全国各地2019届高三文科数学模拟试卷精彩试题 汇编07 含解析
2019届全国高考高三模拟考试卷数学(文)试题(一)(解析版)(最新整理)
1a
b
0 , F1 , F2 为椭圆 C
的左右焦点,离
心率为 2 ,短轴长为 2. 2
(1)求椭圆 C 的方程;
(2)如图,椭圆 C 的内接平行四边形 ABCD 的一组对边分别过椭圆的焦点 F1 , F2 ,求该平行四边形 ABCD
面积的最大值.
页
6第
21.(12 分)[2019·豫西名校]已知函数 f x a ln x x2 ax a R . (1)若 x 3 是 f x 的极值点,求 f x 的单调区间; (2)求 g x f x 2x 在区间 1,e 上的最小值 ha .
A. y2 2x
B. y2 2x
C. y2 3x
D. y2 3x
11.[2019·陕西联考]将函数
y
sin
2x
π 6
的图象向右平移
π 3
个单位,在向上平移一个单位,得到
g
x
的
图象.若 g x1 g x2 4 ,且 x1 , x2 2π, 2π ,则 x1 2x2 的最大值为( )
c 1 cos A 3a sin C .
(1)求角 A 的大小; (2)若 a 7 , b 1 ,求 △ABC 的面积.
页
4第
18.(12 分)[2019·揭阳一模]如图,在四边形 ABED 中, AB∥DE , AB BE ,点 C 在 AB 上,且 AB CD , AC BC CD 2 ,现将 △ACD 沿 CD 折起,使点 A 到达点 P 的位置,且 PE 2 2 . (1)求证:平面 PBC 平面 DEBC ; (2)求三棱锥 P EBC 的体积.
时日影长度为( )
A. 953 1 分 3
页
B.1052 1 分 2
文科十套:2019高考数学必刷模拟卷解析
这个梦带给我们追逐的力量,带给我们迎难而上的拼劲,还有一个绚丽夺目的数学世界,前 方的路虽然很黑,但是请看看在你周围这些带着光芒的人,他们和你一样,和我一样,都是 在这条路上行走的伙伴,
他们和你一样,和我一样,都是这个时代爱数学、爱数学竞赛的傻子们,
嘿,傻子,这个时代欢迎你的到来,
嘿,傻子,加入这个“傻子俱乐部”吧,接下来,让我们一起走吧
—来自傻子俱乐部,最爱你们的小数君
微信公众号:数学竞赛的那些事儿(
)
微信公众号 数学竞赛的那些事儿 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2019
学
一考试 考答 必
文 数学(一)
ln an − ln an+1 + ln 2 = 0,
an+1 = 2, an
2n > 101, n 的 小 为 7.
an = 2n(n ∈ N∗).
2 (1 − 2n) Sn = 1 − 2 =
3
微信公众号 数学竞赛的那些事儿 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
32
32
H√ 2
h= . 2
8. 答案 B.
解析
为
sin2 1◦
+ sin2 2◦
+ · · · + sin2 89◦
=
44
(sin2
1◦
+
sin2
) 89◦
+
2019年高考文科数学全国新课标模拟卷及答案
高考文科数学全国新课标模拟卷文科数学第l一、选择题:本大题共12小题,每小题5分,共60分.1.(5分)设集合A={x∈Z|x2<4},B={x|x>﹣1},则A∩B=()A.{0,1} B.{﹣1,0} C.{﹣1,0,1} D.{0,1,2}2.(5分)在复平面内,复数对应的点的坐标为()A.(1,1)B.(﹣1,1)C.(1,﹣1)D.(﹣1,﹣1)3.(5分)函数y=的最小正周期是()A.B.πC.2πD.4π4.(5分)双曲线C:=1(a>0,b>0)的一条渐近线与直线x﹣2y+1=0垂直,则双曲线C的离心率为()A.B.C.2 D.5.(5分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=|x+1| B.y=C.y=2﹣|x|D.y=log2|x|6.(5分)设x,y满足约束条件,则z=2x﹣3y的最小值是()A.﹣7 B.﹣6 C.﹣5 D.﹣37.(5分)已知关于x的方程sinx+cosx﹣a=0有实数解,则实数a的取值范围是()A.[﹣2,2] B.(﹣2,2)C.[﹣1,1] D.[﹣1﹣,1+]8.(5分)在△ABC中,点D为BC的中点,若AB=,AC=3,则•=()A.1 B.2 C.3 D.49.(5分)执行如图的程序框图,如果输入的x,y,N的值分别为1,2,3,则输出的S=()A.27 B.81 C.99 D.57710.(5分)若函数f(x)=ax2﹣lnx在(0,1]上存在唯一零点,则实数a的取值范围是()A.[0,2e] B.[0,] C.C、(﹣∞,﹣1] D.(﹣∞,0]11.(5分)设抛物线C:y2=2px(p>0)的焦点为F,准线为l,A为C上一点,以F为圆心且经过点A的圆与L交于B,D两点,若∠ABD=90°,|AF|=2,则p=()A.1 B.C.2 D.12.(5分)如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则该几何体体积的最小值等于()A.36 B.C.18 D.二、填空题:本大题4小题,每小题5分13.(5分)现有3本不同的语文书,2本不同的数学书,若从这5本书中一次任取2本,则取出的书都是语文书的概率为.14.(5分)甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,甲说:丙没有考满分;乙说:是我考的;丙说:甲说真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是.15.(5分)已知直三棱柱ABC﹣A1B1C1中,AA1=6,AB=4,BC=2,∠ABC=60°,若该三棱柱的所有顶点都在球O的球面上,则球O的表面积为.16.(5分)已知在△ABC中,C=,AB=6,则△ABC面积的最大值是.三、简答题17.(12分)已知各项为正数的等比数列{a n}中,a2=2,a3•a5=64.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2a n,求数列{b n}的前n项和T n.18.(12分)四棱锥P﹣ABCD中底面ABCD是菱形,PA=PC,AC与BD交于点O.(1)求证:PB⊥AC;(2)若平面PAC⊥平面ABCD,∠ABC=60°,PB=AB=2,求点O到平面PBC的距离.19.(12分)某校2014-2015学年高一年级共有800名学生,其中男生480名,女生320名,在某次满分为100分的数学考试中,所有学生成绩在30分及30分以上,成绩在“80分及80分以上”的学生视为优秀,现按性别采用分层抽样的方法抽取100名学生,将他们的成绩按[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100)分成七组,得到的频率分布直方图如图所示:(Ⅰ)估计该年纪本次数学考试成绩的平均分(同一组中的数据用该区间中点值做代表);(Ⅱ)请将下列2×2列联表补充完整,计算并说明是否有95%的把握认为“该校学生数学成绩优秀与性别有关”.数学成绩优秀数学成绩不优秀合计男生12女生合计100附:K2=,其中n=a+b+c+dP(K2>k0) 0.15 0.10 0.05k0 2.072 2.706 3.84120.(12分)设椭圆C:=1(a>b>0)的左焦点为F(﹣,0),过F的直线交C于A,B两点,设点A关于y轴的对称点为A′,且|FA|+|FA′|=4.(Ⅰ)求椭圆C的方程;(Ⅱ)若点A在第一象限,当△AFA′面积最大时,求|AB|的值.21.(12分)已知函数f(x)=x3+(a+1)x2+ax﹣2,曲线y=f(x)在点(1,f(1))处的切线在x轴上的截距为.(Ⅰ)求实数a的值;(Ⅱ)证明:当k<1时,曲线y=f(x)与y=(k﹣1)e x+2x﹣2有唯一公共点.选修4-1:几何证明选讲22.(10分)如图,CD是△ABC中AB边上的高,以AD为直径的圆交AC于点E,一BD为直径的圆交BC于点F.(Ⅰ)求证:E、D、F、C四点共圆;(Ⅱ)若BD=5,CF=,求四边形EDFC外接圆的半径.选修4-4:坐标系与参数方程23.已知曲线C的极坐标方程是ρ﹣2cosθ﹣4sinθ=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,设直线l的参数方程是(t是参数).(1)将曲线C的极坐标方程化为直角坐标方程,将直线l的参数方程化为普通方程;(2)若直线l与曲线C相交于A、B两点,与y轴交于点E,求|EA|+|EB|.选修4-5:不等式选讲24.已知函数f(x)=|2x+b|.(Ⅰ)若不等式f(x)≤3的解集是{x|﹣1≤x≤2},求实数b的值;(Ⅱ)在(Ⅰ)的条件下,若f(x+3)+f(x+1)≥m对一切实数x恒成立,求实数m的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.1.(5分)设集合A={x∈Z|x2<4},B={x|x>﹣1},则A∩B=()A.{0,1} B.{﹣1,0} C.{﹣1,0,1} D.{0,1,2}考点:交集及其运算.专题:集合.分析:先求出x2<4的解集,再求出集合A,由交集的运算求出A∩B.解答:解:由x2<4得,﹣2<x<2,则集合A={x∈Z|x2<4}={﹣1,0,1},又B={x|x>﹣1},则A∩B={0,1},故选:A.点评:本题考查了交集及其运算,注意元素的取值范围,属于基础题.2.(5分)在复平面内,复数对应的点的坐标为()A.(1,1)B.(﹣1,1)C.(1,﹣1)D.(﹣1,﹣1)考点:复数代数形式的混合运算;复数的代数表示法及其几何意义.专题:计算题.分析:利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,化简复数z为﹣1+i,由此可得它对应的点的坐标.解答:解:∵复数===﹣1+i,故它对应的点的坐标为(1,﹣1),故选B.点评:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.3.(5分)函数y=的最小正周期是()A.B.πC.2πD.4π考点:三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:原式可以化简为y=tanx,故由正切函数的图象和性质可知最小正周期是π.解答:解:y====tanx.故由正切函数的图象和性质可知最小正周期是π.故选:B.点评:本题主要考察三角函数的周期性及其求法,属于基础题.4.(5分)双曲线C:=1(a>0,b>0)的一条渐近线与直线x﹣2y+1=0垂直,则双曲线C的离心率为()A.B.C.2 D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:分析:由题意可判断出直线x﹣2y+1=0与渐近线y=x垂直,利用相互垂直的直线的斜率之间的关系和离心率的计算公式即可得出.解答:解:∵双曲线=1的渐近线方程为y=±x.又直线x+2y﹣1=0可化为y=x+,可得斜率为.∵双曲线=1的一条渐近线与直线x+2y﹣1=0垂直,∴×=﹣1,得到=﹣2.