发生弯曲等缺陷。此时宜採用下列二种方法之一去除表面层。第一种方法在渗氮前首先以气体去油。然后使用氧化铝粉将表面作abrassive cleaning 。第二种方法即将表面加以磷酸皮膜处理(phosphate coating)。(2)渗氮炉的排除空气 将被处理零件置於渗氮炉中,并将炉盖密封后即可加热,但加热至150℃以前须作炉排除空气工作。 排除炉的主要功用是防止氨气分解时与空气接触而发生爆炸性气体,及防止被处理物及支架的表面氧化。其所使用的气体即有氨气及氮气二种。 排除炉空气的要领如下:

渗氮及氮化处理

渗氮及氮化处理

渗氮 渗氮,是在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。常见有液体渗氮、气体渗氮、离子渗氮。传统的气体渗氮是把工件放入密封容器中,通以流动的氨气并加热,保温较长时间后,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入工件表层内,从而改变表层的化学成分和组织,获得优良的表面性能。如果在渗氮过程中同时渗入碳以促进氮的扩散,则称为氮碳共渗。常用的是气体渗氮和离子渗氮。 原理应用 渗入钢中的氮一方面由表及里与铁形成不同含氮量的氮化铁,一方面与钢中的合金元素结合形成各种合金氮化物,特别是氮化铝、氮化铬。这些氮化物具有很高的硬度、热稳定性和很高的弥散度,因而可使渗氮后的钢件得到高的表面硬度、耐磨性、疲劳强度、抗咬合性、抗大气和过热蒸汽腐蚀能力、抗回火软化能力,并降低缺口敏感性。与渗碳工艺相比,渗氮温度比较低,因而畸变小,但由于心部硬度较低,渗层也较浅,一般只能满足承受轻、中等载荷的耐磨、耐疲劳要求,或有一定耐热、耐腐蚀要求的机器零件,以及各种切削刀具、冷作和热作模具等。渗氮有多种方法,常用的是气体渗氮和离子渗氮。 钢铁渗氮的研究始于20世纪初,20年代以后获得工业应用。最初的气体渗氮,仅限于含铬、铝的钢,后来才扩大到其他钢种。从70年代开始,渗氮从理论到工艺都得到迅速发展并日趋完善,适用的材料和工件也日益扩大,成为重要的化学热处理工艺之一。

气体渗氮 一般以提高金属的耐磨性为主要目的,因此需要获得高的表面硬度。它适用于38CrMoAl等渗氮钢。渗氮后工件表面硬度可达HV850~1200。渗氮温度低,工件畸变小,可用于精度要求高、又有耐磨要求的零件,如镗床镗杆和主轴、磨床主轴、气缸套筒等。但由于渗氮层较薄,不适于承受重载的耐磨零件。 气体参氮可采用一般渗氮法(即等温渗氮)或多段(二段、三段)渗氮法。前者是在整个渗氮过程中渗氮温度和氨气分解率保持不变。温度一般在480~520℃之间,氨气分解率为15~30%,保温时间近80小时。这种工艺适用于渗层浅、畸变要求严、硬度要求高的零件,但处理时间过长。多段渗氮是在整个渗氮过程中按不同阶段分别采用不同温度、不同氨分解率、不同时间进行渗氮和扩散。整个渗氮时间可以缩短到近50小时,能获得较深的渗层,但这样渗氮温度较高,畸变较大。 还有以抗蚀为目的的气体渗氮,渗氮温度在 550~700℃之间,保温 0.5~3小时,氨分解率为35~70%,工件表层可获得化学稳定性高的化合物层,防止工件受湿空气、过热蒸汽、气体燃烧产物等的腐蚀。 正常的气体渗氮工件,表面呈银灰色。有时,由于氧化也可能呈蓝色或黄色,但一般不影响使用。 离子渗氮

氮化优点及常见缺陷原因分析工艺制定

离子氮化及优点,常见缺陷及原因分析,工艺制定 离子氮化是由德国人B.Berghaus于1932年发明的。该法是在0.1~10Torr (Torr = 133.3 Pa)的含氮气氛中,以炉体为阳极,被处理工件为阴极,在阴阳极间加上数百伏的直流电压,由于辉光放电现象便会产生象霓红灯一样的柔光覆盖在被处理工件的表面。此时,已离子化了的气体成分被电场加速,撞击被处理工件表面而使其加热。同时依靠溅射及离子化作用等进行氮化处理。 离子氮化法与以往的靠分解氨气或使用氰化物来进行氮化的方法截然不同,作为一种全新的氮化方法,现已被广泛应用于汽车、机械、精密仪器、挤压成型机、模具等许多领域,而且其应用范围仍在日益扩大。 离子氮化法具有以下一些优点: ①由于离子氮化法不是依靠化学反应作用,而是利用离子化了的含氮气体进行氮化处理,所以工作环境十分清洁而无需防止公害的特别设备。因而,离子氮化法也被称作二十一世纪的“绿色”氮化法。 ②由于离子氮化法利用了离子化了的气体的溅射作用,因而与以往的氮化处理相比,可显著的缩短处理时间(离子渗氮的时间仅为普通气体渗氮时间的1/3~1/5)。 ③由于离子氮化法利用辉光放电直接对工件进行加热,也无需特别的加热和保温设备,且可以获得均匀的温度分布,与间接加热方式相比加热效率可提高2倍以上,达到节能效果(能源消耗仅为气体渗氮的40~70%)。 ④由于离子氮化是在真空中进行,因而可获得无氧化的加工表面,也不会损害被处理工件的表面光洁度。而且由于是在低温下进行处理,被处理工件的变形量极小,处理后无需再行加工,极适合于成品的处理。 ⑤通过调节氮、氢及其他(如碳、氧、硫等)气氛的比例,可自由地调节

