钢筋混凝土受扭构件承载力计算
07 钢筋混凝土受扭构件承载力计算-精品文档

分别计算各区合力及其对截面形心的 力偶之和,可求得塑性极限开裂扭矩为
塑性开裂扭矩
2
截面抗扭塑性抵抗矩
b 3 T f h b fW c r , p t t t 6
混凝土的抗拉强度设计值
按塑性理论,对理想弹塑性材料,截面上某一点应力 达到材料强度时并不立即破坏,而是保持极限应力继续变 形,扭矩仍可继续增加,直到截面上各点应力均达到极限 强度。才达到极限承载力。此时截面上的剪应力分布为四 个区,如图7.2(b)所示。
m ax
T W te
7.2.2 矩形截面的开裂扭矩 按弹性理论, 当主拉应力σtp=τmax=ft时,构件开裂, 即
max
弹性开裂扭矩
Tcr,e ft Wte
截面抗扭弹性抵抗矩
T c r,e ft W te
混凝土的抗扭强度设计值
按塑性理论,对理想弹塑性材料,截面上某一点应力 达到材料强度时并不立即破坏,而是保持极限应力继续变 形,扭矩仍可继续增加,直到截面上各点应力均达到极限 强度。才达到极限承载力。此时截面上的剪应力分布为四 个区,如图7.2(b)所示。
T W te
截面抗扭弹性抵抗矩
由材料力学知识可知,构件侧面的主拉应力σtp和主压 应力σcp相等,主拉应力和主压应力轨迹沿构件表面呈螺旋 形。当主拉应力达到混凝土抗拉强度时,在构件长边中某 个薄弱部位首先开裂,裂缝沿主压应力轨迹迅速延伸。对 于素混凝土构件,一旦开裂就会导致构件破坏,破坏面呈 一空间扭曲面。
2 b W fw 3 h b 6 h f W tf bf b 2 hf W tf bf b 2
T .7fW c r 0 t t
对矩形截面, 截面抗扭塑性抵抗矩按下式计算:
钢筋混凝土受扭构件承载力计算_OK

T
M V
剪应力大的一侧先受拉开裂,
最后破坏, T很小时,仅发生剪
切破坏
23
5.3.3弯剪扭构件实用计算公式
1. 均布荷载下的矩形截面及T形、I形截面构件
弯和扭分开计算
抗弯钢筋布置在构件的受拉区,抗 扭纵筋沿截面均匀布置
剪和扭考虑混凝土部分的相关关系
Vc0 0.7 ftbh0,Tc0 0.35Wt ft
F4+F4=Ast4fy
C
D
F1+F1=Ast1fy
B
F3+F3=Ast3fy
As
F2+F2=Ast2fy
q = Tte
F1 D
C
te
Acor
h
b
qhcor
Nd d F2 A
Nsvt
s hcor ctg
q B
11
2. 承载力计算分析
纵筋的拉力
裂缝 箍筋
纵筋
T T
F1 F2 qhcorctg F1' F4 ' qbcorctg F4 F3 qhcorctg F3' F2 ' qbcorctg
ft fy
,不考虑纵筋的作用;若svt min
0.28
ft f yv
,不考虑箍筋的作用
31
5.4 受扭构件配筋构造要求
1. 抗扭纵筋
a. 最小配筋率
tl ,min
Atl ,min bh
0.6
T Vb
ft fy
其中,当 T 2时,取 T 2
Vb
Vb
b. 受扭纵筋应对称设置于截面的周边,间距不大于200mm且不大 于截面短边长度;
h'f 2 (b' b) 2f
《工程结构》第六章:钢筋混凝土受扭构件承载力计算结构师、建造师考试

主页 目录
上一章 下一章 帮助
混凝土结构
第6章
塑性状态下能抵抗的扭矩为:
TU ftWt
…6-1
式中: Wt ––– 截面抗扭塑性抵抗矩;对于矩形截面
Wt
b2 6
3h
b
…6-2
h为截面长边边长;b为截面短边边长。
2. 素混凝土纯扭构件 T 0.7 ftWt
…6-3
主页 目录
上一章 下一章 帮助
混凝土结构
z fy Astl s
f A u yv st1 cor
…6-5
主页 目录
上一章 下一章 帮助
混凝土结构
第6章
式中: Astl ––– 全部抗扭纵筋截面面积; ucor ––– 截面核心部分周长, ucor = 2(bcor + hcor)。
主页
为了保证抗扭纵筋和抗扭箍筋都能充分被利用,要求: 目录
主页 目录
上一章 下一章 帮助
混凝土结构
第6章
规范将其简化为三段折线,简化后的结果为 : (1)当Tc/Tco≤ 0.5时,即T≤ 0.175ftWt时,可忽略扭
矩影响,按纯剪构件设计; (2)当Vc/Vco ≤ 0.5时,即V≤ 0.35ftbh0时,可忽略剪
力影响,按纯扭构件设计; (3)当T>0.175ftWt和V> 0.35ftbh0时,要考虑剪扭的相
混凝土结构 ➢ 扭矩分配:
腹板
受压翼缘
第6章
Tw
Wtw Wt
T
T' f
W' tf
Wt
T
…6-12 …6-13
受拉翼缘
Tf
Wtf Wt
T
…6-14
钢筋混凝土受扭构件承载力计算_习题讲解