∴双曲的离心率e====.故选:D.点评:熟练掌握双曲线的渐近线、相互垂直的直线的斜率之间的关系和离心率的计算公式是解题的关键.5.(5分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=|x+1| B.y=C.y=2﹣|x|D.y=log2|x|考点:函数奇偶性的判断;函数单调性的判断与证明.专题:函数的性质及应用.分析:根据函数奇偶性和单调性之间的关系解答:解:A.函数y=|x+1|为非奇非偶函数,不满足条件.B.函数的定义域为[0,+∞),为非奇非偶函数,不满足条件.C.函数为偶函数,当x>0时,y=2﹣|x|=y=2﹣x,为减函数,不满足条件.D.y=log2|x|是偶函数又在(0,+∞)上单调递增,满足条件.故选:D点评:本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的性质.6.(5分)设x,y满足约束条件,则z=2x﹣3y的最小值是()A.﹣7 B.﹣6 C.﹣5 D.﹣3考点:简单线性规划.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.解答:解:由z=2x﹣3y得y=,作出不等式组对应的平面区域如图(阴影部分ABC):平移直线y=,由图象可知当直线y=,过点C时,直线y=截距最大,此时z最小,由,解得,即C(3,4).代入目标函数z=2x﹣3y,得z=2×3﹣3×4=6﹣12=﹣6.∴目标函数z=2x﹣3y的最小值是﹣6.故选:B.点评:本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.7.(5分)已知关于x的方程sinx+cosx﹣a=0有实数解,则实数a的取值范围是()A.[﹣2,2] B.(﹣2,2)C.[﹣1,1] D.[﹣1﹣,1+]考点:两角和与差的正弦函数.专题:计算题;函数的性质及应用;三角函数的图像与性质.分析:关于x的方程sinx+cosx﹣a=0有解,即a=sinx+cosx=2sin(x+)有解,结合正弦函数的值域可得a的范围.解答:解:关于x的方程sinx+cosx﹣a=0有解,即a=sinx+cosx=2sin(x+)有解,由于x为实数,则2sin(x+)∈[﹣2,2],故有﹣2≤a≤2,故选A.点评:本题主要考查两角和差的正弦公式、正弦函数的值域,属于中档题.8.(5分)在△ABC中,点D为BC的中点,若AB=,AC=3,则•=()A.1 B.2 C.3 D.4考点:平面向量数量积的运算;余弦定理.专题:平面向量及应用.分析:利用三角形中线的性质将和分别用表示,然后进行向量的模的运算即可.解答:解:因为在△ABC中,点D为BC的中点,所以,,因为AB=,AC=3,所以•====2;故选B.点评:本题考查了向量的三角形法则的运用以及向量的乘法的计算,运用了向量的平方与其模的平方相等使问题得到解决.9.(5分)执行如图的程序框图,如果输入的x,y,N的值分别为1,2,3,则输出的S=()A.27 B.81 C.99 D.577考点:程序框图.专题:算法和程序框图.分析:执行程序框图,写出每次循环得到的x,y,S,k的值,当k=3时满足条件k≥N,输出S的值为27.解答:解:执行程序框图,有x=1,y=2,N=3,k=1x=5,y=4,S=9,k=2;不满足条件k≥N,有x=13,y=14,S=27,k=3;满足条件k≥N,输出S的值为27.故选:A.点评:本题主要考察了程序框图和算法,属于基础题.10.(5分)若函数f(x)=ax2﹣lnx在(0,1]上存在唯一零点,则实数a的取值范围是()A.[0,2e] B.[0,] C.C、(﹣∞,﹣1] D.(﹣∞,0]考点:函数零点的判定定理.专题:函数的性质及应用.分析:由f(x)=ax2﹣lnx=0,得ax2=lnx,作出函数g(x)=ax2和m(x)=lnx的图象,即可得到结论.解答:解:由f(x)=ax2﹣lnx=0,得ax2=lnx,设g(x)=ax2和m(x)=lnx,若a=0,则g(x)和m(x)只有一个交点,满足条件,若a>0,当x∈(0,1],g(x)>0,m(x)≤0,此时两个函数没有交点,若a<0,作出函数g(x)=ax2和m(x)=lnx的图象,此时g(x)和m(x)只有一个交点,满足条件,综上a≤0,故选:D点评:本题主要考查函数零点的判断和应用,根据函数零点和方程之间的关系转化为两个函数的图象问题是解决本题的关键.11.(5分)设抛物线C:y2=2px(p>0)的焦点为F,准线为l,A为C上一点,以F为圆心且经过点A的圆与L交于B,D两点,若∠ABD=90°,|AF|=2,则p=()A.1 B.C.2 D.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:设准线与x轴交于E,由题意,|AF|=|BF|=|AB|=2,△ABF为等边三角形,求出|EF|=2,即可得出结论.解答:解:设准线与x轴交于E,由题意,|AF|=|BF|=|AB|=2,△ABF为等边三角形.∴∠FBD=30°,∴|EF|=2,即p=2,故选:C.点评:本题考查抛物线的性质,考查学生的计算能力,比较基础.12.(5分)如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则该几何体体积的最小值等于()A.36 B.C.18 D.考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由三视图知:几何体体积的最小时,几何体是四棱锥与正方体的组合体,且正方体的棱长为3,四棱锥的底面为正方形,边长为3,高为3,即可求出几何体体积的最小值.解答:解:由三视图知:几何体体积的最小时,几何体是四棱锥与正方体的组合体,且正方体的棱长为3,四棱锥的底面为正方形,边长为3,高为3∴几何体的体积的最小值V=3×3+=18.故选:C.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是关键.二、填空题:本大题4小题,每小题5分13.(5分)现有3本不同的语文书,2本不同的数学书,若从这5本书中一次任取2本,则取出的书都是语文书的概率为.考点:古典概型及其概率计算公式.专题:计算题;概率与统计.分析:确定从这5本书中一次任取2本,共有基本事件=10个,取出的书都是语文书,基本事件有3个,即可得出结论.解答:解:现有3本不同的语文书,2本不同的数学书,若从这5本书中一次任取2本,共有基本事件=10个,取出的书都是语文书,基本事件有3个,∴取出的书都是语文书的概率为.故答案为:.点评:本题考查等可能事件的概率计算,涉及排列、组合的应用,比较基础.14.(5分)甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,甲说:丙没有考满分;乙说:是我考的;丙说:甲说真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是甲.考点:进行简单的合情推理.专题:探究型;推理和证明.分析:利用反证法,即可得出结论.解答:解:假设甲说的是假话,即丙考满分,则乙也是假话,不成立;假设乙说的是假话,即乙没有考满分,又丙没有考满分,故甲考满分;故答案为:甲.点评:本题考查进行简单的合情推理,考查学生分析解决问题的能力,比较基础.15.(5分)已知直三棱柱ABC﹣A1B1C1中,AA1=6,AB=4,BC=2,∠ABC=60°,若该三棱柱的所有顶点都在球O的球面上,则球O的表面积为52π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由余弦定理可得AC,利用正弦定理求出△ABC的外接圆的半径,利用勾股定理求出球O的半径,即可求出球O的表面积.解答:解:∵AB=4,BC=2,∠ABC=60°,∴由余弦定理可得AC==2,设△ABC的外接圆的半径为r,则2r==4,∴r=2,∵AA1=6,∴球O的半径R==,∴球O的表面积为4π×13=52π.故答案为:52π.点评:本题考查球O的表面积,考查学生的计算能力,确定球的半径是关键.16.(5分)已知在△ABC中,C=,AB=6,则△ABC面积的最大值是9.考点:三角形的面积公式.专题:计算题;解三角形.分析:利用余弦定理,整理后可得a2+b2﹣ab=36再利用基本不等式求出ab的最大值,然后利用三角形的面积公式表示出三角形ABC的面积,即可求出三角形ABC面积的最大值.解答:解:由题意,由余弦定理可得36=a2+b2﹣2abcos,∴a2+b2﹣ab=36∵a2+b2≥2ab,∴ab≤36∴S=absin,∴△ABC面积的最大值是9.故答案为:9.点评:本题考查余弦定理,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.三、简答题17.(12分)已知各项为正数的等比数列{a n}中,a2=2,a3•a5=64.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2a n,求数列{b n}的前n项和T n.考点:数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)由已知得,由此能求出等比数列{a n}的通项公式.(Ⅱ)由b n=log2a n=n﹣1,能求出数列{b n}的前n项和T n.解答:解:(Ⅰ)设等比数列{a n}的首项为a1,公比为q,由已知得,又∵a n>0,解得a1=1,q=2,∴等比数列{a n}的通项公式为a n=2n﹣1.(Ⅱ)∵b n=log2a n=n﹣1,∴T n=0+1+2+3+…+(n﹣1)=.点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.18.(12分)四棱锥P﹣ABCD中底面ABCD是菱形,PA=PC,AC与BD交于点O.(1)求证:PB⊥AC;(2)若平面PAC⊥平面ABCD,∠ABC=60°,PB=AB=2,求点O到平面PBC的距离.考点:点、线、面间的距离计算.专题:空间位置关系与距离.分析:(1)首先利用四棱锥P﹣ABCD中底面ABCD是菱形,PA=PC,AC与BD交于点O,得到:OP⊥AC,AC⊥BD进一步得到:AC⊥平面PBD,PB⊂平面PBD,所以:PB⊥AC(2)利用(1)的部分结论:平面PAC⊥平面ABCD,OP⊥平面ABCD,进一步求得:OP= AC=2 AO=CO=,利用V P﹣OBC=V O﹣PBC,求得:O到平面PBC的距离.解答:(1)证明:连结OP,因为四棱锥P﹣ABCD中底面ABCD是菱形,PA=PC,AC与BD交于点O所以:OP⊥AC,AC⊥BDAC⊥平面PBDPB⊂平面PBD所以:PB⊥AC(2)解:平面PAC⊥平面ABCD,OP⊥平面ABCD∵∠ABC=60°,PB=AB=2∴OP= AC=2 AO=CO=∴进一步得到△PBC为等边三角形所以:V P﹣OBC=V O﹣PBC设点O到平面PBC的距离为h∴h=点评:本题考查的知识要点:线线垂直与线面垂直的转化,线面垂直的判定和性质,面面垂直的性质,利用几何体的体积相等等相关的运算问题.19.