[精品]第五章 钢筋混凝土受扭构件收集资料

[精品]第五章  钢筋混凝土受扭构件收集资料
[精品]第五章  钢筋混凝土受扭构件收集资料

第五章 受扭构件承载力计算

一、填空题:

1、钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力 降低 ;扭矩的增加将使构件的抗剪承载力 降低 。

2、由于配筋量不同,钢筋混凝土纯扭构件将发生 、 、 、 四种破坏。

3、抗扭纵筋应沿 周边均匀 布置,其间距 mm 200≤ 。

4、钢筋混凝土弯、剪、扭构件箍筋的最小配筋率 yv

t sv f f 28.0min ,=ρ ,抗弯纵向钢筋的最小配筋率 %2.0和y

t f f 45.0 ,抗扭纵向钢筋的最小配筋率 。

5、混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比?应在 7.1~6.0 范围内。

6、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 封闭 形状,且箍筋的两个端头应 锚入核心混凝土至少10d 。

二、判断题:

1、受扭构件中抗扭钢筋有纵向钢筋和横向钢筋,它们在配筋方面可以互相弥补,即一方配置少时,可由另一方多配置一些钢筋以承担少配筋一方所承担的扭矩。(× )

2、受扭构件设计时,为了使纵筋和箍筋都能较好地发挥作用,纵向钢筋与箍筋的配筋强度比值?控制在7.16.0≤≤?。( )

3、在混凝土纯扭构件中,混凝土的抗扭承载力和箍筋与纵筋是完全独立的变量。( × )

4、矩形截面纯扭构件的抗扭承载力计算公式t t W f T 35.0≤+s f A A yv st cor

12.1ζ只考虑混凝土和箍筋提供的抗扭承载力( × )

5、对于承受弯、剪、扭的构件,为计算方便,规范规定: t t W f T 175.0≤时,不考虑扭矩的影响,可仅按受弯构件的正截面和斜截面承载力分别进行计算。( )

6、对于承受弯、剪、扭的构件,为计算方便,规范规定:035.0bh f V t ≤或01

875.0bh f V t +≤λ时,不考虑剪力的影响,可仅按受弯和受扭构件承载力分别进行计算。( )

7、弯、剪、扭构件中,按抗剪和抗扭计算分别确定所需的箍筋数量后代数相加,便得到剪扭构件的箍筋需要量。( × )

8、对于弯、剪、扭构件,当

c c t f W T bh V β25.08.00≤+加大截面尺寸或提高混凝土强度等级。( √ )

9、对于弯、剪、扭构件,当满足t t

f W T bh V 7.00≤+时,箍筋和抗扭纵筋按其最小配筋率设置。这时只需对抗弯纵筋进行计算。( √ )

10、钢筋混凝土弯、剪、扭构件中,弯矩的存在对构件抗剪承载力没有影响(√ )

11、钢筋混凝土弯、剪、扭构件中,剪力的存在对构件抗扭承载力没有影响( × )

12、钢筋混凝土弯、剪、扭构件中,弯矩的存在对构件抗扭承载力没有影响( × )

三、选择题:

1、钢筋混凝土纯扭构件,抗扭纵筋和箍筋的配筋强度比7.16.0≤≤ζ,当构件破坏时,( A )。

A 纵筋和箍筋都能达到屈服强度

B 仅纵筋达到屈服强度

C 仅箍筋达到屈服强度

D 纵筋和箍筋能同时达到屈服强度

2、混凝土构件受扭承载力所需受扭纵筋面积

stl A ,以下列( A )项理解是正确的。

A stl A 为对称布置的包括四角和周边全部受扭纵筋面积

B stl A 为对称布置的四角受扭纵筋面积

C stl A 为受扭纵筋加抗负弯矩的上边纵筋面积

D stl A 为受扭纵筋加抗正弯矩的下边纵筋面积

3、混凝土构件受扭承载力所需受扭纵筋面积1st A ,以下列( )项理解是正确的。

A 1st A 为沿截面周边布置的受扭箍筋单肢截面面积

B 1st A 为沿截面周边布置的全部

受扭箍筋面积 C 1st A 为沿截面周边布置的受扭和受剪箍筋面积 D 1st A 为沿截面周边布置的受扭和受剪箍筋单肢截面面积

4、设计钢筋混凝土受扭构件时,其受扭纵筋与受扭箍筋强度比?应( D )。

A 5.0

B 0.2

C 不受限制

D 在7.1~6.0之间

5、受扭构件的配筋方式可为( B )。

A 仅配抗扭箍筋

B 配置抗扭纵筋和抗扭箍筋

C 仅配置抗扭纵筋

D 仅配置与裂缝方向垂直的45°方向的螺旋状钢筋

6、下列关于钢筋混凝土弯剪扭构件的叙述中,不正确的是( B )。

A 扭矩的存在对构件的抗弯承载力有影响

B 剪力的存在对构件的抗扭承载力没有影响

C 弯矩的存在对构件的抗扭承载力有影响

D 扭矩的存在对构件的抗剪承载力有影响

7、矩形截面抗扭纵筋布置首先是考虑角隅处,然后考虑( A )。

A 截面长边中点

B 截面短边中点

C 截面中心点

D 无法确定

8、受扭构件中的抗扭纵筋( B )的说法不正确。

A 应尽可能均匀地沿周边对称布置

B 在截面的四角可以设抗扭纵筋也可以不设抗扭纵筋

C 在截面四角必设抗扭纵筋

D 抗扭纵筋间距不应大于200mm ,也不应大于短边尺寸

9、对受扭构件中的箍筋,正确的叙述是( C )。

A 箍筋可以是开口的,也可以是封闭的

B 箍筋必须封闭且焊接连接,不得搭接

C 箍筋必须封闭,但箍筋的端部应做成135°的弯钩,弯钩末端的直线长度不应小于5d 和50mm

D 箍筋必须采用螺旋箍筋

10、剪扭构件的承载力计算公式中( A )。

A 混凝土部分相关,钢筋不相关

B 混凝土和钢筋均相关

C 混凝土和钢筋均不相关

D 混凝土不相关,钢筋相关

四、简答题:

1、受扭构件如何分类?

2、什么是抗扭计算的变角空间桁架理论?

3、简述受扭构件的配筋形式。

4、钢筋混凝土纯扭构件有哪些破坏形态?以哪种破坏作为抗扭计算的依据?

5、纯扭构件计算中如何避免少筋破坏和超筋破坏?

6、受扭构件计算公式中,ζ的物理意义是什么?起什么作用?有何限制?

7、对钢筋混凝土T 形、倒L 形、工字形截面受扭构件,截面怎样分块?

8、什么叫弯、剪、扭相关性?规范如何考虑其相关性的?

9、钢筋混凝土剪扭构件混凝土受扭承载力降低系数t β怎样计算?取值范围?

10、受弯、受剪和受扭钢筋各应配置在截面的什么位置?哪些钢筋可以合并设置?

11、钢筋混凝土弯剪扭构件对截面有哪些限制条件?

12、弯、剪、扭构件,什么条件下可不进行抗扭钢筋的计算,而只按构造要求配筋?

13、受扭构件中对箍筋有哪些要求?

14、受扭构件中,纵向抗扭钢筋应如何布置?

15、对于弯矩、剪力、扭矩共同作用下的T 形、倒L 形、工字形截面构件,如何考虑各部分截面的抗力?