第六章 钢筋混凝土受扭构件承载力计算_习题讲解1、钢筋混凝土矩形截面构件,截面尺寸mm h b 450250⨯=⨯扭矩设莡值m kN T ⋅=10,旷凝土强嚦等皧为C30(2/3.14mm N f c =,),纵向钢筋和箍筋均采用HPB235级钢筋(2/210mm N f f y yv ==),试计算其配筋。
(类似习题6-1)解:(1)验算构件截面尺寸26221046.11)2504503(6250)3(61mm b h b W t ⨯=-⨯⨯=-= (6-5)c c t f mm N W T β25.0/87.01046.111010266<=⨯⨯= 2/58.33.140.125.0mm N =⨯⨯=满足c c t f W T β25.0<是规范对构件截面尺寸的限定性要求,本题满足这一要求。
(2)抗扭钢筋计算t t f mm N W T 7.0/87.01046.111010266<=⨯⨯= 按构造配筋即可。
2.已知矩形截面梁,截面尺寸300×400mm ,混凝土强度等级2/6.9(20mm N f C c =,2/1.1mm N f t =),箍筋HPB235(2/210mm N f yv =),纵筋HRB335(2/300mm N f y =)。
经计算,梁弯矩设计值,剪力设计值kN V 16=,扭矩设计值m kN T ⋅=8.3,试确定梁的配筋。
(类似习题6-2) 解:(1)按h w /b ≤4情况,验算梁截面尺寸是否符合要求 252210135)3004003(6300)3(mm b h b W t ⨯=-⨯=-=截面尺寸满足要求。
(2)受弯承载力%2.0%165.03001.14545min 〈=⨯==y t f f ρ;取0.2%A s =ρmin ×bh=0.2%×300×400=240mm 2(3)验算是否直接按构造配筋由公式(6-36)01600038000000.4280.70.7 1.10.7730036513500000t t V T f bh W +=+=<=⨯=⨯ 直接按构造配筋。
七章钢筋混凝土受扭构件承载力计算

翼缘 —— 纯扭;
腹板—— 剪扭;
全截面——弯剪扭分别配筋再叠加。
(五)箱形截面剪扭构件承载力计算
1、一般剪扭构件 抗扭承载力下式计算:
T 0.35ht ftWt 1.2
f yv
Ast1 Acor s
2、集中力作用下的独立剪扭构件
(7-14)
(六)箱形截面弯剪扭构件承载力计算
(3)按照叠加原则计算剪扭的箍筋用量和纵筋用量。
(二)矩形截面弯扭构件承载力计算
图7-11 弯扭构件的钢筋叠加
(三)矩形截面弯剪扭构件承载力计算
﹡《规范》规定,其纵筋截面面积由受弯承载力和受扭 承载力所需的钢筋截面面积相叠加,箍筋截面面积则由 受剪承载力和受扭承载力所需的箍筋截面面积相叠加, 其具体计算方法如下:
(3)当箍筋或纵筋过多时,为部分超配筋破坏。
(4)当箍筋和纵筋过多时,为完全超配筋破坏。
因此,在实际工程中,尽量把构件设计成(2)、(3), 避免出现(1)、(4)。
(二)抗扭钢筋配筋率对受扭构件受力性能的影响
《规范》采用纵向钢筋与箍筋的配筋强度比值 进行控制, (0.6≤ ≤1.7)
f y Astl s
﹡像矩形、T形和I形截面一样,箱形截面弯剪扭 构件承载力计算中,弯矩按纯弯构件计算剪力和 扭矩按剪扭构件计算。
三、受扭构件计算公式的适用条件及构造要求
(一)截面尺寸限制条件
当 hw b 4
时,
V bh0
T 0.8Wt
0.25c
fc
(7-15)
当
hw
b6
时,
V bh0
T 0.8Wt
0.2c
fc
——混凝土抗拉强度设计值;
第8章-受扭构件承载力的计算-自学笔记汇总