(12分)某校2014-2015学年高一年级共有800名学生,其中男生480名,女生320名,在某次满分为100分的数学考试中,所有学生成绩在30分及30分以上,成绩在“80分及80分以上”的学生视为优秀,现按性别采用分层抽样的方法抽取100名学生,将他们的成绩按[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100)分成七组,得到的频率分布直方图如图所示:(Ⅰ)估计该年纪本次数学考试成绩的平均分(同一组中的数据用该区间中点值做代表);(Ⅱ)请将下列2×2列联表补充完整,计算并说明是否有95%的把握认为“该校学生数学成绩优秀与性别有关”.数学成绩优秀数学成绩不优秀合计男生12女生合计100附:K2=,其中n=a+b+c+dP(K2>k0) 0.15 0.10 0.05k0 2.072 2.706 3.841考点:独立性检验;频率分布直方图.专题:应用题;概率与统计.分析:(Ⅰ)利用同一组中的数据用该区间中点值做代表,即可估计该年纪本次数学考试成绩的平均分;(Ⅱ)应抽取男生60人,女生40人,可得2×2列联表,由列联表中数据,代入公式,求出K2的值,进而与临界值比较,即可得出结论.解答:解:(Ⅰ)估计该年纪本次数学考试成绩的平均分为0.04×35+0.12×45+0.2×55+0.28×65+0. 18×75+0.12×85+0.06×95=65.4(分);(Ⅱ)应抽取男生60人,女生40人,可得2×2列联表数学成绩优秀数学成绩不优秀合计男生12 48 60女生6 34 40合计18 82 100K2=≈0.407<3.841,∴没有95%的把握认为“该校学生数学成绩优秀与性别有关”.点评:本题考查独立性检验的应用,考查数据处理能力、运算求解能力和应用意识,本题解题的关键是正确运算出观测值,理解临界值对应的概率的意义,要想知道两个变量之间的有关或无关的精确的可信程度,只有利用独立性检验的有关计算,才能做出判断,本题是一个基础题.20.(12分)设椭圆C:=1(a>b>0)的左焦点为F(﹣,0),过F的直线交C于A,B两点,设点A关于y轴的对称点为A′,且|FA|+|FA′|=4.(Ⅰ)求椭圆C的方程;(Ⅱ)若点A在第一象限,当△AFA′面积最大时,求|AB|的值.考点:直线与圆锥曲线的关系;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(I)设F′是椭圆的右焦点,由椭圆的性质及其定义可得:|FA|+|FA′|=|FA|+|F′A|=2a=4.再利用b2=a2﹣c2即可得出.(II)设A(x1,y1)(x1>0,y1>0),△AFA′面积S==x1y1.由于利用基本不等式的性质可得.当△AFA′面积取得最大时,=,解得A ,可得直线AB的方程为:,设B(x2,y2),与椭圆的方程联立可得B,利用|AB|=即可得出.解答:解:(I)设F′是椭圆的右焦点,由椭圆的性质和定义可得:|FA|+|FA′|=|FA|+|F′A|=2a=4.解得a=2,∵左焦点为F(﹣,0),c=,∴b2=a2﹣c2=2.∴椭圆C的方程为=1.(II)设A(x1,y1)(x1>0,y1>0),△AFA′面积S==x1y1.∵≥2×=,∴.当△AFA′面积取得最大时,=,解得,y 1=1.由F(﹣,0),A,可得直线AB的方程为:,化为=0,设B(x2,y2),联立,解得,,可得B.∴|AB|==.点评:本题考查了椭圆的标准方程及其性质、基本不等式的性质、弦长公式、三角形的面积计算公式,考查了推理能力与计算能力,属于难题.21.(12分)已知函数f(x)=x3+(a+1)x2+ax﹣2,曲线y=f(x)在点(1,f(1))处的切线在x轴上的截距为.(Ⅰ)求实数a的值;(Ⅱ)证明:当k<1时,曲线y=f(x)与y=(k﹣1)e x+2x﹣2有唯一公共点.考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用;导数的综合应用.分析:(Ⅰ)求出函数的导数,求出切线的斜率,求出切点,再由点斜式方程写出切线方程,令y=0,得到方程,解得a=2;(Ⅱ)由题意要证:当k<1时,曲线y=f(x)与y=(k﹣1)e x+2x﹣2有唯一公共点,即要证x3+3x2+(1﹣k)•e x=0在k<1时有唯一解.设g(x)=x3+3x2+(1﹣k)•e x,讨论①当x≥﹣3时,②当x<﹣3时,求出导数,判断单调性,得到g(x)=x3+3x2+(1﹣k)•e x<x3+3x2+1﹣k,则h (x)=h(k﹣4)=(k﹣4)3+3(k﹣4)2+1﹣k,即h(k﹣4)<0,即存在x=k﹣4,使得g(x)<h(x)<0,故存在x0∈(k﹣4,﹣3),有g(x0)=0,即可得证.解答:(Ⅰ)解:函数f(x)=x3+(a+1)x2+ax﹣2的导数f′(x)=3x2+2(a+1)x+a,即有f′(1)=3a+5,切线斜率为3a+5,f(1)=2a,切点为(1,2a),则曲线y=f(x)在点(1,f(1))处的切线方程为:y﹣2a=(3a+5)(x﹣1).令y=0则x=,由=,解得a=2;(Ⅱ)证明:由题意要证:当k<1时,曲线y=f(x)与y=(k﹣1)e x+2x﹣2有唯一公共点,即要证x3+3x2+(1﹣k)•e x=0在k<1时有唯一解.设g(x)=x3+3x2+(1﹣k)•e x,由于1﹣k>0,则g(x)>x3+3x2=x2(x+3),①当x≥﹣3时,g(x)>x2(x+3)≥0,则g(x)在x≥﹣3时无零点;②当x<﹣3时,g′(x)=3x2+6x+(1﹣k)•e x>3x2+6x=3x(x+2)>0,则g(x)在x<﹣3时单调递增.而g(﹣3)=(1﹣k)•e﹣3>0,由于e x<e﹣3,则(1﹣k)•e x<(1﹣k)•e﹣3,g(x)=x3+3x2+(1﹣k)•e x<x3+3x2+<x3+3x2+1﹣k,设h(x)=x3+3x2+1﹣k,由于k﹣1<0,取x=k﹣4<﹣3,则h(x)=h(k﹣4)=(k﹣4)3+3(k﹣4)2+1﹣k,即h(k﹣4)=(k﹣4)2[(k﹣4)+3]+1﹣k=(k﹣1)[(k﹣4)2﹣1]<0,即存在x=k﹣4,使得g(x)<h(x)<0,故存在x0∈(k﹣4,﹣3),有g(x0)=0,综上,当k<1时,曲线y=f(x)与y=(k﹣1)e x+2x﹣2有唯一公共点.点评:本题考查导数的运用:求切线方程,判断函数的单调性,以及运用求最值,考查函数的性质和运用,以及构造导数,运用单调性求解的能力,考查运算能力,属于中档题.选修4-1:几何证明选讲22.(10分)如图,CD是△ABC中AB边上的高,以AD为直径的圆交AC于点E,一BD为直径的圆交BC于点F.(Ⅰ)求证:E、D、F、C四点共圆;(Ⅱ)若BD=5,CF=,求四边形EDFC外接圆的半径.考点:与圆有关的比例线段.专题:选作题;立体几何.分析:(Ⅰ)利用AD,BD是直径,可得∠AED=∠BFD=90°,再证明∠DEC+∠DFC=180°,即可证明:E、D、F、C四点共圆;(Ⅱ)确定BD是四边形EDFC外接圆的切线,求出BD,同理求出CD,即可求四边形EDFC外接圆的半径.解答:(Ⅰ)证明:连接ED,FD,∵AD,BD是直径,∴∠AED=∠BFD=90°,∴∠DEC=∠DFC=90°,∴∠DEC+∠DFC=180°,∴E、D、F、C四点共圆;(Ⅱ)解:∵∠DEC=90°,∴CD是四边形EDFC外接圆的直径,∵CD是△ABC中AB边上的高,∴BD是四边形EDFC外接圆的切线,∴BD=BF•BC∵BD=5,CF=,∴BF=3,同理CD=∴四边形EDFC外接圆的半径为.点评:本题考查与圆有关的比例线段,考查学生分析解决问题的能力,比较基础.选修4-4:坐标系与参数方程23.已知曲线C的极坐标方程是ρ﹣2cosθ﹣4sinθ=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,设直线l的参数方程是(t是参数).(1)将曲线C的极坐标方程化为直角坐标方程,将直线l的参数方程化为普通方程;(2)若直线l与曲线C相交于A、B两点,与y轴交于点E,求|EA|+|EB|.考点:参数方程化成普通方程;点的极坐标和直角坐标的互化.专题:坐标系和参数方程.分析:(1)由曲线C的极坐标方程ρ﹣2cosθ﹣4sinθ=0,化为ρ2﹣2ρcosθ﹣4ρsinθ=0,利用即可得出;由直线l的参数方程(t是参数),把t=2x代入即可得出.(2)把直线l的参数方程代入曲线C的直角坐标方程可得:t2﹣t﹣4=0.点E对应的参数为t=0.设点A,B分别对应的参数为t1,t2.利用|EA|+|EB|=|t1|+|t2|=|t1﹣t2|=及其根与系数的关系即可得出.解答:解:(1)由曲线C的极坐标方程ρ﹣2cosθ﹣4sinθ=0,化为ρ2﹣2ρcosθ﹣4ρsinθ=0,∴x2+y2﹣2x﹣4y=0;由直线l的参数方程(t是参数)化为.(2)把直线l的参数方程代入曲线C的直角坐标方程可得:t2﹣t﹣4=0.点E对应的参数为t=0.设点A,B分别对应的参数为t1,t2.则t1+t2=1,t1t2=﹣4.∴|EA|+|EB|=|t1|+|t2|=|t1﹣t2|===.点评:本题考查了参数方程极坐标方程化为普通方程、直线参数方程的应用,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.已知函数f(x)=|2x+b|.(Ⅰ)若不等式f(x)≤3的解集是{x|﹣1≤x≤2},求实数b的值;(Ⅱ)在(Ⅰ)的条件下,若f(x+3)+f(x+1)≥m对一切实数x恒成立,求实数m的取值范围.考点:绝对值不等式的解法;函数恒成立问题.专题:计算题;不等式的解法及应用.分析:(Ⅰ)求出不等式f(x)≤3的解集,和已知的解集作对比,从而求得实数b的值.(Ⅱ)设g(x)=f(x+3)+f(x+1)=|2x+5|+|2x+1|≥|(2x+5)﹣(2x+1)|=4,它的最小值为4,从而求得实数m的取值范围.解答:解:(Ⅰ)由不等式f(x)≤3可得|2x+b|≤3,解得≤x≤.再由不等式f(x)≤3的解集是{x|﹣1≤x≤2},可得=﹣1,=2,解得b=﹣1.(Ⅱ)在(Ⅰ)的条件下,f(x)=|2x﹣1|,设g(x)=f(x+3)+f(x+1),则g(x)=|2x+5|+|2x+1|≥|(2x+5)﹣(2x+1)|=4,若f(x+3)+f(x+1)≥m对一切实数x恒成立,应有4≥m.故实数m的取值范围为(﹣∞,4].点评:本题主要考查绝对值的意义,绝对值不等式的解法,函数的恒成立问题,体现了化归与转化的数学思想,属于中档题.。
2019届全国高考高三模拟考试卷数学(文)试题(二)(解析版)
π 6
上单调递增
D.函数
g
x
在
0,
π 6
上最大值是
1
8.[2019·临沂质检]执行如图所示的程序框图,输出的值为( )
A.0
B. 1 2
9.[2019·重庆一中] 2sin 80 cos 70 ( cos 20
A. 3
B.1
C.1 ) C. 3
D. 1 D.2
32
3
9
7.【答案】C
【解析】将函数
f
x
横坐标缩短到原来的
1 2
后,得到
g x
2sin
2
x
π 6
1,
当
x
π 12
时,
f
π 12
1,即函数
g x
的图象关于点
π 12
,
1
对称,故选项
A
错误;
周期 T 2π π ,故选项 B 错误; 2
则有 3 12
0
22
8 ,则
P
在圆 C
上,此时
KCP
20 13
1 ,则切线的斜率 k
1,
则切线的方程为 y x 3 ,即 x y 3 0 ,故选 B.