辉光离子氮化炉作业指导书

辉光离子氮化炉作业指导书 Q/SZ J08.142 1 目的 为贯彻公司职业健康安全方针、环境方针,有效的进行安全生产并控制污染物的产生和排放,保护环境,特制定本作业指导书。 2 适用范围 本作业指导书适用于LD-150型辉光离子氮化炉的操作。 3 总则 3.1.作业者必须熟练掌握本作业指导书的所有内容,经考试合格后,取得上岗证,方可进行独立操作。 3.2.经医生检查,确定无防碍工作的疾病,才能上岗作业。 3.3.当氨气管路泄漏时,必须戴好面具进行处理。 4 操作规程 4.1.开动设备前应首先检查真空系统是否漏气,保证压升率(0.13Pa/min)。检查水路保证水压≥0.15MPa,阴阳极绝缘电阻大于0.5MΩ。 4.2.开动设备按下列顺序操作: 4.2.1先给变压器一次送电(即原送电柜按钮合上)。 4.2.2然后合控制盘上的“系统启动”空气开关(白色)。 4.2.3打开真空泵1、真空泵2、使炉体抽气。 4.2.4在真空度≤50Pa时,先合上高压按钮,调整电压给定旋钮检查电控柜输出电压0-850V连续可调,是否正常;如正常,可将电压旋钮调至0V。 4.2.5在确定上述正常后,先合上电阻1、将电流给定旋钮调整到2V,然后缓慢调整电压旋钮,开始进入起辉、打弧工作状态,此时应视打弧的程度大小做适当调整电流电压。 4.2.6在进入辉光稳定起辉状态后,或通入适当氨气(0.3升/分钟),并调整电流电压,进入升温阶段后,或电流超过80A时,应将电阻1关掉,电流回0,再开启电阻2重新起辉工作(升温速度按工艺执行)。 4.2.7炉内出现频繁打弧,应首先关小电流,观察炉内情况后,方可继续升温出现打死弧、报警及其它异常现象时,可作紧急情况处理,立即关断高压或按“紧急停止”按钮(此按钮再次复位时应按方向旋转)。 4.3.温度设定:零件进入保温状态后,操作者人工目测工件温度,然后按工艺参数设定温度,按▲或键就可以方便地设定温度。零件到温前应正确调整流量0.8-1升/分,并调整炉压,使炉内工件温度保持均匀,各部温差不超过10℃。 4.4.氨气流量的设定及炉内压力设定应视零件复杂状况及工艺情况由操作者灵活掌握。其原则是通过调整炉压,使工件各部温度达到均匀。 4.5.冷却循环水的使用,应在保证炉体冷却效果的前提下,尽可能使用循环水,以节约用水。开炉后一定时期内应在炉体温度为40℃时再开启冷却水,以利于工件的升温。在调整水温时应观察进水口温度表,应≤40℃为合适。 4.6.停炉:在保温时间到后,应有以下两种停炉状态。① 如工件复杂,有变形要求,停炉时,应在保持有辉光的状态下,小电流保持2小时(氨气流量关掉)后关断高压,停止真空泵,继续通冷却水;② 如果对变形要求不严,工件不复杂,可直接关闭电源,关闭氨气,关闭真空泵(工艺有要求的,按工艺执行)。 142