五、计算题:

5-1 某矩形截面纯扭构件,承受扭矩设计值为m KN T .18=,截面尺寸mm 500250?,C25混凝土,箍筋为HRB335级钢筋,纵筋为HRB400级钢筋。环境类别为二类,试计算截面的配筋数量。

(注:2/9.11mm N f c =,2/27.1mm N f t =,2/360mm N f y =,2/300mm N f yv =)

5-2 某雨篷梁,承受弯矩、剪力、扭矩设计值为m KN M .25=, KN V 40=,

m KN T .6=,

截面尺寸mm 240240?,C25混凝土,箍筋为HRB335级钢筋,纵筋为HRB400级钢筋。环境类别为一类a ,试计算雨篷梁的配筋数量。

(注:2/9.11mm N f c =,2/27.1mm N f t =,2/360mm N f y =,2/300mm N f yv =)

参考答案

一、填空题:

1、降低 降低

2、少筋破坏 适筋破坏 部分超筋破坏 完全超筋破坏

3、周边均匀布置

mm 200≤ 4、yv t sv f f 28.0min ,=ρ %2.0和y

t f f 45.0 y t s t l f f Vb T 6.0min ,=ρ

5、7.1~6.0

6、封闭 锚入混凝土核心至少10d

二、判断题:

1、×

2、√

3、×

4、×

5、√

6、√

7、×

8、√

9、√ 10、√ 11、× 12、×

三、选择题:

1、A

2、A

3、A

4、D

5、B

6、B

7、A

8、B

9、C 10、A

四、简答题:

1、钢筋混凝土结构在扭矩作用下,根据扭矩形成的原因,可以分为两种类型:

(1)平衡扭转:若结构的扭矩是由荷载产生的,其扭矩可根据平衡条件求得,与构件抗扭刚度无关,这种扭转称为平衡扭转。

(2)协调扭转或称附加扭转:超静定结构中由于变形的协调使截面产生的扭转,称为协调扭转或附加扭转。

2、钢筋混凝土构件受扭时,核芯部分的混凝土所起的抗扭作用很小,因此可将其开裂后的破坏图形比拟为一个空间桁架,纵筋可看成这个空间桁架的弦杆,箍筋可看成这个空间桁架的竖杆,斜裂缝之间的混凝土条带可看成这个空间桁架的斜压腹杆。

原设计《规范》假定斜裂缝与水平线的倾角α成45°,而新《规范》根据近年来的试验结果和理论分析认为,α角随着纵向钢筋和箍筋的配筋强度比值ζ而变化,称为变角空间桁架理论法。

3、(1)配置横向钢筋(抗扭箍筋)——靠近构件表面设置横向的抗扭箍筋;

(2)配置抗扭纵向钢筋——沿周边均匀对称布置纵向抗扭钢筋。

4、(1)少筋破坏:当抗扭箍筋和纵筋或者其中之一配置过少时。破坏具有突然性,属脆性破坏。

(2)适筋破坏:当构件中的箍筋和纵筋配置适当时,破坏具有延性性质,有较明显的预兆。

(3)超筋破坏:①部分超筋:当构件中的箍筋或纵筋有一种配的太多时,有一定预兆;②当受扭箍筋和纵筋都太多时,破坏突然发生,属脆性破坏。

钢筋混凝土受扭构件应以适筋破坏为依据,设计时,应设计成具有此种破坏特征的受扭构件。

5、(1)为防止超筋破坏:通过控制截面尺寸不能太小,《规范》做如下规定:

t c c W f T 8.025.0?≤β(0.8是考虑了可靠度要求对W t 的折减)

(2)防止少筋破坏:《规范》对受扭构件的箍筋和纵筋的数量分别规定了最小配筋率,以防止此种破坏的发生。 ①受扭箍筋的最小配筋率:yv t

sv st sv f f bs A 28.02min ,1=≥=ρρ ②受扭纵筋最小配筋率:y t tl stl tl f f Vb T bh A 6.0min ,=≥=

ρρ ③2 Vb T 时,取2=Vb T ;对纯扭构件,剪力设计值V=1。

6、(1)ζ受扭纵向与横向钢筋配筋强度比:cor

st yv stl y st yv cor stl

y A f s

A f s A f A f μμζ11/==

(2)试验表明,为了使抗扭钢筋(抗扭箍筋和抗扭纵筋)都能发挥其作用,达到屈服,应将其用量控制在合理的范围内。实际工程中采用控制纵向钢筋和箍筋的配筋强度比ζ,可以达到上述目的。

(3)试验表明:当ζ在0.25.0≤≤ζ变化时,纵筋与箍筋在构件破坏时基本上都能达到屈服强度,但为慎重起见,建议取7.16.0≤≤ζ。

在工程设计中,为了设计方便,通常取1.0~1.2(1.2比较理想)。

7、对于T 形、倒L 形、工字形截面的受扭构件,可近似地将其截面视为由若干个矩形截面组成。分块的方法与腹板的宽度有关,当腹板的宽度大于上下翼缘的高度时,按图5-1(a )所示方式划分计算比较方便;当腹板的宽度小于上下翼缘的高度时,按图5-1(b )所示方式划分计算比较方便。

图5-1 T 形及工字形截面划分矩形截面的方法

8、受扭构件同时受到弯矩的作用或同时受到剪力的作用时,由于扭矩的作用会使构件的抗弯抗剪能力降低;同样,由于弯矩的作用也会使构件的抗扭能力降低,故称之为弯、剪、扭相关性。

完全考虑弯、剪、扭构件的相关性是十分复杂的,在工程设计中也不便推行,目前在:

(1)弯扭共同作用时,其承载力相关性影响因素较多,精确计算十分复杂,仍采用将受弯所需的纵筋和受扭所需的纵筋分别计算然后叠加的方法;

(2)在剪扭共同作用时,考虑了混凝土的部分的承载力相关性,而箍筋仍按受扭和受剪承载力计算然后进行叠加后配筋。混凝土部分承载力相关性计算中,采用折减系数t β来考虑剪扭共同作用的影响。

9、(1)一般情况下:0

5.015

.1Tbh VW t t +=β (2)以集中荷载为主的构件:0)0.1(2.015

.1Tbh VW t t ++=λβ

(3)0.15.0≤≤t β

10、(1)抗弯纵筋应布置在受拉区;

(2)而抗扭纵筋应沿梁截面周边均匀布置;

因角部必设钢筋,因此角部的抗弯与抗扭纵筋是叠加的,其它的不变(注意叠加的

第8章受扭构件的扭曲截面承载力习题答案

第8章 受扭构件的扭曲截面承载力 8.1选择题 1.下面哪一条不属于变角度空间桁架模型的基本假定:( A )。 A . 平均应变符合平截面假定; B . 混凝土只承受压力; C . 纵筋和箍筋只承受拉力; D . 忽略核心混凝土的受扭作用和钢筋的销栓作用; 2.钢筋混凝土受扭构件,受扭纵筋和箍筋的配筋强度比7.16.0<<ζ说明,当构件破坏时,( A )。 A . 纵筋和箍筋都能达到屈服; B . 仅箍筋达到屈服; C . 仅纵筋达到屈服; D . 纵筋和箍筋都不能达到屈服; 3.在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应( D )。 A . 不受限制; B . 0.20.1<<ζ; C . 0.15.0<<ζ; D . 7.16.0<<ζ; 4.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是:( D )。 A . 混凝土和钢筋均考虑相关关系; B . 混凝土和钢筋均不考虑相关关系; C . 混凝土不考虑相关关系,钢筋考虑相关关系; D . 混凝土考虑相关关系,钢筋不考虑相关关系; 5.钢筋混凝土T 形和I 形截面剪扭构件可划分为矩形块计算,此时( C )。 A . 腹板承受全部的剪力和扭矩; B . 翼缘承受全部的剪力和扭矩; C . 剪力由腹板承受,扭矩由腹板和翼缘共同承受; D . 扭矩由腹板承受,剪力由腹板和翼缘共同承受; 8.2判断题 1.钢筋混凝土构件在弯矩、剪力和扭矩共同作用下的承载力计算时,其所需要的箍筋由受弯构件斜截面承载力计算所得的箍筋与纯剪构件承载力计算所得箍筋叠加,且两种公式中均不考虑剪扭的相互影响。( × ) 2.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是混凝土和钢筋均考虑相关关系;( × ) 3. 在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应不受限制( × )