第8章受扭构件承载力的计算§8.1 概述实际工程中哪些构件属于受扭构件?工程结构中,结构或构件处于受扭的情况很多,但处于纯扭矩作用的情况很少,大多数都是处于弯矩、剪力、扭矩共同作用下的复合受扭情况,比如吊车梁、框架边梁、雨棚梁等,如图8-1所示。
图8-1 受扭构件实例受扭的两种情况:平衡扭转和协调扭转。
静定的受扭构件,由荷载产生的扭矩是由构件的静力平衡条件确定的,与受扭构件的扭转刚度无关,此时称为平衡扭转。
如图8-1(a )所示的吊车梁,在竖向轮压和吊车横向刹车力的共同作用下,对吊车梁截面产生扭矩T 的情形即为平衡扭转问题。
对于超静定结构体系,构件上产生的扭矩除了静力平衡条件以外,还必须由相邻构件的变形协调条件才能确定,此时称为协调扭转。
如图8-1(b )所示的框架楼面梁体系,框架的边梁和楼面梁的刚度比对边梁的扭转影响显著,当边梁刚度较大时,对楼面梁的约束就大,则楼面梁的支座弯矩就大,此支座弯矩作用在边梁上即是其承受的扭矩,该扭矩由楼面梁支承点处的转角与该处框架边梁扭转角的变形协调条件所决定,所以这种受扭情况为协调扭转。
§8.2 纯扭构件的试验研究8.2.1 破坏形态钢筋混凝土纯扭构件的最终破坏形态为:三面螺旋形受拉裂缝和一面(截面长边)的斜压破坏面,如图8-3所示。
试验研究表明,钢筋混凝土构件截面的极限扭矩比相应的素混凝土构件增大很多,但开裂扭矩增大不多。
图8-2 未开裂混凝土构件受扭图8-3 开裂混凝土构件的受力状态 8.2.2 纵筋和箍筋配置对纯扭构件破坏性态的影响受扭构件的四种破坏形态受扭构件的破坏形态与受扭纵筋和受扭箍筋配筋率的大小有关,大致可分为适筋破坏、部分超筋破坏、完全超筋破坏和少筋破坏四类。
对于正常配筋条件下的钢筋混凝土构件,在扭矩作用下,纵筋和箍筋先到达屈服强度,然后混凝土被压碎而破坏。
这种破坏与受弯构件适筋梁类似,属延性破坏。
此类受扭构件称为适筋受扭构件。
07 钢筋混凝土受扭构件承载力计算

Astl /3
抗剪箍筋: 抗扭箍筋:
A's + Astl /3
+
As
Astl /3
=
Astl /3
Astl /3
As+ Astl /3
Asv1 s
Ast1 s
Asv1 s
+
=
Asv1 Ast1 + s s
受扭构件承载力公式的适用条件及构造要求
1.截面限制条件
2.构造配筋条件
end
最后得:
四、带翼缘截面纯扭构件的开裂扭矩
7.2 纯扭构件的承载力
配筋形式和构造要求(重要) 受扭箍筋的体积配筋率 ρstv
受扭纵筋的配筋率 ρst
同时承受弯、剪、扭构件的配筋率要求。
配筋强度比ζ
部分超筋构件虽然设计中可以采用,但不经济。 受扭性能和极限承载力不仅与配筋量有关,还与纵筋和箍 筋的配筋强度比ζ 有关。
②最小配筋率
(7-15)
另外,构造配筋条件:
如满足: T
1
d
(0.7 f tWt )
,则只需进行构造配抗扭钢筋。
(7-16)
纯扭构件截面设计的主要步骤(书上没讲):
① 验算截面尺寸; ② 验算构造配筋条件;
③ 令ζ=1.2,根据承载力公式(7-10)计算箍筋截面积Ast1, 并验算最小配筋率;
(7-9)
设计中通常取z =1.2
T
1
d
Tu
1
d
(0.35 f tWt 1.2 z f yv
Tc混凝土骨料 的咬合作用
Ast 1 Acor ) s
(7-10)
Ts钢筋的受 扭承载力
07--水工钢筋砼--钢筋混凝土受扭构件承载力计算 2012

后为弯、剪、扭作用下的承载力计算。 2、作用荷载:
包括:弯曲和剪切作用,实质上是弯、剪、扭 (有时还有压)的复合受力问题。 3、受扭构件分类:
根据截面上存在的内力情况分为纯扭、弯扭、剪 扭、弯剪扭。工程中的受扭构件一般都是弯、剪、扭 构件,纯扭极为少见。
7.1 钢筋混凝土受扭构件的破坏形态及开裂扭矩
二、矩形截面构件在弯、剪、扭共同作用下破坏形态 2、扭型破坏 (2)发生条件: a. 扭矩T / 弯矩M 的比值较大,剪力很小 b. 上部纵筋较少时的情况 (3)原因:
扭矩T引起。
7.1 钢筋混凝土受扭构件的破坏形态及开裂扭矩
二、矩形截面构件在弯、剪、扭共同作用下破坏形态
《规范》取混凝土抗拉强度ft降低系数为0.7,因此, 开裂扭矩Tcr的计算公式为:
Tcr 0.7 ftWt (7 4)
7.1 钢筋混凝土受扭构件的破坏形态及开裂扭矩
四、带翼缘截面纯扭构件的开裂扭矩 1、考虑因素
破坏时构件截面的扭转角较 大。破坏前有预兆,属于塑性破 坏,这类破坏称为适筋破坏。
7.1 钢筋混凝土受扭构件的破坏形态及开裂扭矩
一、矩形截面纯扭构件的破坏形态
3、破坏形态 (3)抗扭钢筋配得适量时--适筋破坏: c. 意义
该类破坏模型是设计的试验依据。
7.1 钢筋混凝土受扭构件的破坏形态及开裂扭矩
7.1 钢筋混凝土受扭构件的破坏形态及开裂扭矩
三、矩形截面纯扭构件的开裂扭矩 2、基于弹性理论的开裂扭矩
在扭矩作用下,矩形截面受扭构件最大剪应力τmax
发生在截面长边中点。当主拉应力σtp达到砼抗拉强度
ft时,出现沿450方向的斜裂缝。
混凝土结构设计原理之受扭构件承载力计算