氮化处理的工艺

氮化包括气体氮化、辉光离子氮化与软氮化,软氮化就是一种通俗的叫法,严格的讲,软氮化就是一种以渗氮为主的低温氮碳共渗,主要特点就是渗速快(2-4h),但渗层薄(一般在0、4以下),渗层梯度陡,硬度并不低,如果就是液体氮化,硬度甚至略高于气体氮化。 气体氮化可以做到深渗层,它的硬度梯度缓,比软氮化承受的载荷高,外观漂亮,缺点就是周期长,表面有脆性相,一般要有一道精加工(加工余量很小,一般1丝到2丝)。 辉光离子氮化有气体氮化的优点,在0、4㎜渗层以下,渗速比气体氮化快的多,而且表面不会有脆性相,可以局部氮化,缺点就是成本略高,对形状复杂或带长孔的工件效果不好。 变形方面应该就是辉光离子氮化变形最小,实际中相差很小,很多时候几乎一样 氮化包括气体氮化、辉光离子氮化与软氮化,软氮化就是一种通俗的叫法,严格的讲,软氮化就是一种以渗氮为主的低温氮碳共渗,主要特点就是渗速快(2-4h),但渗层薄(一般在0、4以下),渗层梯度陡,硬度并不低,如果就是液体氮化,硬度甚至略高于气体氮化。 气体氮化可以做到深渗层,它的硬度梯度缓,比软氮化承受的载荷高,外观漂亮,缺点就是周期长,表面有脆性相,一般要有一道精加工(加工余量很小,一般1丝到2丝)。 辉光离子氮化有气体氮化的优点,在0、4㎜渗层以下,渗速比气体氮化快的多,而且表面不会有脆性相,可以局部氮化,缺点就是成本略高,对形状复杂或带长孔的工件效果不好。 变形方面应该就是辉光离子氮化变形最小,实际中相差很小,很多时候几乎一样。 软氮化实质上就是以渗氮为主的低温氮碳共渗,钢的氮原子渗入的同时,还有少量的碳原子渗入,其处理结果与一般气体氮化相比,渗层硬度较氮化低,脆性较小,故称为软氮化。 1、软氮化方法分为:气体软氮化、液体软氮化及固体软氮化三大类。目前国内生产中应用最广泛的就是气体软氮化。气体软氮化就是在含有活性氮、碳原子的气氛中进行低温氮、碳共渗,常用的共渗介质有尿素、甲酰胺、氨气与三乙醇胺,它们在软氮化温度下发生热分解反应,产生活性氮、碳原子。活性氮、碳原子被工件表面吸收,通过扩散渗入工件表层,从而获得以氮为主的氮碳共渗层。 气体软氮化温度常用560-570℃,因该温度下氮化层硬度值最高。氮化时间常为2-3小时,因为超过2、5小时,随时间延长,氮化层深度增加很慢。 2、软氮化层组织与软氮化特点:钢经软氮化后,表面最外层可获得几微米至几十微米的白亮层,它就是由ε相、γ`相与含氮的渗碳体Fe3(C,N)所组成,次层为的扩散层,它主要就是由γ`相与ε相组成。 软氮化具有以下特点: (1)、处理温度低,时间短,工件变形小。 (2)、不受钢种限制,碳钢、低合金钢、工模具钢、不锈钢、铸铁及铁基粉未冶金材料均可进行软氮化处理。工件经软氮化后的表面硬度与氮化工艺及材料有关。 3、能显著地提高工件的疲劳强度、耐磨性与耐腐蚀性。在干摩擦条件下还具有抗擦伤与抗咬合等性能。 4、由于软氮化层不存在脆性ξ相,故氮化层硬而具有一定的韧性,不容易剥落。 因此,目前生产中软氮化巳广泛应用于模具、量具、刀具(如:高速钢刀具)等、曲轴、齿轮、气缸套、机械结构件等耐磨工件的处理。 与渗氮区别主要就是: 1、在一定温度下向试件表面渗入氮、碳,以渗氮为主,但非单纯渗氮。 2、处理时间比氮化短。 3、其表面白层相比渗氮白层而言脆性要小。 4、软氮化应用的材料比较广泛。 5软氮化比普通氮化周期短,温度略低,因此变形更小,但硬度与氮化层厚度略差,且气体软氮

氮化炉安全操作规程通用版

操作规程编号:YTO-FS-PD672 氮化炉安全操作规程通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

氮化炉安全操作规程通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1、清洗模具 (1)把模具放入浓度为6%的盐酸中浸10分钟左右,用铜刷洗净再用清水清洗。 (2)用酒精洗模具的工作带 (3)等水气干了再装入炉内 2、升温通NH3,调节NH3流量,并注意炉内压力的变化及时调整排气闸,使U形压力计保持平衡稳定。 3、NH3瓶减压闸输出压力不超过0.4Mpa,否则会使气爆裂,应保持在0.2Mpa左右。 4、氮化时要注意控制好温度,使炉内温度绝对不超过580℃,否则会造成整炉工作件扔废。 5、调节NH3流量计的原则,水测瓶水位偏多,说明炉内NH3过量,应减少NH3流量,反之,则增加NH3流量,使之符合氮化要求。 6、工作出炉温度应在150℃以下。 7、经常检查炉子排气管有无堵塞及泄露。 8、退氮,在平常使用时,由于炉罐长期渗氮,产生过