结构设计原理第五章受扭构件习题及答案

第五章 受扭构件扭曲 截面承载力 一、填空题 1、素混凝土纯扭 构件的承载力 0.7u t t T f w =介于 和 分析结果之间 。t w 是假设 导出的。 2、钢筋混凝土受 扭构件随着扭 矩的增大,先在截面 最薄弱的部位 出现斜裂缝,然后形成大体 连续的 。 3、由于配筋量不 同,钢筋混凝土纯 扭构件将发生 破坏、 破坏、 破坏和 破坏。 4、钢筋混凝土弯 、剪、扭构件,剪力的增加将 使构件的抗扭 承载力 ;扭矩的增加将 使构件的抗剪 承载力 。 5、为了防止受扭 构件发生超筋 破坏,规范规定的验 算条件是 。 6、抗扭纵向钢筋 应沿 布置,其间距 。 7、T 形截面弯、剪、扭构件的弯矩 由 承受,剪力由 承受,扭矩由 承受。 8、钢筋混凝土弯 、剪、扭构件箍筋的 最小配筋率,min sv ρ= ,抗弯纵向钢筋 的最小配筋率 ρ= ,抗扭纵向钢筋 的最小配筋率 tl ρ= 。 9、混凝土受扭构 件的抗扭纵筋 与箍筋的配筋 强度比ζ应在 范围内。 10、为了保证箍筋 在整个周长上 都能充分发挥 抗拉作用,必须将箍筋做 成 形状,且箍筋的两个 端头应 。 二、判断题 1、构件中的抗扭 纵筋应尽可能 地沿截面周边 布置。 2、在受扭构件中 配置的纵向钢 筋和箍筋可以 有效地延缓构 件的开裂,从而大大提高 开裂扭矩值。 3、受扭构件的裂 缝在总体上成 螺旋形,但不是连贯的 。 4、钢筋混凝土构 件受扭时,核芯部分的混 凝土起主要抗 扭作用。 5、素混凝土纯扭 构件的抗扭承 载力可表达为 0.7U t t T f w =,该公式是在塑 性分析方法基 础上建立起来 的。 6、受扭构件中抗 扭钢筋有纵向 钢筋和横向箍 筋,它们在配筋方 面可以互相弥 补,即一方配置少 时,可由另一方多 配置一些钢筋 以承担少配筋 一方所承担的 扭矩。 7、受扭构件设计 时,为了使纵筋和 箍筋都能较好 地发挥作用,纵向钢筋与

【混凝土习题集】—4—钢筋混凝土受弯构件斜截面承载力计算

第四章 钢筋混凝土受弯构件斜截面承载力计算 一、填空题: 1、斜裂缝产生的原因是:由于支座附近的弯矩和剪力共同作用,产生 超过了混凝土的极限抗拉强度而开裂的。 2、斜裂缝破坏的主要形态有: 、 、 ,其中属于材料充分利用的是 。 3、梁的斜截面承载力随着剪跨比的增大而 。 4、梁的斜截面破坏形态主要有三种,其中,以 破坏的受力特征为依据建立斜截面承载力的计算公式。 5、随着混凝土强度的提高,其斜截面承载力 。 6、随着纵向配筋率的提高,其斜截面承载力 。 7、对于 情况下作用的简支梁,可以不考虑剪跨比的影响。对于 情况的简支梁,应考虑剪跨比的影响。 8、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 ;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为 。 9、 对梁的斜截面承载力有有利影响,在斜截面承载力公式中没有考虑。 10、设置弯起筋的目的是 、 。 11、为了防止发生斜压破坏,梁上作用的剪力应满足 ;为了防止发生斜拉破坏,梁内配置的箍筋应满足 。 12、梁内设置鸭筋的目的是 ,它不能承担弯矩。 二、判断题: 1、某简支梁上作用集中荷载或作用均布荷载时,该梁的抗剪承载力数值是相同的。( ) 2、剪压破坏时,与斜裂缝相交的腹筋先屈服,随后剪压区的混凝土压碎,材料得到充分利用,属于塑性破坏。( ) 3、梁内设置箍筋的主要作用是保证形成良好的钢筋骨架,保证钢筋的正确位置。( ) 4、当梁承受的剪力较大时,优先采用仅配置箍筋的方案,主要的原因是设置弯起筋抗剪不经济。( ) 5、当梁上作用有均布荷载和集中荷载时,应考虑剪跨比λ的影响,取0 Vh M =λ( ) 6、当剪跨比大于3时或箍筋间距过大时,会发生剪压破坏,其承载力明显大于斜裂缝出现时的承载力。( ) 7、当梁支座处允许弯起的受力纵筋不满足斜截面抗剪承载力的要求时,应加大纵筋配筋率。( )

第五章钢筋混凝土受扭构件

第五章 受扭构件承载力计算 一、填空题: 1、钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力 降低 ;扭矩的增加将使构件的抗剪承载力 降低 。 2、由于配筋量不同,钢筋混凝土纯扭构件将发生 、 、 、 四种破坏。 3、抗扭纵筋应沿 周边均匀 布置,其间距 mm 200≤ 。 4、钢筋混凝土弯、剪、扭构件箍筋的最小配筋率 yv t sv f f 28 .0min ,=ρ ,抗弯纵向钢筋的最小配筋率 %2.0和y t f f 45 .0 ,抗扭纵向钢筋的最小配筋率 。 5、混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比?应在 7.1~6.0 范围内。 6、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 封闭 形状,且箍筋的两个端头应 锚入核心混凝土至少10d 。 二、判断题: 1、受扭构件中抗扭钢筋有纵向钢筋和横向钢筋,它们在配筋方面可以互相弥补,即一方配置少时,可由另一方多配置一些钢筋以承担少配筋一方所承担的扭矩。(× ) 2、受扭构件设计时,为了使纵筋和箍筋都能较好地发挥作用,纵向钢筋与箍筋的配筋强度比值?控制在7.16.0≤≤?。( ) 3、在混凝土纯扭构件中,混凝土的抗扭承载力和箍筋与纵筋是完全独立的变量。( × ) 4、矩形截面纯扭构件的抗扭承载力计算公式t t W f T 35.0≤+s f A A yv st cor 12.1ζ只 考虑混凝土和箍筋提供的抗扭承载力( × ) 5、对于承受弯、剪、扭的构件,为计算方便,规范规定: t t W f T 175.0≤时,不考虑扭矩的影响,可仅按受弯构件的正截面和斜截面承载力分别进行计算。( ) 6、对于承受弯、剪、扭的构件,为计算方便,规范规定:035.0bh f V t ≤或 01 875 .0bh f V t +≤ λ时,不考虑剪力的影响,可仅按受弯和受扭构件承载力分别进行计算。( )