5.【答案】C
【解析】设圆的半径为 r ,则圆与正方形面积分别为 πr2 , 2r2 ,
∴此点不落在圆内接正方形内部的概率为
16.[2019·甘肃联考]过点 M 1,0 引曲线 C : y 2x3 ax a 的两条切线,这两条切线与 y 轴分别交于 A ,
2019高三高考模拟考试数学(文)试题(含答案)
高考模拟考试 文科数学一、选择题1.已知集合A ={x|-2≤x≤3},函数f (x )=ln (1-x )的定义域为集合B ,则A∩B = A .[-2,1] B .[-2,1) C .[1,3] D .(1,3] 2.若复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=1+i ,则12z z = A .i B .-i C .1 D .-13.已知等差数列{a n }的前5项和为15,a 6=6,则a 2019= A .2017 B .2018 C .2019 D .2020 4.已知命题p :∀x ∈R ,x 2>0,则p ⌝是A .∀x ∈R ,x 2<0B .∃x ∈R ,x 2<0C .∀x ∈R ,x 2≤0D .∃x ∈R ,x 2≤0 5.七巧板是一种古老的中国传统智力玩具,是由七块板组成的.而这七块板可拼成许多图形,例如:三角形、不规则多边形、各种人物、动物、建筑物等,清陆以湉《冷庐杂识》写道:近又有七巧图,其式五,其数七,其变化之式多至千余.在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.若用七巧板拼成一只雄鸡,在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为A .14 B .17 C .18 D .1166.已知某几何体的俯视图是如图所示的边长为1的正方形,正视图与侧视图都是边长为1的正三角形,则此几何体的体积是A 3B . 3C 3D .137.如图所示的函数图象,对应的函数解析式可能是A .y =2x -x 2-1B .y =2xsinxC .ln xy x= D .y =(x 2-2x )e x 8.函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图象可由函数32cos 2y x x =-的图象 A .向右平移3π个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到B .向右平移6π个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到C .向左平移3π个单位,再将所得图象上所有点的纵坐标缩短到原来的12,横坐标不变得到 D .向左平移6π个单位,再将所得图象上所有点的纵坐标缩短到原来的12,横坐标不变得到9.在边长为1的等边三角形ABC 中,点P 是边AB 上一点,且BP =2PA ,则CP CB ⋅= A .13 B .12 C .23D .1 10.一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为 A .6π B .12π C .32π D .48π11.已知P 为双曲线C :22221x y a b-=(a >0,b >0)上一点,F 1,F 2为双曲线C 的左、右焦点,若|PF 1|=|F 1F 2|,且直线PF 2与以C 的实轴为直径的圆相切,则C 的渐近线方程为 A .43y x =±B .34y x =±C .35y x =±D .53y x =± 12.已知函数f (x )=2x -1,()2cos 2,0 2,0a x x g x x a x +⎧=⎨+<⎩≥(a ∈R ),若对任意x 1∈[1,+∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是 A .1,2⎛⎫-∞ ⎪⎝⎭ B .2,3⎛⎫+∞ ⎪⎝⎭ C .[]1,1,22⎛⎫-∞ ⎪⎝⎭ D .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦二、填空题13.焦点在x 轴上,短轴长等于16,离心率等于35的椭圆的标准方程为________.14.若x ,y 满足约束条件02 636x y x y +⎧⎨-⎩≤≤≤≤,则z =x -2y 的最大值为________.15.设数列{a n }满足a 1·2a 2·3a 3·…·n a n =2n ,则a n =________.16.如图,边长为1的正方形ABCD ,其中边DA 在x 轴上,点D 与坐标原点重合,若正方形沿x 轴正向滚动,先以A 为中心顺时针旋转,当B 落在x 轴上时,再以B 为中心顺时针旋转,如此继续,当正方形ABCD 的某个顶点落在x 轴上时,则以该顶点为中心顺时针旋转.设顶点C (x ,y )滚动时形成的曲线为y =f (x ),则f (2019)=________.三、解答题 (一)必考题17.如图,在平面四边形ABCD 中,42AB =,22BC =,AC =4.(1)求cos ∠BAC ; (2)若∠D =45°,∠BAD =90°,求CD .18.如图,四棱锥M -ABCD 中,MB ⊥平面ABCD ,四边形ABCD 是矩形,AB =MB ,E 、F 分别为MA 、MC 的中点.(1)求证:平面BEF ⊥平面MAD ;(2)若223BC AB ==E -ABF 的体积.19.某公司甲、乙两个班组分别试生产同一种规格的产品,已知此种产品的质量指标检测分数不小于70时,该产品为合格品,否则为次品,现随机抽取两个班组生产的此种产品各100件进行检测,其结果如下表:质量指标检测分数[50,60)[60,70)[70,80)[80,90) [90,100]甲班组生产的产品件数7 18 40 29 6乙班组生产的产品件数8 12 40 32 8(1)根据表中数据,估计甲、乙两个班组生产该种产品各自的不合格率;(2)根据以上数据,完成下面的2×2列联表,并判断是否有95%的把握认为该种产品的质量与生产产品的班组有关?甲班组乙班组合计合格品次品合计(3)若按合格与不合格的比例,从甲班组生产的产品中抽取4件产品,从乙班组生产的产品中抽取5件产品,记事件A:从上面4件甲班组生产的产品中随机抽取2件,且都是合格品;事件B:从上面5件乙班组生产的产品中随机抽取2件,一件是合格品,一件是次品,试估计这两个事件哪一种情况发生的可能性大.附:()()()()()22n ad bcKa b c d a c b d-=++++P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.82820.已知抛物线C:x2=4y的焦点为F,直线:y=kx+b(k≠0)交抛物线C于A、B两点,|AF|+|BF|=4,M(0,3).(1)若AB的中点为T,直线MT的斜率为k',证明:k·k'为定值;(2)求△ABM面积的最大值.21.已知函数f(x)=xe x-alnx(无理数e=2.718…).(1)若f(x)在(0,1)单调递减,求实数a的取值范围;(2)当a=-1时,设g(x)=x(f(x)-xe x)-x3+x2-b,若函数g(x)存在零点,求实数b的最大值.(二)选考题22.在平面直角坐标系xOy 中,曲线C 的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点M 的极坐标为34π⎛⎫⎪⎝⎭,直线l 的极坐标方程为sin 04ρθπ⎛⎫-+= ⎪⎝⎭. (1)求直线l 的直角坐标方程与曲线C 的普通方程;(2)若N 是曲线C 上的动点,P 为线段MN 的中点,求点P 到直线l 的距离的最大值. 23.已知函数f (x )=|ax -2|,不等式f (x )≤4的解集为{x|-2≤x≤6}. (1)求实数a 的值;(2)设g (x )=f (x )+f (x +3),若存在x ∈R ,使g (x )-tx≤2成立,求实数t 的取值范围.高三文科数学参考答案一、选择题BBCDC ADDCB AC 二、填空题13.22110064x y += 14.10 15.2n16.0三、解答题 17.解:(1)在△ABC 中,由余弦定理得:222cos 2AB AC BC BAC AB AC+-∠=⋅8==. (2)因为∠DAC =90°-∠BAC ,所以sin ∠DAC =cos ∠BAC =8, 所以在△ACD 中由正弦定理得:sin sin 45CD ACDAC =∠︒,452282CD =,所以CD =5. 18.证明:(1)因为MB ⊥平面ABCD ,所以MB ⊥AD , 又因为四边形ABCD 是矩形,所以AD ⊥AB ,因为AB∩MB =B ,所以AD ⊥平面MAB , 因为BE ⊂平面MAB ,所以AD ⊥BE ,又因为AB =MB ,E 为MA 的中点,所以BE ⊥MA , 因为MA∩AD =A ,所以BE ⊥平面MAD ,又因为BE ⊂平面BEF ,所以平面BEF ⊥平面MAD . (2)因为AD ∥BC ,所以BC ⊥面MAB ,又因为F 为MC 的中点,所以F 到面MAB 的距离132h BC == 又因为MB ⊥平面ABCD ,AB =MB 3,E 为MA 的中点, 所以1113332224ABE S ABM ==⨯=△△, 所以113333344E ABF F ABE ABEV V S h --==⋅=⨯=. 19.解:(1)根据表中数据,甲班组生产该产品的不合格率为71825%100+=, 乙班组生产该产品的不合格率为81220%100+=; (2)列联表如下:甲班组 乙班组 合计 合格品 75 80 155 次品 25 20 45 合计100100200()22200752080250.717 3.84110010015545K ⨯⨯-⨯=≈<⨯⨯⨯.所以,没有95%的把握认为此种产品的产品质量与生产产品的班组有关.(3)由题意,若按合格与不合格的比例,则抽取了4件甲班组产品,5件乙班组产品,其中甲、乙班组抽取的产品中均含有1件次品,设这4件甲班组产品分别为A 1,A 2,A 3,D ,其中A 1,A 2,A 3代表合格品,D 代表次品,从中随机抽取2件,则所有可能的情况为A 1A 2,A 1A 3,A 1D ,A 2A 3,A 2D ,A 3D 共6种,A 事件包含3种,故()12P A =; 设这5件乙班组产品分别为B 1,B 2,B 3,B 4,E ,其中B 1,B 2,B 3,B 4代表合格品,E 代表次品,从中随机抽取2件,则所有可能的情况为B 1B 2,B 1B 3,B 1B 4,B 1E ,B 2B 3,B 2B 4,B 2E ,B 3B 4,B 3E ,B 4E 共10种,B 事件包含4种,故()25P B =; 因为P (A )>P (B ),所以,事件A 发生的可能性大一些.20.(1)证明:联立24y kx bx y=+⎧⎨=⎩,消去y 得,x 2-4kx -4b =0,△=16k 2+16b >0,即k 2+b >0, 设A (x 1,y 1),B (x 2,y 2),由韦达定理得x 1+x 2=4k ,x 1x 2=-4b , 因为|AF|+|BF|=4,由抛物线定义得y 1+1+y 2+1=4,得y 1+y 2=2, 所以AB 的中点坐标为T (2k ,1), 所以311'02k k k-==--,所以k·k'=-1.(2)由(1)得|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=16(k 2+b ),12AB x=-=设点M 到直线l 距离为d , 则d =而由(1)知,y 1+y 2=kx 1+b +kx 2+b =k (x 1+x 2)+2b =4k 2+2b =2, 即2k 2+b =1,即b =1-2k 2,由△=16k 2+16b >0,得0<k 2<1,所以1122ABMSAB d =⨯⨯=⨯=令t =k 2,0<t <1,f (t )=(1+t )2(1-t )=1+t -t 2-t 3,0<t <1, f'(t )=1-2t -3t 2=(t +1)(-3t +1),103t <<时,f'(t )>0,f (t )为增函数;113t <<时,f'(t )<0,f (t )为减函数;当13t =,()max 3227f t =,所以,S △ABM . 21.解:(1)()()2'x x xx x e a a f x xe e x x+-=+-=,由题意:f'(x )≤0,x ∈(0,1)恒成立,即(x 2+x )e x -a ≤0,也就是a ≥(x 2+x )e x 在(0,1)上恒成立, 设h (x )=(x 2+x )e x ,则h'(x )=e x (2x +1)+(x 2+x )e x =e x (x 2+3x +1), 当x ∈(0,1)时,x 2+3x +1>0,故h'(x )>0,h (x )在(0,1)单调递增, h (x )<h (1)=2e , 因此a ≥2e .