海量日志处理系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海量日志处理系统
转载自董的博客
/search-engine/log-systems/1. 背景介绍许多公司的平台每天会产生大量的日志(一般为流式数据,如,搜索引擎的pv,查询等),处理这些日志需要特定的日志系统,一般而言,这些系统需要具有以下特征:(1)构建应用系统和分析系统的桥梁,并将它们之间的关联解耦;(2)支持近实时的在线分析系统和类似于Hadoop之类的离线分析系统;(3)具有高可扩展性。即:当数据量增加时,可以通过增加节点进行水平扩展。本文从设计架构,负载均衡,可扩展性和容错性等方面对比了当今开源的日志系统,包括facebook的scribe,apache的chukwa,linkedin的kafka和cloudera的flume等。2. FaceBook的ScribeScribe是facebook 开源的日志收集系统,在facebook内部已经得到大量的应用。它能够从各种日志源上收集日志,存储到一个中央存储系统(可以是NFS,分布式文件系统等)上,以便于进行集中统计分析处理。它为日志的“分布式收集,统一处理”提供了一个可扩展的,高容错的方案。它最重要的特点是容错性好。当后端的存储系统crash时,scribe会将数据写到本地磁盘上,当存储系统恢复正常后,scribe将日志重新加载到存储系统中。架构:scribe的架构比较简单,主要包括三部
分,分别为scribe agent,scribe和存储系统。(1) scribe agentscribe agent实际上是一个thriftclient。向scribe发送数据的唯一方法是使用thriftclient,scribe内部定义了一个thrift 接口,用户使用该接口将数据发送给server。(2) scribescribe 接收到thrift client发送过来的数据,根据配置文件,将不同topic的数据发送给不同的对象。scribe提供了各种各样的store,如file,HDFS等,scribe可将数据加载到这些store 中。(3) 存储系统存储系统实际上就是scribe中的store,当前scribe支持非常多的store,包括file(文件),buffer(双层存储,一个主储存,一个副存储),network(另一个scribe 服务器),bucket(包含多个store,通过hash的将数据存到不同store中),null(忽略数据),thriftfile(写到一个Thrift TFileTransport文件中)和multi(把数据同时存放到不同store 中)。3. Apache的Chukwachukwa是一个非常新的开源项目,由于其属于hadoop系列产品,因而使用了很多hadoop的组件(用HDFS存储,用mapreduce处理数据),它提供了很多模块以支持hadoop集群日志分析。需求:(1) 灵活的,动态可控的数据源(2) 高性能,高可扩展的存储系统(3) 合适的框架,用于对收集到的大规模数据进行分析框架:Chukwa中主要有3种角色,分别为:adaptor,agent,collector。(1) Adaptor 数据源可封装其他数据源,如file,unix命令行工具等目前可用的数据源有:hadoop logs,应用程序度量数据,系统参
数数据(如linux cpu使用流率)。(2) HDFS 存储系统Chukwa 采用了HDFS作为存储系统。HDFS的设计初衷是支持大文件存储和小并发高速写的应用场景,而日志系统的特点恰好相反,它需支持高并发低速率的写和大量小文件的存储。需要注意的是,直接写到HDFS上的小文件是不可见的,直到关闭文件,另外,HDFS不支持文件重新打开。(3) Collector 和Agent为了克服(2)中的问题,增加了agent和collector阶段。Agent的作用:给adaptor提供各种服务,包括:启动和关闭adaptor,将数据通过HTTP传递给Collector;定期记录adaptor状态,以便crash后恢复。Collector的作用:对多个数据源发过来的数据进行合并,然后加载到HDFS中;隐藏HDFS实现的细节,如,HDFS版本更换后,只需修改collector 即可。(4) Demux和achieving直接支持利用MapReduce处理数据。它内置了两个mapreduce作业,分别用于获取data和将data转化为结构化的log。存储到data store(可以是数据库或者HDFS等)中。4. LinkedIn的KafkaKafka是2010年12月份开源的项目,采用scala语言编写,使用了多种效率优化机制,整体架构比较新颖(push/pull),更适合异构集群。设计目标:(1) 数据在磁盘上的存取代价为O(1)
(2) 高吞吐率,在普通的服务器上每秒也能处理几十万条消息(3) 分布式架构,能够对消息分区(4) 支持将数据并行的加
载到hadoop架构:Kafka实际上是一个消息发布订阅系统。producer向某个topic发布消息,而consumer订阅某个topic 的消息,进而一旦有新的关于某个topic的消息,broker会传递给订阅它的所有consumer。在kafka中,消息是按topic 组织的,而每个topic又会分为多个partition,这样便于管理数据和进行负载均衡。同时,它也使用了zookeeper进行负载均衡。Kafka中主要有三种角色,分别为producer,broker 和consumer。(1) ProducerProducer的任务是向broker发送数据。Kafka提供了两种producer接口,一种是low_level接口,使用该接口会向特定的broker的某个topic下的某个partition发送数据;另一种那个是high level接口,该接口支持同步/异步发送数据,基于zookeeper的broker自动识别和负载均衡(基于Partitioner)。其中,基于zookeeper的broker 自动识别值得一说。producer可以通过zookeeper获取可用的broker列表,也可以在zookeeper中注册listener,该listener 在以下情况下会被唤醒:a.添加一个broker
b.删除一个broker
c.注册新的topic
d.broker注册已存在的topic