钢筋混凝土模拟试题及答案

模拟试题 一、判断题 1.采用边长为100mm的非标准立方体试块做抗压试验时,其抗压强度换算系数为0.95。 2.钢材的含碳量越大,钢材的强度越高,因此在建筑结构选钢材时,应选用含碳量较高的钢筋。 3.在进行构件承载力计算时,荷载应取设计值。 4.活载的分项系数是不变的,永远取1.4。 5.承载能力极限状态和正常使用极限状态都应采用荷载设计值进行计算,这样偏于安全。 6.在偏心受压构件截面设计时,当时,可判别为大偏心受压。 7.配筋率低于最小配筋率的梁称为少筋梁,这种梁一旦开裂,即标志着破坏。尽管开裂后仍保留有一定的承载力,但梁已经发生严重的开裂下垂,这部分承载力实际上是不能利用的。 8.结构设计的适用性要求是结构在正常使用荷载作用下具有良好的工作性能。 9. 对于一类环境中,设计使用年限为100年的结构应尽可能使用非碱性骨料。 10.一些建筑物在有微小裂缝的情况下仍能正常使用,因此不必控制钢筋混凝土结构的小裂缝裂缝。 11.混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。 12.对任何类型钢筋,其抗压强度设计值。 13.在进行构件变形和裂缝宽度验算时,荷载应取设计值。 14.以活载作用效应为主时,恒载的分项系数取1.35 。 15.结构的可靠指标越大,失效概率就越大,越小,失效概率就越小。 16.在偏心受压破坏时,随偏心距的增加,构件的受压承载力与受弯承载力都减少。 17.超筋梁的挠度曲线或曲率曲线没有明显的转折点。

18.结构在预定的使用年限内,应能承受正常施工、正常使用时可能出现的各种荷载、强迫变形、约束变形等作用,不考虑偶然荷载的作用。 19.对于一类环境,设计使用年限为100年的结构中混凝土的最大氯离子含量为0.06%。 20.钢筋混混凝土受弯、受剪以及受扭构件同样存在承载力上限和最小配筋率的要求。 21.钢筋经冷拉后,强度和塑性均可提高。 22.适筋破坏的特征是破坏始自于受拉钢筋的屈服,然后混凝土受压破坏。 23. 实际工程中没有真正的轴心受压构件. 24.正常使用条件下的钢筋混凝土梁处于梁工作的第Ⅲ阶段。 25.梁剪弯段区段内,如果剪力的作用比较明显,将会出现弯剪斜裂缝。 26.小偏心受压破坏的的特点是,混凝土先被压碎,远端钢筋没有受拉屈服。 27.当计算最大裂缝宽度超过允许值不大时,可以通过增加保护层厚度的方法来解决。 28.结构在正常使用和正常维护条件下,在规定的环境中在预定的使用年限内应有足够的耐久性。 29.对于一类环境中,设计使用年限为100年的钢筋混混凝土结构和预应力混凝土结构的最低混凝土强度等级分别为C10和C20. 30.对于钢筋混凝土结构,在掌握钢筋混凝土构件的性能、分析和设计,必须注意决定构件破坏特征及计算公式使用范围的某些配筋率的数量界限问题。 二、单项选择题题 1.与素混凝土梁相比,钢筋混凝上梁承载能力(B)。 A 相同 B 提高许多 C 有所提高D不确定

结构设计原理-第五章-受扭构件-习题及答案

第五章 受扭构件扭曲截面承载力 一、填空题 1、素混凝土纯扭构件的承载力0.7u t t T f w =介于 和 分析结果之 间。t w 是假设 导出的。 2、钢筋混凝土受扭构件随着扭矩的增大,先在截面 最薄弱的部位出现斜裂缝,然后形成大体连续的 。 3、由于配筋量不同,钢筋混凝土纯扭构件将发生 破坏、 破坏、 破坏和 破坏。 4、钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力 ;扭矩的增加将使构件的抗剪承载力 。 5、为了防止受扭构件发生超筋破坏,规范规定的验算条件是 。 6、抗扭纵向钢筋应沿 布置,其间距 。 7、T 形截面弯、剪、扭构件的弯矩由 承受,剪力由 承受,扭矩由 承受。 8、钢筋混凝土弯、剪、扭构件箍筋的最小配筋率,min sv ρ= ,抗弯纵向钢筋的最小配筋率ρ= ,抗扭纵向钢筋的最小配筋率tl ρ= 。 9、混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比ζ应在 范围内。 10、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 形状,且箍筋的两个端头应 。 二、判断题 1、构件中的抗扭纵筋应尽可能地沿截面周边布置。 2、在受扭构件中配置的纵向钢筋和箍筋可以有效地延缓构件的开裂,从而大大提高开裂扭矩值。 3、受扭构件的裂缝在总体上成螺旋形,但不是连贯的。 4、钢筋混凝土构件受扭时,核芯部分的混凝土起主要抗扭作用。 5、素混凝土纯扭构件的抗扭承载力可表达为0.7U t t T f w =,该公式是在塑性分析方法基础上建立起来的。 6、受扭构件中抗扭钢筋有纵向钢筋和横向箍筋,它们在配筋方面可以互相弥补,即一方配置少时,可由另一方多配置一些钢筋以承担少配筋一方所承担的扭矩。 7、受扭构件设计时,为了使纵筋和箍筋都能较好地发挥作用,纵向钢筋与

钢筋混凝土受扭构件

钢筋混凝土受扭构件 5.1概述 1.矩形截面纯扭构件的受力性能和承载力计算方法; 2.剪扭构件的相关性和矩形截面剪扭构件承载力计算方法; 3.矩形截面弯、剪、扭构件的承载力计算方法; 4.受扭构件的构造要求。 图5-1a所示的悬臂梁,仅在梁端A处承受一扭矩,我们把这种构件称为纯扭构件。在钢筋混凝土结构中,纯扭构件是很少见的,一般都是扭转和弯曲同时发生。例如钢筋混凝土雨蓬梁、钢筋混凝土现浇框架的边梁、单层工业厂房中的吊车梁以及平面曲梁或折梁(图5-1b、c)等均属既受扭转又受弯曲的构件。 由于《规范》中关于剪扭、弯扭及弯剪扭构件的承载力计算方法是以构件抗弯、抗剪承载力计算理论和纯扭构件计算理论为基础建立起来的,因此本章首先介绍纯扭构件的计 5.2 纯扭构件受力和承载力计算 图 5-1 受扭构件示例 由材料力学知,在纯扭构件截面中将产生剪应力τ,由于τ的作用将产生主拉应力σ tp 和主压应力σcp,它们的绝对值都等于τ,即∣σtp∣=∣σcp∣=τ,并且作用在与构件轴 线成 5-2b),构件随即破坏,破坏具有突然性,属脆性破坏。 5.2.2 素混凝土纯扭构件的承载力计算 1.弹性计算理论 由材料力学可知,矩形截面匀质弹性材料杆件在扭矩作用下,截面中各点均产生剪应力τ,剪应力的分布规律如图5-3所示。最大剪应力τmax发生在截面长边的中点,与该点 剪应力作用对应的主拉应力σtp和主压应力σcp分别与构件轴线成45方向,其大小为σtp=σcp= τmax