(2)当a =-1时,f (x )=xe x +lnx , g (x )=xlnx -x 3+x 2-b , 由题意:问题等价于方程b =xlnx -x 3+x 2在(0,+∞)上有解, 先证:lnx ≤x -1(x >0), 事实上:设y =lnx -x +1, 则1'1y x=-, 令110x-=, x =1,x ∈(0,1)时,y'>0函数递增, x ∈(1,+∞)时,y'<0函数递减, y max =y |x =1=0, 即y ≤0,也就是lnx ≤x -1.由此:k (x )=xlnx -x 3+x 2≤x (x -1)-x 3+x 2=2x 2-x -x 3=-x (x 2-2x +1)≤0, 故当x =1时,k (1)=0,所以b 的最大值为0.22.解:(1)因为直线l 的极坐标方程为πsin 04ρθ⎛⎫-+= ⎪⎝⎭, 即ρsinθ-ρcosθ+4=0. 由x =ρcosθ,y =ρsinθ,可得直线l 的直角坐标方程为x -y -4=0.将曲线C 的参数方程sin x y αα⎧=⎪⎨=⎪⎩消去参数a ,得曲线C的普通方程为221 3xy+=.(2)设N(3cosα,sinα),α∈[0,2π).点M的极坐标(22,3π4),化为直角坐标为(-2,2).则31(cos1,sin1)22Pαα-+.所以点P到直线l的距离π31|sin()6||cos sin6|72322222dααα-+--==≤,所以当5π6α=时,点M到直线l的距离的最大值为722.23.解:(1)由|ax-2|≤4得-4≤ax-2≤4,即-2≤ax≤6,当a>0时,26xa a-≤≤,所以2266aa⎧-=-⎪⎪⎨⎪=⎪⎩,解得a=1;当a<0时,62xa a≤≤-,所以6226aa⎧=-⎪⎪⎨⎪-=⎪⎩,无解.所以实数a的值为1.(2)由已知g(x)=f(x)+f(x+3)=|x+1|+|x-2|=() ()() 211 312212x xxx x-+≤-⎧⎪-<<⎨⎪-≥⎩,不等式g(x)-tx≤2即g(x)≤tx+2,由题意知y=g(x)的图象有一部分在直线y=tx+2的下方,作出对应图象由图得,当t<0时,t≤k AM;当t>0时,t≥k BM,又因为k AM=-1,12BMk=,所以t≤-1或12t≥,即t∈(-∞,-1]∪[12,+∞).。
2019年高考全国Ⅲ文科数学模拟试题及答案(word解析版)
2019年普通高等学校招生全国统一考试(全国Ⅲ)数学(文科)一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要 求的. (1)【2017年全国Ⅲ,文1,5分】已知集合{}1,2,3,4A =,{}2,4,6,8B =,则A B 中的元素的个数为( ) (A )1 (B )2 (C )3 (D )4 【答案】B【解析】集合A 和集合B 有共同元素2,4,则{}2,4A B =I 所以元素个数为2,故选B .(2)【2017年全国Ⅲ,文2,5分】复平面内表示复数i(2i)z =-+的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】C【解析】化解i(2i)z =-+得22i i 2i 1z =-+=--,所以复数位于第三象限,故选C . (3)【2017年全国Ⅲ,文3,5分】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )(A )月接待游客量逐月增加 (B )年接待游客量逐年增加 (C )各年的月接待游客量高峰期大致在7,8月(D )各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】由折线图可知,每年月接待游客量从8月份后存在下降趋势,故选A .(4)【2017年全国Ⅲ,文4,5分】已知4sin cos ,3αα-=,则sin2α=( )(A )79- (B )29- (C )29(D )79【答案】A【解析】()2167sin cos 12sin cos 1sin 2,sin 299αααααα-=-=-=∴=-,故选A .(5)【2017年全国Ⅲ,文5,5分】设,x y 满足约束条件3260,0,0,x y x y +-≤⎧⎪≥⎨⎪≥⎩则z x y =-的取值范围是( ) (A )[]3,0- (B )[]3,2- (C )[]0,2 (D )[]0,3【答案】B【解析】由题意,画出可行域,端点坐标()0,0O ,()0,3A ,()2,0B .在端点,A B 处分别取的最 小值与最大值. 所以最大值为2,最小值为3-,故选B .(6)【2017年全国Ⅲ,文6,5分】函数1()sin()cos()536f x x x ππ=++-的最大值为( )(A )65 (B )1 (C )35 (D )15【答案】A【解析】11113()sin()cos()(sin cos cos sin sin 5365225f x x x x x x x x xππ=++-=⋅++⋅=6sin()53x π=+,故选A .(7)【2017年全国Ⅲ,文7,5分】函数2sin 1xy x x=++的部分图像大致为( ) (A )(B )(C )(D ) 【答案】D【解析】当1x =时,()111sin12sin12f =++=+>,故排除A ,C ,当x →+∞时,1y x →+,故排除B ,满足条件的只有D ,故选D .(8)【2017年全国Ⅲ,文8,5分】执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )(A )5 (B )4 (C )3 (D )2 【答案】D【解析】若2N =,第一次进入循环,12≤成立,100100,1010S M ==-=-,2i =2≤成立,第二次进入循环,此时101001090,110S M -=-==-=,3i =2≤不成立,所以输出9091S =<成立,所以输入的正整数N 的最小值是2,故选D .(9)【2017年全国Ⅲ,文9,5分】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )(A )π (B )3π4(C )π2 (D )π4【答案】B【解析】如果,画出圆柱的轴截面,11,2AC AB ==,所以r BC ==22314V r h πππ==⨯⨯=⎝⎭,故选B . (10)【2017年全国Ⅲ,文10,5分】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )(A )11A E DC ⊥ (B )1A E BD ⊥ (C )11A E BC ⊥ (D )1A E AC ⊥ 【答案】C【解析】11A B ⊥平面11BCC B 111A B BC ∴⊥,11BC B C ⊥又1111B C A B B =,1BC ∴⊥平面11A B CD ,又1A E ⊂平面11A B CD 11A E BC ∴⊥,故选C .(11)【2017年全国Ⅲ,文11,5分】已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )(A(B(C(D )13【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,c e a =选A .(12)【2017年全国Ⅲ,文12,5分】已知函数()()2112x x f x x x a e e --+=-++有唯一零点,则a =( ) (A )12- (B )13 (C )12 (D )1【答案】C【解析】()()11220x x f x x a e e --+'=-+-=,得1x =,即1x =为函数的极值点,故()10f =,则1220a -+=,12a =,故选C . 二、填空题:本大题共4小题,每小题5分,共20分.(13)【2017年全国Ⅲ,文13,5分】已知向量()2,3a =-,()3,b m =,且a b ⊥,则m =______. 【答案】2【解析】因为a b ⊥0a b ∴⋅=,得630m -+=,2m ∴=.(14)【2017年全国Ⅲ,文14,5分】双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a =__ ____. 【答案】5【解析】渐近线方程为by x a=±,由题知3b =,所以5a =.(15)【2017年全国Ⅲ,文15,5分】ABC ∆内角C B A ,,的对边分别为c b a ,,,已知3,6,600===c b C ,则=A _______. 【答案】075【解析】根据正弦定理有:3sin 60=sin B ∴,又b c > 045=∴B 075=∴A . (16)【2017年全国Ⅲ,文16,5分】设函数1,0,()2,0,xx x f x x +≤⎧=⎨>⎩,则满足1()()12f x f x +->的x 的取值范围是_______.【答案】1(,)4-+∞【解析】由题意得:当12x >时12221x x-+> 恒成立,即12x >;当102x <≤时12112x x +-+> 恒成立,即102x <≤;当0x ≤时1111124x x x ++-+>⇒>-,即104x -<≤;综上x 的取值范围是1(,)4-+∞. 三、解答题:共70分。
2019年全国普通高等学校招生统一考前模拟文科数学试题(全国Ⅲ卷)Word版含解析
2019年全国普通高等学校招生统一考前模拟文科数学试题(全国Ⅲ卷)一、选择题1.设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=(A ){48},(B ){026},, (C ){02610},,, (D ){0246810},,,,, 【答案】C【解析】试题分析:由补集的概念,得C {0,2,6,10}A B =,故选C . 【考点】集合的补集运算. 2.若43i z =+,则||zz = (A )1 (B )1- (C )43i 55+ (D )43i 55-【答案】D【解析】试题分析:43i ||55z z ==-,故选D . 【考点】1、复数的运算;2、共轭复数;3、复数的模.3.已知向量1(2BA =uu v,1),2BC =uu u v 则ABC ∠=(A )300(B ) 450(C )600(D )1200【答案】A【解析】试题分析:由题意,得112222cos 112||||BA BC ABC BA BC ⨯⋅∠===⨯,所以30ABC ∠=︒,故选A .【考点】向量夹角公式.4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A )各月的平均最低气温都在00C 以上 (B )七月的平均温差比一月的平均温差大(C )三月和十一月的平均最高气温基本相同(D )平均气温高于200C 的月份有5个 【答案】D【解析】试题分析:由图可知0C ︒均在虚线框内,所以各月的平均最低气温都在0℃以上,A 正确;由图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,C 正确;由图可知平均最高气温高于20℃的月份有3个或2个,所以不正确.故选D . 【考点】1、平均数;2、统计图5.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是,M I N ,中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是 (A )815 (B )18 (C )115 (D )130【答案】C【解析】试题分析:开机密码的可能有(,1),(,2),(,3),(,4),(,5),(,1),(,2),(,3),(,4),(,5)M M M M M I I I I I ,(,1),(,2),(,3),(,4),(,5)N N N N N ,共15种可能,所以小敏输入一次密码能够成功开机的概率是115,故选C .【考点】古典概型. 6.若tan 13θ=,则cos 2θ=( ) (A )45-(B )15-(C )15 (D )45【答案】D【解析】试题分析:2222222211()cos sin 1tan 43cos 2cos sin 1tan 51()3θθθθθθθ---====+++. 【考点】1、同角三角函数间的基本关系;2、二倍角. 7.已知4213332,3,25a b c ===,则(A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A【解析】试题分析:因为423324a ==,1233255c ==,又函数23y x =在[0,)+∞上是增函数,所以222333345<<,即b a c <<,故选A .【考点】幂函数的单调性.8.执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=(A )3 (B )4 (C )5 (D )6 【答案】B【解析】试题分析:第一次循环,得2,4,6,6,1a b a s n =====;第二次循环,得2,6,4,10a b a s =-===,2n =;第三次循环,得2,4,6,16,3a b a s n =====;第四次循环,得2,6,4,2016,4a b a s n =-===>=,退出循环,输出4n =,故选B .【考点】程序框图. 9.