剪力——抗剪箍筋(按一定间距沿构件轴线方向布置) 扭矩——抗扭纵筋(沿构件截面周边均匀对称布置) 抗扭箍筋(按一定间距沿构件轴线方向布置)
由前所知: 纯扭构件受扭钢筋计算:P133公式(5.9) 受剪箍筋计算:P98公式(4.6)、(4.7) 试验结果表明: 构件的受剪承载力随扭矩的增加面减小,而构件的受扭承载力则随剪力的增大而减小,反之亦然。我们把构件抵抗某种内力的能力,受其它同时作用的内力影响的这种性质,称为构件承受各种内力的能力之间的相关性。
、按式(5.9)计算所需受扭箍筋,选用箍筋直径和间距并按 式(5.13)验算配箍率。
02
、 将所选箍筋用量带入式(5.4)计算所需受扭纵筋;
03
、 选择纵筋直径和根数,并按式(5.12)验算配筋率;
04
、 画构件截面配筋图。
05
五、纯扭构件受扭钢筋计算步骤
5.3 、弯扭构件和剪扭构件承载力计算
、矩形截面剪扭构件承载力计算
1
抗扭箍筋:按一定间距沿构件轴线方向布置。
2
抗扭纵筋:沿构件截面周边均匀对称的布置。
3
二、抗扭钢筋
纯扭构件破坏形态
凝土压碎; 纵筋或箍筋过多(部分超筋):纵筋或箍筋不能受拉
配置受扭钢筋后,可能出现四种破坏形态: 纵筋和箍筋合适(适筋):钢筋先受拉屈服,然后混
屈服,混凝土压碎;
C.纵筋和箍筋均过多(完全超筋):纵筋和箍筋均不能
侧边所需纵向钢筋为: ,据此选直径和根数;
8
规范考虑:
箍筋:按公式(5.16)-(5.18)分别计算抗剪箍筋ASV/S 和
抗扭箍筋ASt1/S,然后再叠加配筋,即按ASV/S+ASt1/S
选择箍筋直径和间距。
钢筋混凝土受扭构件承载力计算

单元14 钢筋混凝土受扭构件承载力计算【学习目标】1、会进行纯扭构件设计计算,能准确绘制和识读其结构施工图;2、能够看懂雨蓬的结构施工图,并且可以指导工人钢筋下料;【知识点】矩形截面纯扭构件承载力计算;矩形截面弯剪扭构件承载力计算;受扭构件的构造要求。
【工作任务】项目板式雨篷设计1、绘制识读雨蓬结构施工图2、指导工人进行雨蓬的钢筋下料施工【教学设计】本单元的教学内容是受扭构件。
本单元教学围绕2个工作任务展开。
教学分6个步骤完成,工地现场参观,认识受扭构件——教师教学(按知识点分别依次教学)——学生识读工地受扭构件图纸(提出问题,教师解答)——现场检验工人加工的钢筋是否合格——学生分小组讨论,交流心得——教师、工程师针对发现问题和学生交流心得14.1 钢筋混凝土受扭构件图14.1 受扭构件(a)吊车梁 (b)边梁图14.2钢筋混凝土受扭构件(a)雨蓬梁 (b)折线梁 (c)框架边梁 (d)吊车梁如图14.1,14.2受扭构件静定受扭构件(平衡扭转):超静定受扭构件(约束扭转):两类受扭构件:平衡扭转和约束扭转构件中的扭矩可以直接由荷载静力平衡求出,与构件刚度无关,如图所示支承悬臂板的梁、偏心荷载作用下的梁(箱形梁、吊车梁),称为平衡扭转。
对于平衡扭转,受扭构件必须提供足够的抗扭承载力,否则不能与作用扭矩相平衡而引起破坏。
在超静定结构,若扭矩是由相邻构件的变形受到约束而产生的,扭矩大小与受扭构件的抗扭刚度有关,称为约束扭转。
对于约束扭转,由于受扭构件在受力过程中的非线性性质,扭矩大小与构件受力阶段的刚度比有关,不是定值,需要考虑内力重分布进行扭矩计算。
【实训练习】参观黄冈附近的一些框架结构施工工地,分析、认知那些构件是受扭构件及属于哪类受扭构件。
14.2矩形截面钢筋混凝土纯扭构件承载力计算14.2.1 纯扭构件的试验研究图14.3 扭矩-扭转角曲线图14.4钢筋混凝土受扭试件的破坏开转图图14.5纯扭构件开裂后的性能1、开裂前的应力状态裂缝出现前,钢筋混凝土纯扭构件的受力与弹性扭转理论基本吻合。
第五章 钢筋混凝土受扭构件承载力计算