金属热处理中渗氮工艺常识

金属热处理中渗氮工艺常识 金属热处理中的各种渗氮工艺使氮原子渗入钢铁工件表层内的化学热处理工艺; 传统的气体渗氮是把工件放入密封容器中﹐通以流动的氨气并加热﹐保温较长时间后﹐氨气热分解產生活性氮原子﹐不断吸附到工件表面﹐并扩散渗入工件表层内﹐从而改变表层的化学成分和组织﹐获得优良的表面性能。如果在渗氮过程中同时渗入碳以促进氮的扩散﹐则称为氮碳共渗。钢铁渗氮的研究始於20世纪初﹐20年代以后获得工业应用。最初的气体渗氮﹐仅限於含铬﹑铝的钢﹐后来才扩大到其他钢种。从70年{BANNED}始﹐渗氮从理论到工艺都得到迅速发展并日趋完善﹐适用的材料和工件也日益扩大﹐成为重要的化学热处理工艺之一。 渗入钢中的氮一方面由表及裡与铁形成不同含氮量的氮化铁﹐一方面与钢中的合金元素结合形成各种合金氮化物﹐特别是氮化铝﹑氮化铬。这些氮化物具有很高的硬度﹑热稳定性和很高的弥散度﹐因而可使渗氮后的钢件得到高的表面硬度﹑耐磨性﹑疲劳强度﹑抗咬合性﹑抗大气和过热蒸汽腐蚀能力﹑抗回火软化能力﹐并降低缺口敏感性。与渗碳工艺相比﹐渗氮温度比较低﹐因而畸变小﹐但由於心部硬度较低﹐渗层也较浅﹐一般只能满足承受轻﹑中等载荷的耐磨﹑耐疲劳要求﹐或有一定耐热﹑耐腐蚀要求的机器零件﹐以及各种切削刀具﹑冷作和热作模具等。渗氮有多种方法﹐常用的是气体渗氮和离子渗氮。 气体渗氮: 一般以提高金属的耐磨性为主要目的﹐因此需要获得高的表面硬度。它适用於38CrMnAc等渗氮钢。渗氮后工件表面硬度可达HV850~1200。渗氮温度低﹐工件畸变小﹐可用於精度要求高﹑又有耐磨要求的零件﹐如鏜床鏜杆和主轴﹑磨床主轴﹑气缸套筒等。但由於渗氮层较薄﹐不适於承受重载的耐磨零件。 气体参氮可採用一般渗氮法(即等温渗氮)或多段(二段﹑三段)渗氮法。前者是在整个渗氮过程中渗氮温度和氨气分解率保持不变。温度一般在480~520℃之间﹐氨气分解率为15~30%﹐保温时间近80小时。这种工艺适用於渗层浅﹑畸变要求严﹑硬度要求高的零件﹐但处理时间过长。多段渗氮是在整个渗氮过程中按不同阶段分别採用不同温度﹑不同氨分解率﹑不同时间进行渗氮和扩散。整个渗氮时间可以缩短到近50小时﹐能获得较深的渗层﹐但这样渗氮温度较高﹐畸变较大。 还有以抗蚀为目的的气体渗氮﹐渗氮温度在550~700℃之间﹐保温0.5~3小时﹐氨分解率为35~70%﹐工件表层可获得化学稳定性高的化合物层﹐防止工件受湿空气﹑过热蒸汽﹑气体燃烧產物等的腐蚀。 正常

氮化炉安全操作规程(2021新版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 氮化炉安全操作规程(2021新版)

氮化炉安全操作规程(2021新版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 1、清洗模具 (1)把模具放入浓度为6%的盐酸中浸10分钟左右,用铜刷洗净再用清水清洗。 (2)用酒精洗模具的工作带 (3)等水气干了再装入炉内 2、升温通NH3,调节NH3流量,并注意炉内压力的变化及时调整排气闸,使U形压力计保持平衡稳定。 3、NH3瓶减压闸输出压力不超过0.4Mpa,否则会使气爆裂,应保持在0.2Mpa左右。 4、氮化时要注意控制好温度,使炉内温度绝对不超过580℃,否则会造成整炉工作件扔废。 5、调节NH3流量计的原则,水测瓶水位偏多,说明炉内NH3过量,应减少NH3流量,反之,则增加NH3流量,使之符合氮化要求。 6、工作出炉温度应在150℃以下。

7、经常检查炉子排气管有无堵塞及泄露。 8、退氮,在平常使用时,由于炉罐长期渗氮,产生过剩,一般在使用5-7炉后,进行一次退氮,温度加温在700℃左右,不能NH3保温8小时,再降温正常温,退氮时再放入一些碎铁片最佳。 XX设计有限公司 Your Name Design Co., Ltd.