当该处主拉应力σtp达到混凝土抗拉极限时,构件将沿与主拉应力σtp垂直方向开裂,其开裂扭矩就是当σtp=τmax=ft时作用在构件上的扭矩。 试验表明,按弹性计算理论来确定混凝土构件的开裂扭矩,比实测值偏小较多。这说 明按弹性计算理论低估了混凝土构件的实际抗扭能力。 2.塑性计算理论 对于理想塑性材料的构件,只有当截面上各点的剪应力全部都达到材料的强度极限时,构件才丧失承载力而破坏。这时截面上剪应力分布如图5-4a所示。将截面按图5-4b分块 计算各部分剪应力的合力和相应力偶,可求出截面的塑性抗扭承载力为 式中 T—构件的开裂扭矩; b—矩形截面的短边; h--矩形截面的长边; τmax—截面上的最大剪应力; 在纯扭构件中,当σtp=τmax达到混凝土抗拉强度ft时则有τmax=ft 于是 T= ftWt (5-1)式中 Wt—截面抗扭塑性抵抗矩,对矩形截面 试验分析表明,按塑性理论分析计算出的开裂扭矩略高于实测值。这说明混凝土并不 是理想的塑性材料。 纵上所述可见,素混凝土构件的实际抗扭承载力介于弹性分析和塑性分析结果之间。 根据试验结果偏安全取素混凝土纯扭构件的抗扭承载力为 T=0.7ftWt (5-3) 公式(5-3)也可近似用来表示计算素混凝土构件的开裂扭矩。 5.2.3 钢筋混凝土纯扭构件的承载力计算 1.抗扭钢筋的形式 在混凝土构件中配置适当的抗扭钢筋,当混凝土开裂后,可由钢筋继续承担拉力,这 对提高构件的抗扭承载力有很大的作用。由于扭矩在构件中产生的主拉应力与构件轴线成 0o 因此从受力合理的观点考虑,抗扭钢筋应采用与纵轴线成45角的螺旋钢筋。但是, 45角, 这样会给施工带来很多不便,而且当扭矩改变方向后则将失去作用。在实际工程中, 一般都采用由靠近构件表面设置的横向箍筋和沿构件周边均匀对称布置的纵向钢筋共同组 成的抗扭钢筋骨架。它恰好与构件中抗弯钢筋和抗剪钢筋的配置方式相协调。 Wt=(3h-b) (5-2)

答案第五章受扭构件扭曲截面承载力

第五章 受扭构件扭曲截面承载力答案 一、填空题 1、答:弹性理论;塑性理论;混凝土为理想的塑性材料。 2、答:长边中点;空间扭曲破坏面。 3、答:少筋破坏;适筋破坏;部分超筋破坏;安全超筋破坏。 4、答:减小;减小 5、答: 00.250.8c c t V T f bh w β+≤。 6、答:截面周边均匀对称;不应大于300mm 。 7、答:翼缘和腹板;腹板;翼缘和腹板。 8、答:0.02c yv f a f ;0.0015;0.08(21) c t yv f f β-。 9、答:0.6~1.7 10、答:封 闭;相互搭接且搭接长度不小于30d(d 为箍筋直径)。11、受扭箍筋; 受扭纵筋 二、判断题 1、(√) 2、(×) 3、(√) 4、( ×) 5、(√) 6、(×) 7、(√) 8、(×) 9、(×) 10、(√) 11、(√) 12、(×) 13、(√) 14、(√) 15、(×) 16、(×) 17、(√) 18、(×) 19、(√) 20、(×) 21、(×) 22、(√) 23、(×) 三、选择题 1、答:A 2、答:D 3、答:B 4、答:B 5、答:D 6、答:B 7、答:A 8、答:B 9、答:C 10、答:B 11、答:A 12、答:D 13、答:B 14、答:B 15、答:C 四、简答题 1、答:钢筋混凝土构件受扭时,核芯部分的混凝土所起的抗扭作用很小,因此可将开裂后的破坏图形比拟为一个空间桁架,纵筋可看成这个空间桁架的弦杆,箍筋可看成这个空间桁架的竖杆,斜裂缝之间的混凝土条带可看成这个空间桁架的斜压腹杆,斜裂缝与水平线的倾角α是随着纵向钢筋和箍筋的配筋强度比值ζ而变化,按这种方法的计算称为空间桁架理论。 2、答:为了估计素混凝土纯扭构件的抗扭承载力,通常借助于弹性分析方法和塑性分析法。实验表明,用弹性分析方法计算的构件抗扭承载力比实测的抗扭承载力低,而用塑性分析法计算的抗扭承载力比实测结果略大,可见素混凝土构件的实际抗扭承载力介于弹性分析和塑性分析结果之间,《规范》采用了对塑性分析的结果乘以一个小于1的系数(这里系数用0.7),这样素混凝土纯扭构件的抗扭承载力可表达为 0.7u t t T f w =。 3、答:为了保证弯扭构件在低配筋时混凝土不致发生脆断,《规范》规定, 当符合下列条件时,受扭、钢筋按构造配置:00.7t t V T f bh w +≤。

第7章 受扭构件的扭曲截面承载力

第七章受扭构件的截面性能 本章导论 教学内容:以试验研究为基础,基于变角度空间析架计算模型,建立纯扭构件承载力 计算公式和适用条件。构件受扭、受弯与受剪承载力之间的相互影响过于复杂,为简化计算,弯剪扭构件对混凝土提供的杭力考虑其相关性,钢筋提供的杭力采用叠加的方法。 教学要求:要求学生掌握矩形截面受扭构件的破坏形态、变角度空间析架计算模型、受扭承载力的计算方法、限制条件及配筋构造。掌握弯剪扭构件的配筋计算方法及构造要求。 重点和难点:受扭构件破坏形态和承载力计算 关键词:纯扭、弯剪扭 知识点2:受扭构件的破坏形态和纯扭构件的承载力计算 问题引入 近几十年来,随着材料强度的提高和建筑艺术的发展,构件尺寸愈来愈小,结构跨度不断扩大,异型构件不断出现,都使扭转作用突出起来。那么受扭构件的受力机理是什么样的?破坏形态与受弯受压构件有何异同?如何计算承载力? 研习问题 一、受扭构件的破坏形态 纯扭构件很少,大部分为弯、剪、扭共同工作。 受扭构件根据扭矩产生的情况分为:(a) 平衡扭转;(b) 协调扭转。 平衡扭转: 由平衡条件引起的扭转,其扭矩可通过平衡条件计算,与构件的刚度无关,扭矩在梁内不会产生内力重分布。如厂房中受吊车横向刹车力作用的吊车梁、雨蓬梁、曲梁和螺旋

楼梯都属于这一类扭矩作用的构件。 协调扭转: 在超静定结构中,由于相邻构件的弯曲转动受到支承梁的约束,在支承梁内引起的扭转,其扭矩要通过平衡条件和变形协调条件才能计算,与构件的刚度有关,扭矩会由于支承梁的开裂产生内力重分布而减小。如现浇框架结构中的边主梁,当次梁在荷载作用下受弯变形时,边主梁对次梁梁端的转动产生约束作用,根据变形协调条件,可以确定次梁梁端由于主梁的弹性约束作用而引起的负弯矩,该负弯矩即为主梁所承受的扭矩作用。 (1)裂缝出现前的性能 开裂前钢筋中的应力很小,受力性能与素混凝土构件基本相同。 当外扭矩较小时,受力情况类似于弹性体,大体上符合圣维南弹性扭转理论。随扭距增大,首先在长边中点达到 max tp t f τσ==;由于混凝土的塑性性能,构件并未开裂。 二、纯扭构件的承载力计算 随扭矩增大,塑性应力重分布,逐渐充分。最后,在构件长边首先出现与构件纵轴呈45°斜裂缝,并很快向两窄面发展,最后形成三面开裂一面受压的空间扭曲破坏面,素混凝土构件表现出明显的脆性。 (2)裂缝出现后的性能 裂缝出现后,部分混凝土退出工作,钢筋应力明显增大,与裂缝相交的纵筋和箍筋均受拉。根据钢筋用量的不同,可能出现四种破坏形态: ■ 当箍筋与纵筋适当时,发生适筋受扭破坏;纵筋,箍筋先屈服,后混凝土被压碎; ■ 当箍筋与纵筋配置过少,或箍筋间距过大,其破坏与素混凝土构件破坏相似,呈脆性破坏,称为少筋受扭破坏(限制最小配筋率和最大箍筋间距)。 ■ 当两种钢筋均过量时,混凝土首先被压碎,钢筋不屈服,为脆性破坏,称为超筋受扭破坏(限制最大配筋率或最小截面尺寸)。 ■ 当纵筋和箍筋中一种配置合适,另一种配置过多而不能屈服,称为部分超筋受扭破坏,有一定塑性,但较适筋受扭破坏小。 二、纯扭构件的扭曲截面承载力 1.开裂扭矩的计算 混凝土开裂前,钢筋应力很小,可忽略其作用。因此可近似按素混凝土构件计算。 (1)按弹性理论计算 视混凝土为弹性材料,最大扭剪应力发生在截面长边中点边缘处,当最大扭剪应力 max τ产生的主拉应力达到混凝土的抗拉强度 ft 时混凝土开裂,此时 t p max t f στ==