沿45°角主拉应力方向配置螺旋钢筋,并将螺旋钢筋配置 在构件截面的边缘处,由于45°角方向螺旋钢筋不便于施 工,为此,通常在构件中配置纵筋和箍筋来承受主拉应力 承受扭矩作用效应。 钢筋混凝土受扭构件在扭矩作用下,混凝土开裂以前 钢筋应力是很小的,当裂缝出现后开裂混凝土退出工作, 斜截面上拉应力主要由钢筋承受,斜裂缝的倾角α 是变化 的,结构的破坏特征主要与配筋数量有关。 ⑴当混凝土受扭构件配筋数且较少时(少筋构件)结构 在扭矩荷载作用下,混凝土开裂并退出工作,混凝土承担 的拉力转移给钢筋,由于结构配置纵筋及箍筋数量很少, 钢筋应力立即达到或超过屈服点,结构立即破坏。破坏形 态和性质同无筋混凝土受扭构件,共破坏类似于受弯构件 时的少筋梁,属于脆性破坏,在工程设计中应予避免。
根据极限平衡条件,结构受扭开裂扭矩值为
(5-3)
实际上,混凝上既非弹性材料 又非理想的塑性材 料。而是介于二者之间的弹塑性材料、对于低强度等 级混凝土。具有一定的塑性性质;对于高强度等级混 凝土,其脆性显著增大,截面上混凝土切应力不会象 理想塑性材料那样完全的应力重分布,而且混凝土应 力也不会全截面达到抗拉强度ft因此投式(5-2)计算的受 扭开裂扭矩值比试验值低,按式(5-3)计算的受扭开裂 扭矩值比试验值偏高。 为实用计算方便,纯扭构件受扭开裂扭矩设计时 采用理想塑性材料截面的应力分布计算模式,但结构 受扭开裂扭矩值要适当降低。试验表明,对于低强度 等级混凝上降低系数为0.8,对于高强度等级混凝上降 低系数近似为0.8。为统一开裂扭矩值的计算公式,并 满足一定的可靠度要求其计算公式为
§5.3建筑工程中受扭构件承载力计算
5.3.1纯扭构件承载力计算
1. 矩形截面钢筋混凝土纯扭构件
矩形截面是钢筋混凝土结构中最常用的截面形式。纯扭 构件扭曲截面计算包括两个方面内容:一为结构受扭的开裂 扭矩计算,二为结构受扭的承载力计算。如果结构扭矩大于 开裂扭矩值时应按计算配置受扭纵筋和箍筋用以满足截面 承载力要求;同时还应满足结构受扭构造要求。
钢筋混凝土受扭构件承载力设计计算

钢筋混凝土受扭构件承载力设计计算摘要:结合桥梁设计工作实践经验论述了受扭构件承载力的计算方法和计算公式,结合具体实例,提出了钢筋混凝土受扭构件设计及承载力的计算方法及适用范围,以供设计者参考借鉴。
关键词:桥梁工程桥梁构件混凝土受扭构件承载力设计内力计算桥梁工程中扭转构件其受力的基本形式之一,钢筋混凝土结构中常见的构件形式,例如现浇框架边梁或折梁等结构构件都是受扭构件。
受扭构件根据截面上存在的内力情况可分为纯扭、剪扭、弯扭、弯剪扭等多种受力情况。
在实际工程中,纯扭、剪扭、弯扭的受力情况较少,弯剪扭的受力情况则较普遍。
因此,在桥梁结构设计工作中构件的内力计算至关重要。
1 钢筋混凝土矩形截面纯扭构件的设计与计算(1)开裂扭矩的计算:纯扭构件的扭曲截面承载力计算中,首先需要计算构件的开裂扭矩。
如果扭矩大于构件的开裂扭矩,则还要按计算配置受扭纵筋和箍筋,以满足构件的承载力要求。
否则,应按构造要求配置受扭钢筋。
在《公路钢筋混凝土及应力混凝土桥涵设计规范》(JTG D62-2004)中规定,钢筋混凝土矩形截面纯扭构件的开裂扭矩可用公式计算:2 钢筋混凝土弯、剪、扭构件的配筋设计与计算在《公路钢筋混凝土及应力混凝土桥涵设计规范》(JTG D62-2004)中规定,弯、剪、扭构件的配筋计算,也采取叠加计算的截面设计简化方法。
(1)受剪扭的构件承载力计算:现行设计规范中规定,钢筋混凝土剪扭构件的承载能力,一般按受扭和受剪构件分别计算承载能力,然后再它们叠加起来。
但是,剪、扭共同作用的构件,剪力和扭矩对混凝土和箍筋的承载能力均有一定影响。
如果采取简单地叠加,对箍筋和混凝土尤其是混凝土是偏于不安全的。
构件在剪扭的共同作用下,其截面的某一受压区内承受剪切和扭转应力的双重作用,这不仅会降低构件内混凝土的抗剪和抗扭能力,而且分别小于单独受剪和受扭时相应的承载能力。
由于受扭钢筋混凝土构件的受力情况比较复杂,所以对箍筋所承担的承载能力采取简单叠加,混凝土的抗扭和抗剪承载能力考虑其相互影响,在混凝土的抗扭承载能力计算式中,应引入剪扭构件混凝土承载能力的降低系数。
第六章钢筋混凝土受扭构件承载力计算