氮化基本原理及操作指南

氮化基本原理及操作指 南 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

氮化基本原理及操作指南(仅供参考) 一、概论: 1 、氮化就是把氮渗入钢件表面,形成富氮硬化层的化学热处理过程。 2 、氮化处理:氮化处理是利用氨在一定温度下(500 一600 ℃),所分解的 活性氮原子向钢的表面层渗透扩散而形成铁氮合金,从而改变钢件表面机械性能(增强耐磨性,增加硬度,提高耐蚀性等)和物理、化学性质。3 、氮化过程:氮化共有三个过程: ( 1 )氨的分解 随着温度的升高,氨的分解程度加大,生成活性氮原子。 2NH3 →6H + 2 [ N 〕 ( 2 )吸收过程 钢表面吸收氮原子,先溶解形成氮在Q 一Fe 中的饱和固溶体,然后再形成氮化物。 2mFe + 2 [ N 〕→2FemN ( 3 )扩散过程 氮从表面饱和层向钢内层深处进行扩散,形成一定深度的氮化层。 二、工件如何进行氮化 1 、组织准备 氮化工件在氮化前,必须具有均匀一致的组织,否则氮化层质量不高,通常都是采用调质、(淬火)处理来作为预备热处理。 2 、气密性检查 氮化前应对加热炉、氮化罐和整个氮化系统的管道接头处进行气密性检查,保证氨气不漏和在管路中的畅通无阻。 3 、工件工作面的抛光清洁 要求氮化的表面要经过认真的打磨抛光(像镜面一样)及仔细的检查,氮化表面应无油迹、锈蚀、尖角、毛刺、碰伤和洗涤不掉的脏物,对于非氮化面要检查防护镀层是否完整。要氮化前清洗零件≤2 小时,先用干净棉纱擦净油污,再用汽油、酒精或四氯化碳等清洗,也可用稀盐酸或10 %碳酸钠(N 今C03 )沸腾的溶液中去油,一般在溶液中煮沸8 一10 分钟,然后用清水反复洗涤。另外组织吹干、擦千。装炉时,对于易变形零件,如杆件,最好垂直吊挂在罐中。 4 、防止工件局部氮化 有些工件某些部位不需要氮化,可以用以下几种方法加以防止。 ( 1 )镀金属法a , b (略) ( 2 )涂料法a , b , c , d (略) 5 、通入氨气前应注意事项 ( 1 )氨气(液氨):要求水、油总含量≤0 . 2 % ,氨(NH3 )含量≥99 . 8 %。( 2 )保证氨的充足供应量,以利氮化(每公斤液氨每小时可使工件表面积氮化15平方米)。 ( 3 )进行设备的漏气检查 氨气混合在空气中对人的健康有极大的危害,同时氨在空气中分布过多时(空气中混有10 一25%) ,一遇到火便会引起燃烧。故氮化房内严禁吸烟。 ( 4 )检查漏气

氮化基本原理及操作指南

氮化基本原理及操作指南(仅供参考) 一、概论: 1 、氮化就是把氮渗入钢件表面,形成富氮硬化层的化学热处理过程。 2 、氮化处理:氮化处理是利用氨在一定温度下(500 一600 ℃),所分解的活性氮原子向钢的表面层渗透扩散而形成铁氮合金,从而改变钢件表面机械性能(增强耐磨性,增加硬度,提高耐蚀性等)和物理、化学性质。 3 、氮化过程:氮化共有三个过程: ( 1 )氨的分解 随着温度的升高,氨的分解程度加大,生成活性氮原子。 2NH3 →6H + 2 [ N 〕 ( 2 )吸收过程 钢表面吸收氮原子,先溶解形成氮在Q 一Fe 中的饱和固溶体,然后再形成氮化物。 2mFe + 2 [ N 〕→2FemN ( 3 )扩散过程 氮从表面饱和层向钢内层深处进行扩散,形成一定深度的氮化层。 二、工件如何进行氮化 1 、组织准备 氮化工件在氮化前,必须具有均匀一致的组织,否则氮化层质量不高,通常都是采用调质、(淬火)处理来作为预备热处理。 2 、气密性检查 氮化前应对加热炉、氮化罐和整个氮化系统的管道接头处进行气密性检查,保证氨气不漏和在管路中的畅通无阻。 3 、工件工作面的抛光清洁 要求氮化的表面要经过认真的打磨抛光(像镜面一样)及仔细的检查,氮化表面应无油迹、锈蚀、尖角、毛刺、碰伤和洗涤不掉的脏物,对于非氮化面要检查防护镀层是否完整。要氮化前清洗零件≤2 小时,先用干净棉纱擦净油污,再用汽油、酒精或四氯化碳等清洗,也可用稀盐酸或10 %碳酸钠(N 今C03 )沸腾的溶液中去油,一般在溶液中煮沸8 一10 分钟,然后用清水反复洗涤。另外组织吹干、擦千。装炉时,对于易变形零件,如杆件,最好垂直吊挂在罐中。 4 、防止工件局部氮化 有些工件某些部位不需要氮化,可以用以下几种方法加以防止。 ( 1 )镀金属法a , b (略) ( 2 )涂料法a , b , c , d (略) 5 、通入氨气前应注意事项 ( 1 )氨气(液氨):要求水、油总含量≤0 . 2 % ,氨(NH3 )含量≥99 . 8 %。( 2 )保证氨的充足供应量,以利氮化(每公斤液氨每小时可使工件表面积氮化15平方米)。 ( 3 )进行设备的漏气检查 氨气混合在空气中对人的健康有极大的危害,同时氨在空气中分布过多时(空气中混有10 一25%) ,一遇到火便会引起燃烧。故氮化房内严禁吸烟。 ( 4 )检查漏气 ①用酚酞试纸浸湿后放在怀疑的漏气处,试纸变为红色就证明漏气现象。