钢筋混凝土结构-受扭构件的强度及变形原文

Strength and Deformation of Members with Torsion 8.1 INTRODUCTION Torsion in reinforced concrete structures often arises from continuity between members. For this reason torsion received; relatively scant attention during the first half of this century, and the omission from design considerations apparently had no serious consequences. During ;the last 10 to 15 years, a great increase in research activity has advanced the understanding of the problem significantly. Numerous aspects of torsion in concrete have been,and currently are being, examined in various parts of the world. The first significant organized pooling of knowledge and research effort in this field was a symposium sponsored by the American Concrete Institute. The symposium volume also reviews much of the valuable pioneering work. Most code references to torsion to date have relied on ideas borrowed from the behavior of homogeneous isotropic elastic materials. The current ACI code8.2 incorporates for the first time detailed design recommendations for torsion. These recommendations are based on a considerable volume of experimental evidence, but they are likely to be further modified as additional information from current research efforts is consolidated. Torsion may arise as a result of primary or secondary actions. The case of primary torsion occurs when the external load has no alternative to being resisted but by torsion. In such situations the torsion, required to maintain static equilibrium, can be uniquely determined. This case may also be refer-red to as equilibrium torsion. It is primarily a strength problem because the structure, or its component, will collapse if the torsional resistance cannot be supplied. A simple beam, receiving eccentric line loadings along its span,cantilevers and eccentrically loaded box girders, as illustrated in Figs. 8.1and 8.8, are examples of primary or equilibrium torsion. In statically indeterminate structures, torsion cart also arise as a secondary action from the requirements of continuity. Disregard for such continuity in the design may lead to excessive crack widths but need not have more serious consequences. Often designers intuitively neglect such secondary torsional effects. The edge beams of frames, supporting slabs or secondary-beams, are typical of this situation (see Fig. 8.2). In a rigid jointed space structure it is hardly possible to avoid torsion arising from the compatibility of deformations. Certain structures, such as shells elastically restrained by edge beams," are more sensitive to this type of torsion than are other. The present state of knowledge allows a realistic assessment. of the torsion that may arise in statically indeterminate reinforced concrete structures at various stages of

第八章 受扭构件承载力问答题参考答案

第八章 受扭构件承载力 问答题参考答案 1.钢筋混凝土纯扭构件有几种破坏形式?各有什么特点?计算中如何避免少筋破坏和完全超筋破坏? 答:钢筋混凝土纯扭构件有三种破坏形式。受力特点如下: (1)适筋纯扭构件 当纵向钢筋和箍筋的数量配置适当时,在外扭矩作用下,混凝土开裂并退出工作,钢筋应力增加但没有达到屈服点。随着扭矩荷载不断增加,与主斜裂缝相交的纵筋和箍筋相继达到屈服强度,同时混凝土裂缝不断开展,最后形成构件三面受拉开裂,一面受压的空间扭曲破坏面,进而受压区混凝土被压碎而破坏,这种破坏与受弯构件适筋梁类似,属延性破坏,以适筋构件受力状态作为设计的依据。 (2)超筋纯扭构件 当纵向钢筋和箍筋配置过多或混凝土强度等级太低,会发生纵筋和箍筋都没有达到屈服强度,而混凝土先被压碎的现象,这种破坏与受弯构件超筋梁类似,没有明显的破坏预兆,钢筋未充分发挥作用,属脆性破坏,设计中应避免。为了避免此种破坏,《混凝土结构设计规范》对构件的截面尺寸作了限制,间接限定抗扭钢筋最大用量。 (3)少筋纯扭构件 当纵向钢筋和箍筋配置过少(或其中之一过少)时,混凝土开裂后,混凝土承担的拉力转移给钢筋,钢筋快速达到屈服强度并进入强化阶段,其破坏特征类似于受弯构件的少筋梁,破坏扭矩与开裂扭矩接近,破坏无预兆,属于脆性破坏。这种构件在设计中应避免。为了防止这种少筋破坏,《混凝土结构设计规范》规定,受扭箍筋和纵向受扭钢筋的配筋率不得小于各自的最小配筋率,并应符合受扭钢筋的构造要求。 2.简述素混凝土纯扭构件的破坏特征。 答:素混凝土纯扭构件在纯扭状态下,杆件截面中产生剪应力。对于素混凝土的纯扭构件,当主拉应力产生的拉应变超过混凝土极限拉应变时,构件即开裂。第一条裂缝出现在构件的长边(侧面)中点,与构件轴线成45°方向,斜裂缝出现后逐渐变宽以螺旋型发展到构件顶面和底面,形成三面受拉开裂,一面受压的空间斜曲面,直到受压侧面混凝土压坏,破坏面是一空间扭曲裂面,构件破坏突然,为脆性破坏。 3.在抗扭计算中有两个限值,t f 7.0和c c f β25.0,它们起什么作用? 答:当符合下列条件:t t f W T bh V 7.00≤+ 则不需对构件进行剪扭承载力计算,而根据最小配筋率和构造要求配筋(纵向钢筋和箍筋)。在受扭构件设计中,为了保证结构截面尺寸及混凝土材料强度不至于过小,为了避免超筋破坏,对构件的截面尺寸规定了限制条件。《混凝土结构设计规范》在试验的基础上,对h w /b ≤6的钢筋混凝土构件,规定截面限制条件如下式