在ABC △中,π4B =,BC 边上的高等于13BC ,则sin A = (A )310(B(C(D【答案】D【解析】试题分析:设BC 边上的高线为AD ,则3,2B C A D D C A D ==,所以AC .由正弦定理,知sin sin AC BC B A =3sin AD A =,解得sin A =,故选D .【考点】正弦定理.10.如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)18+(B)54+(C )90 (D )81【答案】B【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积2362332354S =⨯⨯+⨯⨯+⨯⨯=+,故选B .【考点】空间几何体的三视图及表面积.11.在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是(A )4π (B )92π (C )6π (D )323π【答案】B【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 【考点】1、三棱柱的内切球;2、球的体积.12.已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为(A )13 (B )12 (C )23 (D )34【答案】A【解析】试题分析:由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得点||()FM k a c =-,||OE ka =,由OBECBM ∆∆,得1||||2||||OE OB FM BC =,即2(c)ka a k a a c=-+,整理,得13c a =,所以椭圆离心率为13e =,故选A . 【考点】椭圆方程与几何性质.二、填空题13.若,x y 满足约束条件210,210,1,x y x y x -+≥⎧⎪--≤⎨⎪≤⎩则235z x y =+-的最大值为_____________.【答案】10-【解析】试题分析:作出不等式组满足的平面区域,如图所示,由图知当目标函数235z x y =+-经过点(1,1)A --时取得最小值,即min 2(1)3(1)510z =⨯-+⨯--=-.【考点】简单的线性规划问题.14.函数sin y x x =的图像可由函数2sin y x =的图像至少向右平移_____________个单位长度得到. 【答案】3π【解析】试题分析:因为sin 2sin()3y x x x π=-=-,所以函数sin y x x =的的图像可由函数2sin y x =的图像至少向右平移3π个单位长度得到. 【考点】1、三角函数图象的平移变换;2、两角差的正弦函数.15.已知直线l :60x +=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点,则||CD =_____________. 【答案】4【解析】试题分析:由60x +=,得6x =-,代入圆的方程,并整理,得260y -+=,解得12y y ==120,3x x ==-,所以||AB ==l 的倾斜角为30︒,由平面几何知识知在梯形ABDC 中,||||4cos30AB CD ==︒.【考点】直线与圆的位置关系.16.已知()f x 为偶函数,当0x ≤ 时,1()x f x e x --=-,则曲线()y f x =在点(1,2)处的切线方程式_____________________________. 【答案】2y x =【解析】试题分析:当0x >时,0x -<,则1()x f x e x --=+.又因为()f x 为偶函数,所以1()()x f x f x e x -=-=+,所以1()1x f x e -'=+,则切线斜率为(1)2f '=,所以切线方程为22(1)y x -=-,即2y x =.【考点】1、函数的奇偶性;2、解析式;3、导数的几何意义.三、解答题17.已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(Ⅰ)求23,a a ;(Ⅱ)求{}n a 的通项公式. 【答案】(Ⅰ)41,2132==a a ;(Ⅱ)121-=n n a . 【解析】试题分析:(Ⅰ)将11a =代入递推公式求得2a ,将2a 的值代入递推公式可求得3a ;(Ⅱ)将已知的递推公式进行因式分解,然后由定义可判断数列{}n a 为等比数列,由此可求得数列{}n a 的通项公式. 试题解析:(Ⅰ)由题意得41,2132==a a . (Ⅱ)由02)12(112=---++n n n n a a a a 得)1()1(21+=++n n n n a a a a .因为{}n a 的各项都为正数,所以211=+n n a a . 故{}n a 是首项为1,公比为21的等比数列,因此121-=n n a . 【考点】1、数列的递推公式;2、等比数列的通项公式.18.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据:719.32ii y==∑,7140.17i i i t y ==∑0.55=,7≈2.646.参考公式:相关系数()()niit t y y r --=∑ 回归方程y a bt =+ 中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑,=.a y bt -【答案】(Ⅰ)0.99r ≈,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系;(Ⅱ)1.82亿吨【解析】试题分析:(Ⅰ)根据相关系数r 公式求出相关数据后,然后代入公式即可求得r 的值,最后根据其值大小回答即可;(Ⅱ)利用最小二乘法的原理提供的回归方程,准确求得相关数据即可建立y 关于t 的回归方程,然后作预测. 试题解析:(Ⅰ)由折线图中数据和附注中参考数据得4=t ,28)(712=-∑=i i t t ,55.0)(712=-∑=i iy y ,89.232.9417.40))((717171=⨯-=-=--∑∑∑===i i i i i i i iy t y t y y t t,99.0646.2255.089.2≈⨯⨯≈r .因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(Ⅱ)由331.1732.9≈=y 及(Ⅰ)得103.02889.2)())((ˆ71271≈=---=∑∑==i ii i ity y t tb , 92.04103.0331.1ˆˆ≈⨯-≈-=t b y a. 所以,y 关于t 的回归方程为:t y10.092.0ˆ+=. 将2016年对应的9=t 代入回归方程得:82.1910.092.0ˆ=⨯+=y. 所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.【考点】线性相关与线性回归方程的求法与应用. 19.如图,四棱锥P ABC -中,PA ⊥平面ABCD ,ADBC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(Ⅰ)证明MN平面PAB ;(Ⅱ)求四面体N BCM -的体积. 【答案】(Ⅰ)见解析;【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MNAT ,由此结合线面平行的判断定理可证;(Ⅱ)由条件可知四面体N-BCM 的高,即点N 到底面的距离为棱PA 的一半,由此可顺利求得结果. 试题解析:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN . 又BC AD //,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是AT MN //. 因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .(Ⅱ)因为⊥PA 平面ABCD ,N 为PC 的中点, 所以N 到平面ABCD 的距离为PA 21. 取BC 的中点E ,连结AE .由3==AC AB 得BC AE ⊥,522=-=BE AB AE .由BC AM ∥得M 到BC 的距离为5,故525421=⨯⨯=∆BCM S . 所以四面体BCM N -的体积354231=⨯⨯=∆-PA S V BCM BCM N . 【考点】1、直线与平面间的平行与垂直关系;2、三棱锥的体积.20.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(Ⅱ)若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程. 【答案】(Ⅰ)见解析;(Ⅱ)12-=x y .【解析】试题分析:(Ⅰ)设出与x 轴垂直的两条直线,然后得出,,,,A B P Q R 的坐标,然后通过证明直线AR 与直线FQ 的斜率相等即可证明结果了;(Ⅱ)设直线l 与x 轴的交点坐标1(,0)D x ,利用面积可求得1x ,设出AB 的中点(,)E x y ,根据AB 与x 轴是否垂直分两种情况结合AB DE k k =求解. 试题解析:由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且)2,21(),,21(),,21(),,2(),0,2(22b a R b Q a P b b B a A +---. 记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(Ⅰ)由于F 在线段AB 上,故01=+ab . 记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=. 所以FQ AR ∥.(Ⅱ)设l 与x 轴的交点为)0,(1x D , 则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆. 由题设可得221211ba x ab -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y ba =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y . 【考点】1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法. 21.设函数()ln 1f x x x =-+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)证明当(1,)x ∈+∞时,11ln x x x-<<; (Ⅲ)设1c >,证明当(0,1)x ∈时,1(1)xc x c +->.【答案】(Ⅰ)当01x <<时,()f x 单调递增;当1x >时,()f x 单调递减;(Ⅱ)见解析;(Ⅲ)见解析. 【解析】试题分析:(Ⅰ)首先求出导函数()f x ',然后通过解不等式()0f x '>或()0f x '<可确定函数()f x 的单调性(Ⅱ)左端不等式可利用(Ⅰ)的结论证明,右端将左端的x 换为1x即可证明;(Ⅲ)变形所证不等式,构造新函数,然后通过利用导数研究函数的单调性来处理.试题解析:(Ⅰ)由题设,()f x 的定义域为(0,)+∞,'1()1f x x=-,令'()0f x =,解得1x =. 当01x <<时,'()0f x >,()f x 单调递增;当1x >时,'()0f x <,()f x 单调递减.(Ⅱ)由(Ⅰ)知,()f x 在1x =处取得最大值,最大值为(1)0f =.所以当1x ≠时,ln 1x x <-.故当(1,)x ∈+∞时,ln 1x x <-,11ln 1x x <-,即11ln x x x-<<. (Ⅲ)由题设1c >,设()1(1)x g x c x c =+--,则'()1ln x g x c c c =--,令'()0g x =, 解得01lnln ln c c x c -=. 当0x x <时,'()0g x >,()g x 单调递增;当0x x >时,'()0g x <,()g x 单调递减. 由(Ⅱ)知,11ln c c c-<<,故001x <<,又(0)(1)0g g ==,故当01x <<时,()0g x >. 所以当(0,1)x ∈时,1(1)x c x c +->.【考点】1、利用导数研究函数的单调性;2、不等式的证明与解法.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C的参数方程为()sin x y θθθ⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C的极坐标方程为sin()4ρθπ+=(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求|PQ|的最小值及此时P 的直角坐标.【答案】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=;(Ⅱ)31(,)22. 