模具氮化安全操作规程

高科建材(咸阳)铝材科技有限公司 模具氮化安全操作规程 一、目的: 明确氮化操作规定要求,确保模具氮化质量。 二、适用范围: 适用于模具的氮化处理。 三、安全操作规程 1、操作前设备检查。 1)在氮化前检查冷却水管道、氨分介管道和排气管道是否畅通。 2)检查氨气管道接口,不得有漏气现象。 3)检查电器线路是否正常;密封圈有否弹性,无弹性需更换新 2、氮化前工件准备:工件在氮化前需清洗干净,程序为:用铁钩勾销孔放入酸中,时间参看工艺,拿出后用砂纸或刷子边洗边冲干净。洗净后,在水中浸泡5分钟,出水用布抹干,浸入酒精中,出酒精吹干。 3、装框 工件分大小模入框,一般为竖放模具,间隙为≥10mm,注意小心轻放,最上格与最下第二格分别吊上一试样,模具放完后,用铝丝加固,防止模具在吊运中撞落损坏,用吊机把框架吊入炉中,放油阀下炉盖压紧压柄。 4、氮化 1)氨气为1~1.5Mpa,开减压阀0.8~0.12Mpa。 2)按工艺要求设置温度,操作仪表键盘见参考说明书。 3)到保温时间后,每半小时测量一次。 4)保持炉内压力在工艺范围内,如果超出应调节进出气阀门。 5)注意氨流量,不能变化太大。 6)整个氮化过程中,一定要保证冷却水供应,遇到停水须向上 级部门反映,迅速排除故障。 5、降温:氮化结束关闭升温开关,按工艺减少氨流量及炉内压力,半小时后开鼓风机,注意打开进出风口。 6、出炉:炉内温度降至180℃以下,关氨气总阀,放松压柄,开炉盖,用吊机吊出模框,待冷至50℃以下取下试样,交试验员待检,模具从框中取出,转运模具仓。 四、本管理办法从2018-7-1日起试行。 编制:复核:批准:

氮化处理工艺守则

氮化处理工艺 QB/ZFFG04.46.56-2005 Rev.01 1、适用范围 本标准规定我厂使用的抗蚀氮化处理的工艺守则。 2、名词术语 2.1氮化 将钢铁工件置于渗氮介质中,在一定温度下加热保温,从而在工件表面形成一层以氮化物为主的渗层组织的化学热处理工艺过程。 2.2抗蚀氮化 使碳钢、一般低合金钢工件表面形成一层0.0150.060mm厚致密的、化学稳定性高的ε相组织或ε+ξ相组织,从而提高工件在一定介质中的抗腐蚀能力的气体氮化过程。 2.3有效加热区 炉膛内炉温均匀性符合热处理工艺要求的装料区域。有效加热区的确定按GB9452-88《热处理炉有效加热区测定方法》进行。 2.4炉温均匀性 在正常工作条件和额定温度下,在热稳定状态时,同一时刻在规定的测温区域内,炉温的最高值与最低值之间的偏差。 2.5热处理变形 由热处理引起的工件形状变化或尺寸的偏差。垂直于长度方向的变形叫做弯曲。 3、待氮化件 3.1待氮化件的材料 待氮化件的材料,其化学成分应符合有关国家标准、部标准或厂标准的规定。 3.2待氮化件的原始状态数据 对于待氮化件,应注明的原始状态数据包括: (1)材质代号或化学成分 (2)待氮化件的供货状态(铸件、锻件、棒料、半成品或成品件) (3)待氮化件的预先热处理状态(正火、退火、淬火+回火) 3.3待氮化件的外观、形状及尺寸 3.3.1工件的外观不允许有裂纹和影响热处理质量的锈蚀、氧化皮及碰伤。 3.3.2工件的简图或任务书,应注明主要尺寸,能准确地反映工件的形状。主要尺寸也可以通过实测获得。 4、热处理设备

