常用的几种聚焦评价函数
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用的几种聚焦评价函数
采用图像处理法实现自动调焦的一个关键问题是,在于图像清晰度评价函数的选取。理想的评价函数要求:无偏性、单峰性、能反映离焦的极性、对噪声敏感度低、计算量尽可能小等。离焦图像可以看作由物体和点扩散函数做卷积的结果,这样往往导致图像中高频分量的减少或缺失。这一结果也可理解为,聚焦的图像比离焦图像包含更多的细节和边缘信息。凋焦评价函数通常基于离焦图像与聚焦图像的内容信息的差别等先验知识,因此没有对任何情况都适用的全能方法。
基于图像处理的自动调焦法的常用的聚焦评价函数的类型大致有:灰度梯度函数、信息学函数、频域函数、统计学函数等。
灰度梯度函数
这类函数主要利用对图像灰度的各种处理方法来表征图像清晰度。假设图像中某点(x,y)处的灰度值为g(x,y),图像的规模为M×N(M列、N行)个像素,则灰度梯度判别函数包括以下几种常见形式。
1、灰度涨落变化函数
这是一种判断图像灰度起伏程度的方法,其函数式为
式中,g0是图像灰度平均值。
2、灰度绝对变化函数
该评价函数与灰度涨落变化函数比较类似,适于具有固定单一背景的图像对比。该函数式为