【解析】试题分析:(Ⅰ)利用同角三角函数基本关系中的平方关系化曲线C 1的参数方程普通方程,利用公式cos x ρθ=与sin y ρθ=代入曲线C 2的极坐标方程即可;(Ⅱ)利用参数方程表示出点P 的坐标,然后利用点到直线的距离公式建立||()PQ d α=的三角函数表达式,然后求出最值与相应的点P 坐标即可.试题解析:(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=. (Ⅱ)由题意,可设点P的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值, 即为P 到2C 的距离()d α的最小值,()sin()2|3d παα==+-.当且仅当2()6k k Z παπ=+∈时,()d αP 的直角坐标为31(,)22. 【考点】1、椭圆的参数方程;2、直线的极坐标方程.23.选修4-5:不等式选讲已知函数()|2|f x x a a =-+(Ⅰ)当a=2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|,g x x =-当x ∈R 时,()()3f x g x +≥,求a 的取值范围.【答案】(Ⅰ){|13}x x -≤≤;(Ⅱ)[2,)+∞.【解析】试题分析:(Ⅰ)利用等价不等式|()|()h x a a h x a ≤⇔-≤≤,进而通过解不等式可求得;(Ⅱ)根据条件可首先将问题转化求解()()f x g x +的最小值,此最值可利用三角形不等式求得,再根据恒成立的意义建立简单的关于a 的不等式求解即可.试题解析:(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+≤,得13x -≤≤.因此,()6f x ≤的解集为{|13}x x -≤≤.(Ⅱ)当x R ∈时,()()|2||12|f x g x x a a x +=-++-|212|x a x a ≥-+-+|1|a a =-+, 当12x =时等号成立, 所以当x R ∈时,()()3f x g x +≥等价于|1|3a a -+≥. ①当1a ≤时,①等价于13a a -+≥,无解.当1a >时,①等价于13a a -+≥,解得2a ≥.所以a 的取值范围是[2,)+∞.【考点】1、绝对值不等式的解法;2、三角形绝对值不等式的应用.。
2019年高等学校招生全国统一考试仿真卷文科数学试卷(七)及答案
绝密 ★ 启用前2019年普通高等学校招生全国统一考试仿真卷文科数学(七)本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{}1,2,3,4U =,若{}1,3A =,{}3B =,则()()U UA B 痧等于( )A .{}1,2B .{}1,4C .{}2,3D .{}2,42.已知复数z 满足()34i 34i z +=-,z 的共轭复数,则z =( ) A .1B .2C .3D .43.如果数据1x ,2x ,…,n x 的平均数为x ,方差为28,则152x +,252x +,…,52n x +的平均数和方差分别为( )28B28C2258⨯D2258⨯4.《九章算术》有这样一个问题:今有女子善织,日增等尺,七日共织二十八尺,第二日、第 姓名 准考证号 考场号 座位号卷只装订不密封A .9B .10C .11D .125.已知0.41.9a =,0.4log 1.9b =, 1.90.4c =,则( ) A .a b c >>B .b c a >>C .a c b >>D .c a b >>6.如图,已知正方形的面积为10,向正方形内随机地撒200颗黄豆,数得落在阴影外的黄豆数为114颗,以此试验数据为依据,可以估计出阴影部分的面积约为( )A .5.3B .4.3C .4.7D .5.77.某几何体的三视图如图所示,则此几何体的体积为( )A .23B .1C .43D .838.已知函数()20172017log x f x =+)20173x x --+,则关于x 的不等式()()126f x f x -+>的解集为( )A .(),1-∞B .()1,+∞C .()1,2D .()1,49.在如图所示的程序框图中,若输入的2s =,输出的2018s >,则判断框内可以填入的条件是( )开始输入x结束是否输出s 2s s =1i =A .9i >B .10i ≤C .10i ≥D .11i ≥10.函数()()sin (0,0)f x A x A ωϕω=+>>的图像如图所示,则()()()()12318f f f f ++++的值等于( )ABC2+ D .111.已知函数()ln 2x axf x x-=,若有且仅有一个整数k ,使得()1f k >,则实数a 的取值范围是( ) A .(]1,3B .1111ln2,ln34262⎡⎫--⎪⎢⎣⎭C .11ln21,ln3123⎡⎫--⎪⎢⎣⎭D .11,e 1e ⎛⎤-- ⎥⎝⎦12.已知椭圆2215y x +=与抛物线2x ay =有相同的焦点F ,O 为原点,点P 是抛物线准线上一动点,点A 在抛物线上,且4AF =,则PA PO +的最小值为( ) A.B.C.D.第Ⅱ卷卷包括必考题和选考题两部分。
2019届普通高等学校招生全国统一考试模拟卷文科数学解析版
2019届普通高等学校招生全国统一考试模拟卷文科数学本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则( )A.A⫋BB.B⫋AC.A=BD.A∩B=⌀2.复数z=的共轭复数是( )A.2+iB.2-IC.-1+iD.-1-i3.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为( )A.-1B.0C.D.14.设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A. B. C. D.5.已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是( )A.(1-,2)B.(0,2)C.(-1,2)D.(0,1+)6.如果执行如图的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则( )A.A+B为a1,a2,…,a N的和B.为a1,a2,…,a N的算术平均数C.A和B分别是a1,a2,…,a N中最大的数和最小的数D.A和B分别是a1,a2,…,a N中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为( )A.πB.4πC.4πD.6π9.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=( )A. B. C. D.10.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为( )A. B.2 C.4 D.811.当0<x≤时,4x<log a x,则a的取值范围是( )A. B. C.(1,) D.(,2)12.数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为( )A.3 690B.3 660C.1 845D.1 830第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.曲线y=x(3ln x+1)在点(1,1)处的切线方程为.14.等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q= .15.已知向量a,b夹角为45°,且|a|=1,|2a-b|=,则|b|= .16.设函数f(x)=的最大值为M,最小值为m,则M+m= .三、解答题(解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asin C-ccos A.(Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; (ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点. (Ⅰ)证明:平面BDC1⊥平面BDC;(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(本小题满分12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l.A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(Ⅰ)若∠BFD=90°,△ABD的面积为4,求p的值及圆F的方程;(Ⅱ)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(本小题满分12分)设函数f(x)=e x-ax-2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x-k)f '(x)+x+1>0,求k的最大值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF∥AB,证明:(Ⅰ)CD=BC;(Ⅱ)△BCD∽△GBD.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为.(Ⅰ)求点A,B,C,D的直角坐标;(Ⅱ)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+a|+|x-2|.(Ⅰ)当a=-3时,求不等式f(x)≥3的解集;(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.答案详解一、选择题1.B A={x|-1<x<2},B={x|-1<x<1},则B⫋A,故选B.评析本题考查了集合的关系以及二次不等式的解法.2.D z====-1+i,=-1-i,故选D.评析本题考查了复数的运算,易忽略共轭复数而错选.3.D 所有点均在直线上,则样本相关系数最大即为1,故选D.评析本题考查了线性回归,掌握线性回归系数的含义是解题关键,本题易错选C.4.C 设直线x=a与x轴交于点Q,由题意得∠PF2Q=60°,|F2P|=|F1F2|=2c,|F2Q|=a-c,∴a-c=×2c,e==,故选C.评析本题考查了椭圆的基本性质,考查了方程的思想,灵活解三角形对求解至关重要.5.A 由题意知区域为△ABC(不含边界).当直线-x+y-z=0过点C(1+,2)时,z min=1-;当过点B(1,3)时,z max=2.故选A.评析本题考查了简单的线性规划,考查了数形结合的思想.正确理解直线的斜率、截距的几何意义是求解的关键.6.C 不妨令N=3,a1<a2<a3,则有k=1,A=a1,B=a1;x=a2,A=a2;x=a3,A=a3,故输出A=a3,B=a1,选C. 评析本题考查了流程图,考查了由一般到特殊的转化思想.7.B 由三视图可得,该几何体为三棱锥S-ABC,其中底面△ABC为等腰三角形,底边AC=6,AC边上的高为3,SB⊥底面ABC,且SB=3,所以该几何体的体积V=××6×3×3=9.故选B.评析本题考查了三视图和三棱锥的体积,考查了空间想象能力.由三视图正确得到该几何体的直观图是求解的关键.8.B 如图,设平面α截球O所得圆的圆心为O1,则|OO1|=,|O1A|=1,∴球的半径R=|OA|==.∴球的体积V=πR3=4π.故选B.评析本题考查了球的基础知识,利用勾股定理求球的半径是关键.9.A 由题意得=2,∴ω=1,∴f(x)=sin(x+φ),则+φ=kπ+(k∈Z),φ=kπ+(k∈Z),又0<φ<π,∴φ=,故选A.评析本题考查了三角函数的图象和性质,掌握相邻对称轴的距离为周期的一半是关键.10.C 由题意可得A(-4,2).∵点A在双曲线x2-y2=a2上,∴16-12=a2,a=2,∴双曲线的实轴长2a=4.故选C.评析本题考查了双曲线和抛物线的基础知识,考查了方程的数学思想,要注意双曲线的实轴长为2a.11.B 易知0<a<1,则函数y=4x与y=log a x的大致图象如图,则只需满足log a>2,解得a>,故选B.评析本题考查了利用数形结合解指数、对数不等式.12.D 当n=2k时,a2k+1+a2k=4k-1,当n=2k-1时,a2k-a2k-1=4k-3,∴a2k+1+a2k-1=2,∴a2k+1+a2k+3=2,∴a2k-1=a2k+3,∴a1=a5=…=a61.∴a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)==30×61=1 830.评析本题考查了数列求和及其综合应用,考查了分类讨论及等价转化的数学思想.二、填空题13.答案y=4x-3解析y'=3ln x+1+x·=3ln x+4,k=y'|x=1=4,切线方程为y-1=4(x-1),即y=4x-3.