第4章钢筋混凝土受扭构件

思考题 4-1、矩形截面钢筋混凝土纯扭构件的破坏形态与什么因素有关有哪几种破坏形态各有什么特点 答:(1)破坏形态与受扭纵筋和受扭箍筋的配筋率有关,还与纵筋与箍筋的配筋强度比 ξ有关。 (2)破坏形态:少筋破坏、超筋破坏、部分超筋破坏、适筋破坏。 (3)特点:1)少筋破坏构件是裂缝一旦形成构件马上破坏,开裂扭矩与破坏扭矩相等。其破坏特征类似于素混凝土构件,明显预兆为脆性破坏。 2) 超筋破坏时钢筋未屈服,构件即由于斜裂缝间的混凝土被压碎而破坏,也无明显预兆为脆性破坏。 3)适筋破坏是受扭纵筋和受扭箍筋的配筋率合适时,当构件三面开裂产生45°斜裂缝后,与斜裂缝相交的受扭钢筋屈服后,还可以继续加荷载,直到混凝土第四面混凝土被压碎,属塑性破坏。 4)部分超筋破坏纵筋与箍筋的配筋强度比不合适时, 破坏时纵筋或箍筋未屈服。其塑性比适筋差,但好于少筋破坏、 超筋破坏。 4-2、钢筋混凝土纯扭构件破坏时,在什么条件下,纵向钢筋和箍筋都会先达到屈服强度,然后混凝土才压坏,即产生延性破坏 答:(1)为防止超筋截面尺寸不能太小《规范》规定截面尺寸应满足: T ≤βcfcWt (2)为防止少筋破坏《规范》规定受扭箍筋和纵筋其最小配筋率应满足: 受扭箍筋: yv t svt st svt f f bs A 28.02min ,1=≥= ρρ (4-7) 受扭纵筋: y t tl stl tl f f Vb T bh A 6.0min ,=≥=ρρ (4-8) (3)为防止部分超筋破坏:《规范》通过限定受扭纵筋与箍筋配筋强度比ζ 的取值,对钢筋

y stl u A f s f A 答:(1)抗扭纵筋和箍筋其中某一种抗扭钢筋配置过多时,也会使 这种钢筋在构件破坏时不能达到屈服强度,为使两种钢筋充分利用, 就必须把纵筋和箍筋在数量上和强度上的配比控制在合理的范围之内。 《规范》将受扭纵筋与箍筋的体积比和强度比的乘积称为配筋强度比ζ, 通过限定ζ的取值对钢筋用量比进行控制。 试验表明:当ζ在~之间变化时,纵筋与箍筋在构件破坏 时基本上都能达到屈服强度,为慎重起见,建议取ζ的适用条件为: ≤ ζ ≤ 当ζ=左右时为两种钢筋达到屈服的最佳值。 (2)试验表明:在剪力和扭矩共同作用下, 混凝土的抗剪能力和抗扭能力分别降低,随着 扭矩的增大,构件的受剪承载力逐渐降低;同时随着剪力、的增大,构件的抗扭承载力逐渐 降低,这种现象就叫剪力和扭矩的相关性。 为简化计算《规 范》给出了剪扭构件混凝土承载力影响系数βt 4-4、受扭构件中,受扭纵向钢筋为什么要沿截面周边对称放置,并且四角必须放 置 答:因为受扭构件破坏时,首先从长边的中点先破坏,然后向两边延伸最后形成三面开裂, 一面受压空间曲面斜裂缝,所以受扭纵向钢筋应沿截面周边对称放置,并且四角必须放置。 4-5、简述抗扭钢筋的构造要求。 (1)为防止超筋截面尺寸不能太小《规范》规定截面尺寸应满足 (2)为防止少筋破坏《规范》规定受扭箍筋和纵筋其最小配筋率应满足 (3)箍筋应作成封闭式,末端应作成135°弯钩,弯钩端平直部分的长度≥10d 当采用复合箍 筋时,位于截面内部的箍筋计算不考虑。 (4)受扭纵向钢筋沿截面周边对称放置,并且四角必须放置。 纵向受扭钢筋间距不应大于200mm 和截面短边尺寸,根数≥4根;纵向受扭钢筋直径同梁,

第七章 受扭构件

第七章 受扭构件(94) 判断题: 1 构件因为受扭而产生的裂缝,总体上呈螺旋形,与构件轴线的夹角大致为45o,螺旋形裂缝是连续贯通的。( ) 2 受扭构件扭曲截面承载力计算中。 ζ是变角空间模型混凝土斜压杆与构件纵轴线夹角α的余切,即αζcot =。( ) 3 受扭构件扭曲截面承载力计算中,系数ξ是受扭的纵向钢筋与箍筋的配筋强度比值, cor sv yv stl y A f s A f μξ1/..=,ξ应满足大于1.7的要求。 ( ) 4 stl A 是指受扭计算中取对称布置的全部纵向非预应力钢筋截面面积;1sv A 是指受扭计算中沿截面周边布置的箍筋单肢截面面积。( ) 5 素混凝土纯扭构件的开裂扭矩与破坏扭矩基本相等。( ) 6 受扭钢筋对钢筋混凝土纯扭构件开裂扭矩影响很大。( ) 7 受扭钢筋的配筋量对钢筋混凝土纯扭构件的破坏形态有很大影响。( ) 8 对受扭起作用的钢筋主要是箍筋,纵筋对受扭构件不起作用。( ) 9 箍筋和纵筋对受扭都有作用,因此在受扭构件的扭曲截面承载力计算中,可以既设置受扭箍筋又设置受扭纵筋,也可以只设置一种形式受扭钢筋。( ) 10 变角度空间桁梁模型中没有考虑截面核心混凝土的作用。( ) 11 我国《混凝土结构设计规范》和变角空间桁梁模型中都考虑了混凝土的抗扭作用。( ) 12 弯剪扭构件的承载力配筋计算中,纵筋是由受弯承载力及受扭承载力所需纵筋叠加而得,这与弯扭构件的承载力计算结果是相同的。 ( ) 13 t β称为一般剪扭构件混凝土受扭承载力降低系数,(1.5-t β)可称为一般剪扭构件混凝土受剪承载力降低系数。( ) 14 受扭纵向钢筋的布置要求是,沿截面周边均匀对称布置,间距不应大于200mm ,截面四角必须布置。( ) 15 素混凝土开列扭矩一般也是其破坏扭矩。( ) 16 当扭矩或剪力不超过混凝土部分所承受的扭矩或剪力的一半时,为简化计算,可不考虑其影响。( ) 17 剪扭构件承载力计算中,混凝土的承载力考虑剪扭相关关系,而钢筋的承载力按纯扭和纯剪的承载力叠加。 ( ) 18 工字形截面各部分所受的扭矩按其截面面积进行分配。( ) 19 规范中剪扭承载力相关曲线由三条直线组成。( ) 20 受扭构件规定的最小配筋率是为了避免构件发生少筋破坏。( ) 21 钢筋混凝土剪扭构件混凝土受扭承载力降低系数在各种情况下计算公式均一样。( ) 22 受扭构件的截面限制条件是为了避免构件发生超筋破坏。( )

结构设计原理 第五章 受扭构件 习题及答案

结构设计原理第五章受扭构件习题及答案

第五章 受扭构件扭曲截面承载力 一、填空题 1、素混凝土纯扭构件的承载力0.7u t t T f w =介于 和 分析结果之间。t w 是假设 导出的。 2、钢筋混凝土受扭构件随着扭矩的增大,先在截面 最薄弱的部位出现斜裂缝,然后形成大体连续的 。 3、由于配筋量不同,钢筋混凝土纯扭构件将发生 破坏、 破坏、 破坏和 破坏。 4、钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力 ;扭矩的增加将使构件的抗剪承载力 。 5、为了防止受扭构件发生超筋破坏,规范规定的验算条件是 。 6、抗扭纵向钢筋应沿 布置,其间距 。 7、T 形截面弯、剪、扭构件的弯矩由 承受,剪力由 承受,扭矩由 承受。 8、钢筋混凝土弯、剪、扭构件箍筋的最小配筋率,min sv ρ= ,抗弯纵向钢筋的最小配筋率ρ= ,抗扭纵向钢筋的最小配筋率tl ρ= 。 9、混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比ζ应在 范围内。 10、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 形状,且箍筋的两个端头应 。 二、判断题 1、构件中的抗扭纵筋应尽可能地沿截面周边布置。 2、在受扭构件中配置的纵向钢筋和箍筋可以有效地延缓构件的开裂,从而大大提高开裂扭矩值。 3、受扭构件的裂缝在总体上成螺旋形,但不是连贯的。 4、钢筋混凝土构件受扭时,核芯部分的混凝土起主要抗扭作用。 5、素混凝土纯扭构件的抗扭承载力可表达为0.7U t t T f w =,该公式是在塑性分析方法基础上建立起来的。 6、受扭构件中抗扭钢筋有纵向钢筋和横向箍筋,它们在配筋方面可以互相弥补,即一方配置少时,可由另一方多配置一些钢筋以承担少配筋一方所承担的扭矩。 7、受扭构件设计时,为了使纵筋和箍筋都能较好地发挥作用,纵向钢筋与