钢筋混凝土受扭构件承载力计算1.钢筋混凝土构件受扭状态可以分为哪两大类?何谓平衡扭转和协调扭转?答:钢筋混凝土构件受扭状态可以分为两大类,平衡扭转和协调扭转。
平衡扭转是指其扭矩依据构件扭矩平衡关系,由荷载直接确定且与构件的扭转刚度无关的受扭状态;例如支承悬臂板的梁及吊车梁等承受的扭矩既为平衡扭转。
对于平衡扭转,构件必须具有足够的受扭承载力,否则将因不能与作用扭矩平衡而引起破坏。
协调扭转是指作用在构件上的扭矩由平衡关系与变形协调条件共同确定的受扭状态;例如框架中的边梁,受到次梁负弯矩的作用,在边梁上引起的扭转。
对于协调扭矩,在受力过程中,因为混凝土和钢筋的非线性性能,尤其是混凝土的开裂和钢筋的屈服,会引起内力重分布。
2.钢筋混凝土构件在纯扭作用下的破坏状态随配筋状况的不同大致可分为哪四种类型?各有何破坏特点?答:钢筋混凝土构件在纯扭作用下的破坏状态随配筋状况的不同大致可分为适筋破坏、部分超筋破坏、超筋破坏、少筋破坏四种类型。
它们的何破坏特点如下:(1)适筋破坏正常配筋条件下的钢筋混凝土构件,在外扭矩的作用下,纵筋和箍筋首先达到屈服强度,然后混凝土压碎而破坏。
这种破坏与受弯构件的适筋梁类似,属延性破坏,此类受扭构件称为适筋构件;(2)部分超筋破坏当纵筋和箍筋配筋比率相差较大,破坏时仅配筋率较小的纵筋或箍筋达到屈服强度,而另一种钢筋不屈服,此类构件破坏时,亦具有一定的延性,但比适筋构件的延性小,此类构件称为部分超配筋构件;这类构件应在设计中予以避免。
(3)超筋破坏当纵筋和箍筋配筋率都过高,会发生纵筋和箍筋都没有达到屈服强度,而混凝土先行压坏的现象,这种现象类似于受弯构件的超筋脆性破坏,这种受扭构件称为超配筋构件;这类构件应在设计中予以避免。
(4)少筋破坏当纵筋和箍筋配置均过少,一旦裂缝出现,构件会立即发生破坏,此时纵筋和箍筋应力不仅能达到屈服强度而且可能进入强化阶段,配筋只能稍稍延缓构件的破坏,其破坏性质与素混凝土矩形截面构件相似,破坏过程急速而突然,破坏扭矩基本上等于开裂扭矩。
混凝土结构设计原理习题集之六(钢筋混凝土受扭构件承载力计算)试题.doc

混凝土结构设计原理习题集之六(钢筋混凝土受扭构件承载力计算)试题.混凝土结构设计原理习题集之六8 钢筋混凝土受扭构件承载力计算一.填空题:1 抗扭钢筋包括和。
钢筋混凝土构件的受扭破坏形态主要与有关。
2 钢筋混凝土构件在弯矩、剪力和扭矩共同作用下的承载力计算,纵筋应通过和计算求得的纵向钢筋进行配筋;箍筋应按构件的计算求得的箍筋进行配置。
3 承受扭矩的纵向钢筋,除应沿截面布置外,其余宜沿截面布置,其间距不应大于和。
4 工程中,钢筋混凝土结构构件的扭转可分为两类,一类是,另一类是。
5 《规范》中,受扭构件是按理论来进行强度计算的。
6 在进行剪扭构件设计时,假定具有的抗剪和抗扭承载力是相互联系的;而的抗剪和抗扭承载力是相互独立的。
另外,对T形截面,假定剪力由承担,扭矩由承担。
二.选择题:1 受扭构件中,抗扭纵筋应()。
A.在截面上下边放置B.在截面左右边放置C.沿截面周边对称放置2 对于剪力和扭矩共同作用下的构件承载力计算,《规范》在处理剪、扭相关作用时()。
A.不考虑两者之间的相关性B.考虑两者之间的相关性C.混凝土的承载力考虑剪扭相关作用,而钢筋的承载力不考虑剪扭相关性D.混凝土和钢筋的承载力都考虑剪扭相关作用 3 一般说来,,钢筋混凝土受扭构件的破坏是属于()。
A.脆性破坏B.延性破坏 4 矩形截面抗扭纵筋布置首先考虑角隅处然后考虑()。
A.截面长边中点B.截面短边中点C.另外其它地方5 钢筋混凝土受扭构件,受扭纵筋和箍筋的配筋强度比0.6ζ1.7 ;c.ζ0.6 d.0.6ζ1.7;三.判断题:1 受扭构件上的裂缝,在总体上成螺旋形,但不是连续贯通的,而是断断续续的。
()2 在剪力和扭矩共同作用下的构件其承载力比剪力和扭矩单独作用下的相应承载力要低3 钢筋混凝土构件在弯矩、剪力和扭矩共同作用下的承载力计算时,其所需要的箍筋由受弯构件斜截面承载力计算所得的箍筋与纯剪构件承载力计算所得箍筋叠加,且两种公式中均不考虑剪扭的相互影响。
钢筋混凝土弯剪扭构件承载力计算

