第五章钢筋混凝土受扭构件
第5章 受扭构件 §2-5弯剪扭共同作用
As ρs = ≥ ρ s,min bh0
5、计算βt(5—23)式 、计算 — ) 6、计算抗剪箍筋用量(5—22)式, 、计算抗剪箍筋用量( — )
Asv 注意到ρ sv = bS v
Asv (20γ 0Vd )2 = 2 S v α1α 3 (10 − 2 β t )2 (2 + 0.6 p ) f cu,k f sv bh0
BC段 段
T Vc c + = 1.5 T V c0 c0
Vc βv = Vc0
Vc /Vc0
Tc Vc + = 1.5 Tc0 Vc0
Tc 取 βt = Tco
βv βt (1+ ) = 1.5 βt
近似取: 近似取:
Tc /Tc0
Vd Vc = T T d c
1.5 βt = V T 1+ d ⋅ c0 T V d c0
f sd S v
Asv1 ( 注意 已知!) Sv
Ast ≥ ρ st,min ρ st = bh
9、汇总钢筋用量,并满足最小配筋率要求 、汇总钢筋用量, ①总的纵筋用量A* st=As+Ast 总的纵筋用量
A *st 总配筋率ρ st = ≥ ρ s,min + ρ st ,min bh
②总的箍筋用量A*sv 总的箍筋用量
Vc /Vc0
Tc Vc + = 1.5 Tc0 Vc0
Tc /Tc0
Tc Vc βv = 设 βt = Tc0 Vc0 βt—无腹筋构件,剪扭作用时,抗扭承载力降低系数; 无腹筋构件,剪扭作用时,抗扭承载力降低系数;
βv—无腹筋构件,剪扭作用时,抗剪承载力降低系数; 无腹筋构件,剪扭作用时,抗剪承载力降低系数;
结构设计原理 第五章 受扭构件 习题及答案
结构设计原理第五章受扭构件习题及答案结构设计原理第五章受扭构件习题及答案第五章受扭构件扭曲截面承载力一、填空题1、素混凝土纯扭构件的承载力tu?0.7ftwt介于和分析结果之间。
wt是假设导出的。
2、钢筋混凝土受到抖构件随着扭矩的减小,先在横截面最脆弱的部位发生横裂缝,然后构成大体已连续的。
3、由于配筋量不同,钢筋混凝土纯扭构件将发生破坏、破坏、破坏和破坏。
4、钢筋混凝土弯角、抠、抖构件,剪力的减少将并使构件的抗炎抖承载力;扭矩的减少将并使构件的抗剪承载力。
5、为了防止受扭构件发生超筋破坏,规范规定的验算条件是。
6、抗扭纵向钢筋应沿布置,其间距。
7、t形横截面弯角、抠、抖构件的弯矩由忍受,剪力由忍受,扭矩由忍受。
8、钢筋混凝土弯、剪、扭构件箍筋的最小配筋率?sv,min?,抗弯纵向钢筋的最小配筋率??,抗扭纵向钢筋的最小配筋率?tl?。
9、混凝土受到抖构件的抗炎扭纵筋与缝筋的配筋强度比?应当在范围内。
10、为了确保缝筋在整个周长上都能够充分发挥抗拉促进作用,必须将缝筋制成形状,且缝筋的两个端头应当。
二、判断题1、构件中的抗扭纵筋应尽可能地沿横截面周边布置。
2、在受扭构件中配置的纵向钢筋和箍筋可以有效地延缓构件的开裂,从而大大提高开裂扭矩值。
3、受到抖构件的裂缝在总体上为螺旋形,但不是连贯的。
4、钢筋混凝土构件受扭时,核芯部分的混凝土起主要抗扭作用。
5、素混凝土纯扭构件的抗扭承载力可表达为tu?0.7ftwt,该公式是在塑性分析方法基础上建立起来的。
6、受到抖构件中抗炎抖钢筋存有横向钢筋和纵向缝筋,它们在配筋方面可以互相填补,即为一方布局少时,可以由另一方多布局一些钢筋以分担太少配筋一方所分担的扭矩。
7、受扭构件设计时,为了使纵筋和箍筋都能较好地发挥作用,纵向钢筋与-1-箍筋的配筋强度比值?应满足以下条件:0.61.7。
8、在混凝土纯扭构件中,混凝土的抗炎抖承载力和缝筋与纵筋就是全然单一制的变量。
《钢筋混凝土结构设计原理》复习资料
第一章混凝土结构用材料的性能1、在钢筋混凝土构件中钢筋的作用是替混凝土受拉或协助混凝土受压.2、混凝土的强度指标有混凝土的立方体强度、混凝土轴心抗压强度和混凝土抗拉强度。
3、混凝土的变形可分为两类:受力变形和体积变形。
4、钢筋混凝土结构使用的钢筋,不仅要强度高,而且要具有良好的塑性、可焊性,同时还要求与混凝土有较好的粘结性能。
5、影响钢筋与混凝土之间粘结强度的因素很多,其中主要为混凝土强度、浇筑位置、保护层厚度及钢筋净间距。
6、钢筋和混凝土这两种力学性能不同的材料能够有效地结合在一起共同工作,其主要原因是: 钢筋和混凝土之间具有良好的粘结力、钢筋和混凝土的温度线膨胀系数接近和混凝土对钢筋起保护作用.7、混凝土的变形可分为混凝土的受力变形和混凝土的体积变形 .其中混凝土的徐变属于混凝土的受力变形,混凝土的收缩和膨胀属于混凝土的体积变形。
第二章混凝土结构的设计方法1、结构设计的目的,就是要使所设计的结构,在规定的时间内能够在具有足够可靠性性的前提下,完成全部功能的要求。
2、结构能够满足各项功能要求而良好地工作,称为结构可靠,反之则称为失效,结构工作状态是处于可靠还是失效的标志用极限状态来衡量。
3、国际上一般将结构的极限状态分为三类:承载能力极限状态、正常使用极限状态和“破坏一安全”极限状态。