评析本题考查了导数的几何意义,考查了运算求解能力.14.答案-22=0,解得q=-2.解析由S评析本题考查了等比数列的运算,直接利用定义求解可达到事半功倍的效果.15.答案3解析把|2a-b|=两边平方得4|a|2-4|a|·|b|·cos 45°+|b|2=10.∵|a|=1,∴|b|2-2|b|-6=0.∴|b|=3或|b|=-(舍去).评析本题考查了向量的基本运算,考查了方程的思想.通过“平方”把向量问题转化为数量问题是求解的关键.16.答案 2解析f(x)==1+,令g(x)=,则g(x)为奇函数,有g(x)max+g(x)min=0,故M+m=2.评析本题考查了函数性质的应用,运用了奇函数的值域关于原点对称的特征,考查了转化与化归的思想方法.三、解答题17.解析(Ⅰ)由c=asin C-c·cos A及正弦定理得·sin A·sin C-cos A·sin C-sin C=0.由于sin C≠0,所以sin=.又0<A<π,故A=.(Ⅱ)△ABC的面积S=bcsin A=,故bc=4.而a2=b2+c2-2bccos A,故b2+c2=8.解得b=c=2.评析本题考查了正、余弦定理和三角公式,考查了方程的思想,灵活利用正、余弦定理是求解关键,正确的转化是本题的难点.18.解析(Ⅰ)当日需求量n≥17时,利润y=85.当日需求量n<17时,利润y=10n-85.所以y关于n的函数解析式为y=(n∈N).(Ⅱ)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为(55×10+65×20+75×16+85×54)=76.4.(ii)利润不低于75元当且仅当日需求量不少于16枝.故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.评析本题考查概率统计,考查运用样本频率估计总体概率及运算求解能力.19.解析(Ⅰ)证明:由题设知BC⊥CC 1,BC⊥AC,CC1∩AC=C,所以BC⊥平面ACC1A1.又DC1⊂平面ACC1A1,所以DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,所以∠CDC1=90°,即DC1⊥DC.又DC∩BC=C,所以DC1⊥平面BDC.又DC1⊂平面BDC1,故平面BDC1⊥平面BDC.(Ⅱ)设棱锥B-DACC1的体积为V1,AC=1.由题意得V1=××1×1=.又三棱柱ABC-A1B1C1的体积V=1,所以(V-V1)∶V1=1∶1.故平面BDC1分此棱柱所得两部分体积的比为1∶1.评析本题考查了线面垂直的判定,考查了体积问题,同时考查了空间想象能力,属中档难度.20.解析(Ⅰ)由已知可得△BFD为等腰直角三角形,|BD|=2p,圆F的半径|FA|=p.由抛物线定义可知A到l的距离d=|FA|=p.因为△ABD的面积为4,所以|BD|·d=4,即·2p·p=4,解得p=-2(舍去),p=2.所以F(0,1),圆F的方程为x2+(y-1)2=8.(Ⅱ)因为A,B,F三点在同一直线m上,所以AB为圆F的直径,∠ADB=90°.由抛物线定义知|AD|=|FA|=|AB|,所以∠ABD=30°,m的斜率为或-.当m的斜率为时,由已知可设n:y=x+b,代入x2=2py得x2-px-2pb=0.由于n与C只有一个公共点,故Δ=p2+8pb=0.解得b=-.因为m的截距b1=,=3,所以坐标原点到m,n距离的比值为3.当m的斜率为-时,由图形对称性可知,坐标原点到m,n距离的比值为3.评析本题考查了直线、圆、抛物线的位置关系,考查了分类讨论的方法和数形结合的思想.21.解析(Ⅰ)f(x)的定义域为(-∞,+∞), f '(x)=e x-a.若a≤0,则f '(x)>0,所以f(x)在(-∞,+∞)上单调递增.若a>0,则当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0,所以, f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.(Ⅱ)由于a=1,所以(x-k)f '(x)+x+1=(x-k)(e x-1)+x+1.故当x>0时,(x-k)f '(x)+x+1>0等价于k<+x(x>0).①令g(x)=+x,则g'(x)=+1=.由(Ⅰ)知,函数h(x)=e x-x-2在(0,+∞)上单调递增.而h(1)<0,h(2)>0,所以h(x)在(0,+∞)上存在唯一的零点.故g'(x)在(0,+∞)上存在唯一的零点.设此零点为α,则α∈(1,2).当x∈(0,α)时,g'(x)<0;当x∈(α,+∞)时,g'(x)>0.所以g(x)在(0,+∞)上的最小值为g(α).又由g'(α)=0,可得eα=α+2,所以g(α)=α+1∈(2,3).由于①式等价于k<g(α),故整数k的最大值为2.评析本题考查了函数与导数的综合应用,判断出导数的零点范围是求解第(Ⅱ)问的关键.22.证明(Ⅰ)因为D,E分别为AB,AC的中点,所以DE∥BC.又已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD=AD.而CF∥AD,连结AF,所以四边形ADCF是平行四边形,故CD=AF.因为CF∥AB,所以BC=AF,故CD=BC.(Ⅱ)因为FG∥B C,故GB=CF.由(Ⅰ)可知BD=CF,所以GB=BD.而∠DGB=∠EFC=∠DBC,故△BCD∽△GBD.评析本题考查了直线和圆的位置关系,处理好平行的关系是关键.23.解析(Ⅰ)由已知可得A,B2cos+,2sin+,C2cos+π,2sin+π,D2cos+,2sin+,即A(1,),B(-,1),C(-1,-),D(,-1).(Ⅱ)设P(2cos φ,3sin φ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ.因为0≤sin2φ≤1,所以S的取值范围是[32,52].评析本题考查了曲线的参数方程和极坐标方程.考查了函数的思想方法,正确“互化”是关键,难点是建立函数S=f(φ).24.解析(Ⅰ)当a=-3时,f(x)=当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1;当2<x<3时, f(x)≥3无解;当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4.所以f(x)≥3的解集为{x|x≤1或x≥4}.(Ⅱ)f(x)≤|x-4|⇔|x-4|-|x-2|≥|x+a|.当x∈[1,2]时,|x-4|-|x-2|≥|x+a|⇔4-x-(2-x)≥|x+a|⇔-2-a≤x≤2-a.由条件得-2-a≤1且2-a≥2,即-3≤a≤0.故满足条件的a的取值范围为[-3,0].评析本题考查了含绝对值不等式的解法,运用零点法分类讨论解含绝对值的不等式,考查了运算求解能力.。
2019届河南省高考模拟试题精编(七)文科数学(解析版)(2021年整理)
2019届河南省高考模拟试题精编(七)文科数学(解析版)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届河南省高考模拟试题精编(七)文科数学(解析版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届河南省高考模拟试题精编(七)文科数学(解析版)(word版可编辑修改)的全部内容。
2019届河南省高考模拟试题精编(七)文科数学(考试用时:120分钟试卷满分:150分)注意事项:1.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
2.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
3.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|x2-2x>0},B={x|-5<x<错误!},则()A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B2.如图,“天宫二号”运行的轨迹是如图的两个类同心圆,小圆的半径为2 km,大圆的半径为4 km,卫星P在圆环内无规则地自由运动,运行过程中,则点P与点O的距离小于3 km的概率为()A.错误!B.错误!C.错误!D.错误!3.复数z1,z2满足z1=m+(4-m2)i,z2=2cos θ+(λ+3sin θ)i(m,λ,θ∈R),并且z1=z2,则λ的取值范围是() A.[-1,1] B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017届全国各地高三文科数学模拟试卷精彩试题汇编(7)
1.( 数学卷·2017届河北省定州中学高三(高补班)上学期周练(一)第3题) 定义在区间
),0(+∞上的函数)(x f 使不等式)(3)(')(2x f x xf x f <<恒成立,其中)('x f 为)(x f 的导数,
则( )
2.( 数学卷·2017届河北省定州中学高三(高补班)上学期周练(一)第5题) 设函数
解:由函数解析式的形式可知)
(x f 表示平面上的两动点)2,(),ln ,(2a a Q x x
P 之间距离d 的平
3.( 河北省望都中学2017届高三8月月考数学(文)
试题第11题) 已知函数
解:B.
4.( 湖北省襄阳市第四中学2017届高三七月第三周周考数学(文)试题第11题) 已知F 为抛物线x y =2
的焦点,点B A 、在该抛物线上且位于x 轴的两侧,2=⋅OB OA (其
5.( 黑龙江省牡丹江市第一中学2017届高三上学期开学摸底考试数学(文)试题 第10题) 若
221x y +=,则x y +的取值范围是( )
A .]2,0[
B .]0,2[-
C .),2[+∞-
D .]2,(--∞
解:D.
6.( 河北省涞水县波峰中学2017届高三8月月考调研考试数学试题第22题) 对于函数
)0(2)1()(2≠-+++=a b x b ax x f ,若存在实数0x ,使00)(x x f =成立,则称0x 为)
(x f 的不动点.(1)当a=2,b=-2时,求)(x f 的不动点;(2)若对于任何实数b ,函数)(x f 恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若)(x f y =的图象上A 、
实数b 的取值范围.
解:
),0(2)1()(2
≠-+++=a b x b ax x f (1)当a=2,b=-2时,
.42)(2
--=x x x f 设x 为其不动点,即.422x x x =--则.04222=--x x )(.2,121x f x x 即=-=∴的不动点是-1,2.
(2)由x x f =)(得:022
=-++b bx ax . 由已知,此方程有相异二实根,
0>∆x 恒成立,即.0)2(42>--b a b 即0842>+-a ab b 对任意R b ∈恒成立.
.200
3216.
02<<∴<-∴<∆∴a a a b
7.( 湖北省襄阳市第四中学2017届高三七月第三周周考数学(文)试题第18题) 已知函数
()e 1x f x ax =--(a ∈R ).
(1)求函数()f x 的单调区间;
(2)函数()()ln F x f x x x =-在定义域内存在零点,求a 的取值范围;
(3)若()ln(e 1)ln x g x x =--,当
(0,)x ∈+∞时,不等式(())()f g x f x <恒成立,求a 的取值范围.
由于0x >,e 10x ->,可知当1x >,'()0h x >;当01x <<时,'()0h x <, 故函数()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,故()(1)e 1h x h ≥=
-.
(随着0x >的增长,e 1x y =-的增长速度越来越快,会超过并远远大于y x =的增长速度,而ln y x =的增长速度则会越来越慢.则当0x >且x 无限接近于0时,()h x 趋向于正无穷大.)
∴当e 1a ≥-时,函数()F x 有零点;
(3)由(2)知,当0>x 时,x e x
>-1,即0)(,0>>∀x g x .先分析法证明:
01,0>+->∀x x e xe x ,设)0(1H >+-=x e xe x x x )
(,则0)('>=x xe x H ,所以)(x H 在),0(+∞∈x 时函数单调递增,所以0)0(H =>H x )
(, 则
01,0>+->∀x x e xe x 当1≤a 时,由(1)知,函数)(x f 在),0(+∞∈x 单调递增,则(())()f g x f x <在),0(+∞∈x 恒成立;
当1>a 时,由(1)知,函数)(x f 在),(ln +∞a 单调递增,在),(a ln 0单调递减.故当a
x ln 0<<时a x x g ln )(0<<<,所以)())((x f x g f >,则不满足题意,舍去.综上,满足题意的实
数a 的取值范围为
1]-,(∞.。