4.1氮化加热设备 氮化加热设备必须满足下列要求: 4.1.1在加热设备正常装炉量的情况下,有效加热区内的允许温度偏差不得超过±15℃,且温度可以调节和控制。 4.1.2氮化炉内的气体成分要保证抗蚀氮化的要求,而且可经调节。炉子要密封,炉气要循环。所用液氨的化学成分要稳定,有害杂质少。 4.2温度测定及温度控制设备 4.2.1氮化所使用的各种加热设备都应配有温度测定及温度控制装置,加热设备中的每个加热区都应配备跟踪处理温度与时间关系的记录装置。 4.2.2热电温度测定设备的指示器经校正后,其指示器上温度读数的总误差在预定温度≤400℃时≤±4℃,在预定温度>400℃时≤±T/100℃,T为预定温度。 4.3设备的保养 为了保证设备的精度和使用性能,应遵守热处理设备的操作规程和维修制度,并保存有关记录。其中温度测定及温度控制设备应遵守质量处仪表室的有关规定。 5、作业 5.1氮化前的准备工作 5.1.1对待氮化的工件进行检查和了解,并查阅有关工艺文件 (1)了解待氮化件的质量要求 (2)了解非氮化部位的防渗措施 (3)了解钢材的牌号或化学成分、预先热处理等情况。 5.1.2检查待氮化件的外表质量 (1)氮化前工件的表面粗糙度最好在0.8μm以下。 (2)检查工件表面是否有氧化皮、锈斑、油污。有锈斑者应先进行打磨,然后用汽油清洗;无锈斑者则可直接清洗。清洗后用洁净棉纱或布擦干,在1~~2hr内就应当装炉进行氮化处理。中间停留时间越短越好。 (3)检查工件表面,不允许有碰伤、裂纹、尖角及毛刺。必要时要进行探伤检验。 5.1.3清理氮化罐,并对液氨瓶、四通阀、流量计、氨分解测定器、干燥箱、加热炉及温度测控仪表等设备的状态作严格的检查,保证设备良好、管路畅通。 5.1.4根据工件的形状及技术要求,准备好必要的工夹具。 5.2装炉 5.2.1对工件进行绑扎。绑扎工件的铁丝和工夹具必须洁净。 5.2.2非氮化部位可用镀铜或镀锡保护,也可涂敷涂料(常用水玻璃+10~~20%石墨粉,涂层1~~1.5μm)。

氮化工艺内容

渗氮、渗碳、碳氮共渗工艺专利技术大全 1 CN02136610.1 高温气体渗氮淬火时效或等温淬火工艺高温气体渗氮淬火时效或等温淬火工艺属于钢铁化学热处理领域。钢铁高温气体渗氮时,选择适当的温度、时间、氮势和冷却方法,在只含氮无碳的介质进行渗氮,表面形成ε-Fe2-3N化合物层,次表层为高氮奥氏体,渗后采用水基或油基淬火介质直接淬火,后在180~300℃时效或在奥氏体渗氮后直接于180~300℃等温。本发明具有实质性特点和显著进步,能获得高的硬度,心部好的塑性和韧性。可进一步减少热处理畸变,畸变程度与铁素体氮碳共渗相当。用此工艺来代替奥氏体氮碳共渗,可以根除产生氢氰酸的根源,用来代替铁素体氮碳共渗,不仅根除氢氰酸的污染,还能提高有效硬化层的深度。 2 CN96110008.7 钢的渗氮方法一种用氮原子与钢表面反应形成一层硬质渗氮化层的钢的渗氮方法,在渗氮处理之前,将钢置于含氟化物气体或含氟气和占总体积0.5—20%的空气或占总体积0.1—4%的氧气组成的气氛中加热因此防止发生非均匀渗氮,同时可以节省昂贵的含氟化物或含氟气体的消耗。 3 CN96107326.8 高渗氮性能弹簧及其制备方法一种形成弹簧的方法,当弹簧渗氮时,当方法能降低其表面硬度和硬化层厚度的变化。在该弹簧渗氮前,用电抛光或其它适宜的方法将其表面上形成的氧化厚度减至1.5μm或更小,以使弹簧靠近其表面的残余应力为-5kg/mm2—5kg/mm2。用这种方法,通过渗氮提高所得弹簧的表面硬度和渗氮层厚度是可能的。 4 CN96190898.X 成型性与渗氮特性优良的渗氮钢及其冲压成型制品一种成型性和渗氮特性优良的渗氮钢,它含有(以重量为基础):C:0.0002~0.08%以下、Si:0.005~1.00%、Mn:0.010~3.00%、P:0.001~0.150%、N:0.0002~0.0100%、Cr:0.15以上~5.00%、Al:0.060以上~2.00%(当C含量为0.0002—0.0100%以下时,Al成为0.10以上~2.00%范围内的选择性元素)以及选自Ti:0.010~1.00%和V:0.010~1.00%中的1种或2种元素,其余是Fe和不可避免的杂质,该冲压成型制品是钢制品,至少在其一侧上具有硬质氮化物层。 5 CN85101602 长管内壁离子渗氮装置一种离子轰击化学热处理炉用长管内壁离子渗氮装置,它主要由自动定位的密封接头、内阳极管和定位器组成.采用钛管作为内阳极,可加速渗氮过程,改善长管内孔壁硬化的均匀性.用熔铸云母制造定位器,制作方便,寿命长,成本低.本发明的渗氮装置不仅结构简单使用方便,改进了内阳极管的安装和定位技术,而且解决了长内孔渗氮不均的质量问题. 6 CN85100540 最优扩散条件动态可控渗氮技术最优扩散条件动态可控渗氮技术.本发明属黑色金属材料表面化学热处理可控渗氮新方法.解决可控渗氮所存在的渗氮速度慢和重现性差两个问题.本发明主要技术特征是在渗氮过程中使氮势跟踪最优扩散条件动态控制曲线由高而低地逐渐变化,既能控制渗氮层组织、降低渗氮层脆性,又能保持高的渗氮速度,重现性良好.本发明兼有普通渗氮和已有的可控渗氮的优点而克服了两者各自的缺点.用于38CrMoAl、3Cr2W8、Cr2、25Cr2MoV等钢种的渗氮处理. 7 CN85107162 深层可控离子渗氮法本发明是关于深层可控辉光离子渗氮方法。$为了提高合金结构钢制零件的耐疲劳性能,应尽可能地增加其渗氮层深度和抑制表面脆性化合物的产生。本发明通过使用含氮5-50%的N2+H2混合气,经450-550℃、550-650℃、450-550℃三段共45-65小时的辉光离子渗氮,得到0.7-1.0mm的渗氮层,表面相成分为γ单相化合物或无化合物