混凝土结构设计原理/第8章 受扭构件承载力计算
26
混凝土结构设计原理/第8章 受扭构件承载力计算
27
1.5 βt = V 0.35 f tWt 1+ T 0.7 f t bh0
简化后得:β t =
1 .5 VWt 1 + 0.5 Tbh0
(7-23)
混凝土结构设计原理/第8章 受扭构件承载力计算
16
当βt>1.0时,应取βt=1.0;当βt<0.5时,应取 βt=0.5。即βt应符合:0.5≤βt≤1.0,故称βt为剪 扭构件的混凝土强度降低系数。因此,当需要考虑 剪力和扭矩的相关性时,对构件的抗剪承载力公式 和抗纯扭承载力公式分别按下述规定予以修正: 构件的抗扭承载力按下式计算
24
8.3.4 压、弯、剪、扭构件 对于在轴向压力、弯矩、剪力和扭矩共同作用下的 钢筋混凝土矩形截面框架柱,其受剪扭承载力应符 合下列规定: (1) 受剪承载力
nAsv1 1.75 Vu = (1.5 − β t )( f t bh0 + 0.07 N ) + f yv h0 s λ +1
(2) 受扭承载力
混凝土结构设计原理/第8章 受扭构件承载力计算
22
(3)配筋计算 对于腹板,考虑同时承受剪力和扭矩, 当需要考虑剪扭相关性时,按V及T由受剪扭结构承 载力计算式(7-34)及(7-27)或式(7-25)及(7-27)进行配 筋计算。 对于受压及受拉翼缘;不考虑翼缘承受剪力,按T'f 及Tf由受纯扭结构承载力计算公式(7-8)进行配筋计 算。 最后将计算所得的纵筋及箍筋截面面积分别叠加。
4
扭型破坏:
f y As γ= >1 ′ f y′ As
第7章 钢筋混凝土受扭构件承载力计算