【混凝土习题集】—5—钢筋混凝土受扭构件

第五章 受扭构件承载力计算 一、填空题: 1、钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力 ;扭矩的增加将使构件的抗剪承载力 。 2、由于配筋量不同,钢筋混凝土纯扭构件将发生 、 、 、 四种破坏。 3、抗扭纵筋应沿 布置,其间距 。 4、钢筋混凝土弯、剪、扭构件箍筋的最小配筋率 ,抗弯纵向钢筋的最小配筋率 ,抗扭纵向钢筋的最小配筋率 。 5、混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比?应在 范围内。 6、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 形状,且箍筋的两个端头应 。 二、判断题: 1、受扭构件中抗扭钢筋有纵向钢筋和横向钢筋,它们在配筋方面可以互相弥补,即一方配置少时,可由另一方多配置一些钢筋以承担少配筋一方所承担的扭矩。( ) 2、受扭构件设计时,为了使纵筋和箍筋都能较好地发挥作用,纵向钢筋与箍筋的配筋强度比值?控制在7.16.0≤≤?。( ) 3、在混凝土纯扭构件中,混凝土的抗扭承载力和箍筋与纵筋是完全独立的变量。( ) 4、矩形截面纯扭构件的抗扭承载力计算公式t t W f T 35.0≤+s f A A yv st cor 12.1ζ只考 虑混凝土和箍筋提供的抗扭承载力( ) 5、对于承受弯、剪、扭的构件,为计算方便,规范规定: t t W f T 175.0≤时,不考虑扭矩的影响,可仅按受弯构件的正截面和斜截面承载力分别进行计算。( ) 6、对于承受弯、剪、扭的构件,为计算方便,规范规定:035.0bh f V t ≤或 01 875 .0bh f V t +≤ λ时,不考虑剪力的影响,可仅按受弯和受扭构件承载力分别进行计算。( ) 7、弯、剪、扭构件中,按抗剪和抗扭计算分别确定所需的箍筋数量后代数相加,便得到剪扭构件的箍筋需要量。( )

习题-第五章 受扭承载力计算

第5章 受扭构件承载力计算 一、填空题 1、素混凝土纯扭构件的承载力0.7u t t T f w =介于 和 分析结果之间。t w 是假设 导出的。 2、钢筋混凝土受扭构件随着扭矩的增大,先在截面 最薄弱的部位出现斜裂缝,然后形成大体连续的 。 3、由于配筋量不同,钢筋混凝土纯扭构件将发生 破坏、 破坏、 破坏和 破坏。 4、钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力 ;扭矩的增加将使构件的抗剪承载力 。 5、为了防止受扭构件发生超筋破坏,规范规定的验算条件是 。 6、抗扭纵向钢筋应沿 布置,其间距 。 7、T 形截面剪、扭构件的剪力由 承受,扭矩由 承受。 8、钢筋混凝土弯、剪、扭构件箍筋的最小配筋率,min sv ρ= ,抗弯纵向钢筋的最小配筋率ρ= ,抗扭纵向钢筋的最小配筋率tl ρ= 。 9、混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比ζ应在 范围内。 10、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 形状,且箍筋的两个端头应 。 11、钢筋混凝土受扭构件计算中应满足10.6 1.7stl y st yv cor A f s A f u ζ??≤=≤??,其中 0.6ζ≤的目的是保证 在极限状态时屈服, 1.7ζ≤的目的是保证 在极限状态时屈服。 二、判断题 1、构件中的抗扭纵筋应尽可能地沿截面周边布置。 2、在受扭构件中配置的纵向钢筋和箍筋可以有效地延缓构件的开裂,从而大大提高开裂扭矩值。 3、受扭构件的裂缝在总体上成螺旋形,但不是连贯的。 4、钢筋混凝土构件受扭时,核芯部分的混凝土起主要抗扭作用。 5、素混凝土纯扭构件的抗扭承载力可表达为0.7U t t T f w =,该公式是在塑性分析方法基础上建立起来的。

混凝土结构设计原理习题集之六(钢筋混凝土受扭构件承载力计算)试题

混凝土结构设计原理习题集之六 8 钢筋混凝土受扭构件承载力计算 一.填空题: 1 抗扭钢筋包括和。钢筋混凝土构件的受扭破坏形态主要与有关。 2 钢筋混凝土构件在弯矩、剪力和扭矩共同作用下的承载力计算,纵筋应通过和计算求得的纵向钢筋进行配筋;箍筋应按构件的计算求得的箍筋进行配置。 3 承受扭矩的纵向钢筋,除应沿截面布置外,其余宜沿截面布置,其间距不应大于和。 4 工程中,钢筋混凝土结构构件的扭转可分为两类,一类是,另一类是。 5 《规范》中,受扭构件是按理论来进行强度计算的。 6 在进行剪扭构件设计时,假定具有的抗剪和抗扭承载力是相互联系的;而的抗剪和抗扭承载力是相互独立的。另外,对T形截面,假定剪力由承担,扭矩由承担。 二.选择题: 1 受扭构件中,抗扭纵筋应()。 A.在截面上下边放置B.在截面左右边放置C.沿截面周边对称放置 2 对于剪力和扭矩共同作用下的构件承载力计算,《规范》在处理剪、扭相关作用时()。A.不考虑两者之间的相关性B.考虑两者之间的相关性 C.混凝土的承载力考虑剪扭相关作用,而钢筋的承载力不考虑剪扭相关性 D.混凝土和钢筋的承载力都考虑剪扭相关作用 3 一般说来,,钢筋混凝土受扭构件的破坏是属于()。 A.脆性破坏B.延性破坏 4 矩形截面抗扭纵筋布置首先考虑角隅处然后考虑()。 A.截面长边中点B.截面短边中点C.另外其它地方 5 钢筋混凝土受扭构件,受扭纵筋和箍筋的配筋强度比0.6<ζ<1.7 说明,当构件破坏时,()。 A.纵筋和箍筋都能达到屈服;B.仅箍筋达到屈服; C.仅纵筋达到屈服;D.纵筋和箍筋都不能达到屈服; 6 钢筋混凝土T形和I形截面剪扭构件可划分为矩形块计算,此时()。 A.腹板承受全部的剪力和扭矩;B.翼缘承受全部的剪力和扭矩; C.剪力由腹板承受,扭矩由腹板和翼缘共同承受; D.扭矩由腹板承受,剪力由腹板和翼缘共同承受; .7 在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比? 应()。 A.不受限制;B.ζ>1.7 ;C.ζ<0.6 ;D.0.6<ζ<1.7; 三.判断题: 1 受扭构件上的裂缝,在总体上成螺旋形,但不是连续贯通的,而是断断续续的。() 2 在剪力和扭矩共同作用下的构件其承载力比剪力和扭矩单独作用下的相应承载力要低() 3 钢筋混凝土构件在弯矩、剪力和扭矩共同作用下的承载力计算时,其所需要的箍筋由受弯构件斜截面承载力计算所得的箍筋与纯剪构件承载力计算所得箍筋叠加,且两种公式中

相关文档
最新文档