热处理科普氮化知识

化学热处理——氮化知识简介 一、氮化的机理 氮化是将工件放入大量活性氮原子的介质中,在一定温度与压力下,把氮原子渗入钢件表面,形成富氮硬化层的热处理。 二、氮化的作用 1、氮化能使零件表面有更高的硬度和耐磨性。例如用38CrMoAlA钢制作的零件经氮化处理后表面的硬度可达HV=950—1200,相当于HRC=65—72,而且氮化后的高强度和高耐磨性保持到500—600℃,不会发生显著的改变。 2、能提高抗疲劳能力。由于氮化层内形成了更大的压应力,因此在交变载荷作用下,零件表现出具有更高的疲劳极限和较低的缺口敏感性,氮化后工件的疲劳极限可提高15—35%。 3、提高工件抗腐蚀能力,由于氮化使工件表面形成一层致密的、化学稳定性较高的ε相层,在水蒸气中及碱性溶液中具有高的抗腐蚀性,此种氮化法又简单又经济,可以代替镀锌、发蓝,以及其它化学镀层处理。此外,有些模具经过氮化,不但可以提高耐磨性和抗腐性,还能减少模具与零件的粘合现象,延长模具的工作寿命。 二、氮化的实现方法 1、气体氮化 气体氮化是将工件放入一个密封空间内,通入氨气,加热到500-580℃保温几个小时到几十个小时。氨气在400℃以上将发生如下分解反应:2NH3—→3H2+2[N],从而炉内就有大量活性氮原子,活性氮原子[N]被钢表面吸收,并向内部扩散,从而形成了氮化层。 以提高硬度和耐磨性的氮化通常渗氮温度为500—520℃。停留时间取决于渗氮层所需要的厚度,一般以0.01mm/h计算。因此为获得0.25—0.65mm的厚度,所需要的时间约为20—60h。提高渗氮温度,虽然可以加速渗氮过程,但会使氮化物聚集、粗化,从而使零件表面层的硬度降低。 对于提高硬度和耐磨性的氮化,在氮化时必须采用含Mo、A、V等元素的合金钢,如38CrMoAlA、38CrMoAA等钢。这些钢经氮很后,在氮化层中含有各种合金氮化物,如:AlN、CrN、MoN、VN等。这些氮化物具有很高的硬度和稳定性,并且均匀弥散地分布于钢中,使钢的氮化层具有很高的硬度和耐磨性。Cr还能提高钢的淬透性,使大型零件在氮化前调质时能得到均匀的机械性能。Mo还能细化晶粒,并降低钢的第二类回火脆性。如果用普通碳钢,在氮化层中形成纯氮化铁,当加热到较高温度时,易于分解聚集粗化,不能获得高硬度和高耐磨性。 抗腐蚀氮化温度一般在600—700℃之间,分解率大致在40—70%范围,停留时间由15分钟到4小时不等,深度一般不超过0.05m m。对于抗腐蚀的氮化用钢,可应用任何钢种,都能获得良好的效果。 2、液体氮化 液体氮化它是一种较新的化学热处理工艺,温度不超过570℃,处理时间短,仅1—3h;而且不要专用钢材,试验表明:40Cr经液体氮化处理比一般淬火回火后的抗磨能力提高50%;铸铁经液体氮化处理其抗磨能力提高更多。不仅如此,实践证明:经过液体氮化处理的零件,在耐疲劳性、耐腐蚀性等方面都有不同程度的提高;高速钢刀具经液体氮化处理,一般能提高使用寿命20—200%;3Cr2W8V压铸模经液体氮化处理后,可提高使用寿命3—5倍。液体氮化表层硬而不脆,并且具有一定的韧性,不容易发生剥落现象。 但是,液体氮化也有缺点:如它的氮化表层中的氮铁化合物层厚度比较薄,仅仅只有0.01—0.02mm。国外多采用氰化盐作原料液体氮化,国内已改用无毒原料液体氮化。我国无毒液体氮化的配方是:尿素40%,碳酸钠30%、氯化钾20%,氢氧化钾10%(混合盐溶点

相关文档
最新文档