第7章 钢筋混凝土受扭构件承载力计算1.简述钢筋混凝土矩形截面纯扭构件的四种破坏形态及其与设计的关系。
答:矩形截面纯扭构件的破坏形态以下四种类型:(1)少筋破坏当抗扭钢筋数量过少时,裂缝首先出现在截面长边中点处,并迅速沿45°方向向邻近两个短边的面上发展,在第四个面上出现裂缝后(压区很小),构件立即破坏。
破坏形态如图7-3(a),其破坏类似于受弯构件的少筋梁,破坏时扭转角较小(图7-4曲线1),属于脆性破坏,构件受扭极限承载力取决于混凝土抗拉强度和截面尺寸,设计中应予避免。
该类破坏模型是计算混凝土开裂扭矩的试验依据,并可按此求得抗扭钢筋数量的最小值。
(2)适筋破坏 当抗扭钢筋数量适中时,破坏形态如图7-3(b)。
混凝土开裂并退出工作,由其承担的拉力转给钢筋,钢筋的应力突增,但没有达到屈服,使构件在破坏前形成多条裂缝。
当通过主裂缝处的纵筋和箍筋达到屈服强度后,第四个面上的受压区混凝土被压碎而破坏。
适筋破坏扭转角较大(图7-4曲线2),属于延性破坏,该类破坏模型是建立构件受扭承载力设计方法的试验依据。
(3)超筋破坏当抗扭钢筋数量过多,构件破坏时抗扭纵筋和箍筋均未达到屈服,破坏是由某相邻两条45°螺旋缝间混凝土被压碎引起的。
破坏形态见图7-3(c),构件破坏时螺旋裂缝条数多而细,扭转角较小(图7-4曲线3),属于超筋脆性破坏,构件承载力主要取决于截面尺寸及混凝土抗压强度。
这类破坏称为完全超筋破坏,在设计中应避免。
该类破坏模型是计算抗扭钢筋数量最大值的试验依据。
(4)部分超筋破坏当抗扭纵筋和抗扭箍筋数量比例不当,致使混凝土压碎时,箍筋或纵筋两者之一不能达到屈服点,这种破坏属于部分超筋破坏。
虽然结构在破坏时有一定延性,设计可用,但不经济。
2.什么是配筋强度比ζ的物理意义、计算公式与合理的取值范围。
答:配筋强度比ζ的物理意义:ζ为受扭构件纵向钢筋与箍筋的配筋强度比,如图7-5,其物理意义是协调抗扭纵筋和箍筋应合理配置,充分利用抗扭钢筋的作用,使受扭构件的破坏形态呈现适筋破坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢筋混凝土受扭构件承载力计算
一、矩形截面纯扭构件的承载力计算
1.计算公式
(7-5)
式中T____扭矩设计值(包括γ0和ψ值在内);
γ_____钢筋混凝土结构的结构系数;
A cor_____截面核心部分面积A cor=b cor h cor;
_____抗扭纵筋与箍筋的配筋强度比(见式7-1)。
——截面受扭塑性抵抗矩,对矩形截面,;b、h分别为矩形截面的短边和长边尺寸。
_____受扭构件纵向钢筋与箍筋的配筋强度比
(7-1)
式中f y、f yv_____分别为纵筋、箍筋的抗拉强度设计值,f yv取值不应大于310N/mm2;
A st_____沿截面周边对称布置的全部抗扭纵筋截面面积;A st1 _____沿截面周边所配置箍
筋的单肢截面面积;
S——抗扭箍筋的间距;
u cor_____截面核心部分的周长。
由试验结果表明:ζ值在0.5~2.0时,纵筋和箍筋均能在构件破坏前屈服,为安全起见,规范规定:应符合0.6≤ζ≤1.7的要求,当ζ>1.7时,取ζ=1.7。
一般工程中取ζ=1.2。
2.受扭承载力计算公式的适用条件
(1)截面尺寸的限制——配筋上限
为了避免出现“超筋”破坏,规范规定截面尺寸应满足
(7-10)
否则,需增大截面尺寸或提高混凝土强度等级。
(2)截面配筋的限制——配筋下限
为了避免出现“少筋”破坏,规范规定抗扭箍筋配筋率ρstv和抗扭纵筋配筋率ρst应满足(3)当符合下式要求时
(7-13)
只需按式(7-11)和(7-12)构造配置抗扭钢筋。
二、矩形截面剪、扭构件承载力计算
1.计算公式
(1)矩形截面集中荷载作用下的剪、扭构件,计算公式
式中λ——计算剪跨,1.4≤λ≤3;
βt——剪、扭构件混凝土受扭承载力降低系数。
计算值应符合要求,当时,取;当时,取。
(2)计算受扭构件纵向钢筋与箍筋的配筋强度比
(7-1)
式中f y、f yv_____分别为纵筋、箍筋的抗拉强度设计值,f yv取值不应大于310N/mm2;
A st_____沿截面周边对称布置的全部抗扭纵筋截面面积;
A st1_____沿截面周边所配置箍筋的单肢截面面积;
S_____抗扭箍筋的间距;
u cor_____截面核心部分的周长。
由试验结果表明:ζ值在0.5~2.0时,纵筋和箍筋均能在构件破坏前屈服,为安全起见,规范规定:应符合0.6≤ζ≤1.7的要求,当ζ>1.7时,取ζ=1.7。
一般工程中取ζ=1.2。
(3)对于矩形截面构件在剪、扭作用下的受剪承载力和受扭承载力分别按下式计算:当构件承受集中荷载或以集中荷载为主时,式(7-19)应改为(7-21)。
三、矩形截面弯、剪、扭共同作用下的承载力计算
目前实用的承载力计算是按照叠加的原则来计算总的钢筋需要量,即纵向钢筋通过正截
面受弯承载力计算和剪、扭作用下的受扭承载力计算求得,重叠处的纵筋面积叠加后配筋。
箍筋按剪扭构件受剪承载力计算和受扭承载力计算求得,相同部位处的箍筋面积也进行叠加
配置。
具体计算步骤如下u
1.验算截面尺寸
故截面尺寸符合要求,否则应加大截面尺寸或提高混凝土强度等级。
2.验算是否按计算配置抗剪扭钢筋
为防止剪扭构件少筋破坏,配置抗剪抗扭钢筋下限应符合下式
若满足式要求,则不必对构件进行承载力配筋计算,直接按构造要求配置受剪受扭钢筋。
但受弯应按计算配筋。
3.判断是否按弯、剪、扭构件计算
进行下式验算确定是否能忽略剪力的影响,如符合下式要求
则可不计剪力V的影响,而只需按受弯构件的正截面受弯和受扭构件的纯扭分别来进行承载力计算。
进行下式验算确定是否能忽略扭矩的影响,如符合下式要求
则可不计扭矩T的影响,而只需按受弯构件的正截面和斜截面分别进行受弯和受剪承载力计算。
4.配筋计算
(1)抗扭箍筋的计算
1)计算受扭构件纵向钢筋与箍筋的配筋强度比
(7-1)
式中f y、f yv_____分别为纵筋、箍筋的抗拉强度设计值,f yv取值不应大于310N/mm2;
A st_____沿截面周边对称布置的全部抗扭纵筋截面面积;
A st1 _____沿截面周边所配置箍筋的单肢截面面积;
S_____抗扭箍筋的间距;
u cor_____截面核心部分的周长。
由试验结果表明:ζ值在0.5~2.0时,纵筋和箍筋均能在构件破坏前屈服,为安全起见,规范规定:应符合0.6≤ζ≤1.7的要求,当ζ>1.7时,取ζ=1.7。
一般工程中取ζ=1.2。
2)计算系数βt
对矩形截面集中荷载作用下的剪、扭构件,应考虑剪跨比的影响,此时可按下式计算
式中λ——计算剪跨,1.4≤λ≤3;
βt——剪、扭构件混凝土受扭承载力降低系数。
计算值应符合要求,当时,取;当时,取。
3)抗扭箍筋的计算
A cor=b cor h cor;u cor=2(b cor +h cor)
(2)抗剪箍筋的计算。
;
满足要求。
(3)抗扭纵筋计算
满足最小配筋率要求。
(4)抗弯纵筋计算。
满足最小配筋率要求。
5.钢筋的选配及布置
(1)箍筋(抗扭箍筋和抗剪箍筋)(2)抗扭纵筋和抗弯纵筋的布置。