4、正常使用极限状态的计算,是以弹性理论或塑性理论为基础,主要进行以下三个方面的验算:应力计算、裂缝宽度验算和变形验算.5、公路桥涵设计中所采用的荷载有如下几类:永久荷载、可变荷载和偶然荷载。
6、结构的安全性、适用性和耐久性通称为结构的可靠性.7、作用是指使结构产生内力、变形、应力和应变的所有原因,它分为直接作用和间接作用两种. 直接作用是指施加在结构上的集中力或分布力如汽车、人群、结构自重等,间接作用是指引起结构外加变形和约束变形的原因,如地震、基础不均匀沉降、混凝土收缩、温度变化等。
8、结构上的作用按其随时间的变异性和出现的可能性分为三类:永久作用(恒载)、可变作用和偶然作用.9、我国《公路桥规》根据桥梁在施工和使用过程中面临的不同情况,规定了结构设计的三种状况:持久状况、短暂状况和偶然状况。
【混凝土习题集】—5—钢筋混凝土受扭构件
第五章 受扭构件承载力计算一、填空题:1、钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力 ;扭矩的增加将使构件的抗剪承载力 。
2、由于配筋量不同,钢筋混凝土纯扭构件将发生 、 、 、 四种破坏。
3、抗扭纵筋应沿 布置,其间距 。
4、钢筋混凝土弯、剪、扭构件箍筋的最小配筋率 ,抗弯纵向钢筋的最小配筋率 ,抗扭纵向钢筋的最小配筋率 。
5、混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比ς应在 范围内。
6、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 形状,且箍筋的两个端头应 。
二、判断题:1、受扭构件中抗扭钢筋有纵向钢筋和横向钢筋,它们在配筋方面可以互相弥补,即一方配置少时,可由另一方多配置一些钢筋以承担少配筋一方所承担的扭矩。
( )2、受扭构件设计时,为了使纵筋和箍筋都能较好地发挥作用,纵向钢筋与箍筋的配筋强度比值ς控制在7.16.0≤≤ς。
( )3、在混凝土纯扭构件中,混凝土的抗扭承载力和箍筋与纵筋是完全独立的变量。
( )4、矩形截面纯扭构件的抗扭承载力计算公式t t W f T 35.0≤+s f A A yv st cor12.1ζ只考虑混凝土和箍筋提供的抗扭承载力( )5、对于承受弯、剪、扭的构件,为计算方便,规范规定: t t W f T 175.0≤时,不考虑扭矩的影响,可仅按受弯构件的正截面和斜截面承载力分别进行计算。
( )6、对于承受弯、剪、扭的构件,为计算方便,规范规定:035.0bh f V t ≤或01875.0bh f V t +≤λ时,不考虑剪力的影响,可仅按受弯和受扭构件承载力分别进行计算。
( )7、弯、剪、扭构件中,按抗剪和抗扭计算分别确定所需的箍筋数量后代数相加,便得到剪扭构件的箍筋需要量。
( )8、对于弯、剪、扭构件,当c c tf W T bh V β25.08.00≤+加大截面尺寸或提高混凝土强度等级。
( ) 9、对于弯、剪、扭构件,当满足t tf W T bh V 7.00≤+时,箍筋和抗扭纵筋按其最小配筋率设置。
结构设计原理 第五章 受扭构件 习题及答案
结构设计原理第五章受扭构件习题及答案第五章 受扭构件扭曲截面承载力一、填空题1、素混凝土纯扭构件的承载力0.7u t t T f w =介于 和 分析结果之间。
t w 是假设 导出的。
2、钢筋混凝土受扭构件随着扭矩的增大,先在截面 最薄弱的部位出现斜裂缝,然后形成大体连续的 。
3、由于配筋量不同,钢筋混凝土纯扭构件将发生 破坏、 破坏、 破坏和 破坏。
4、钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力 ;扭矩的增加将使构件的抗剪承载力 。
5、为了防止受扭构件发生超筋破坏,规范规定的验算条件是 。
6、抗扭纵向钢筋应沿 布置,其间距 。
7、T 形截面弯、剪、扭构件的弯矩由 承受,剪力由 承受,扭矩由 承受。
8、钢筋混凝土弯、剪、扭构件箍筋的最小配筋率,min sv ρ= ,抗弯纵向钢筋的最小配筋率ρ= ,抗扭纵向钢筋的最小配筋率tl ρ= 。
9、混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比ζ应在 范围内。
10、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 形状,且箍筋的两个端头应 。
二、判断题1、构件中的抗扭纵筋应尽可能地沿截面周边布置。
2、在受扭构件中配置的纵向钢筋和箍筋可以有效地延缓构件的开裂,从而大大提高开裂扭矩值。
3、受扭构件的裂缝在总体上成螺旋形,但不是连贯的。
4、钢筋混凝土构件受扭时,核芯部分的混凝土起主要抗扭作用。
5、素混凝土纯扭构件的抗扭承载力可表达为0.7U t t T f w =,该公式是在塑性分析方法基础上建立起来的。
6、受扭构件中抗扭钢筋有纵向钢筋和横向箍筋,它们在配筋方面可以互相弥补,即一方配置少时,可由另一方多配置一些钢筋以承担少配筋一方所承担的扭矩。
7、受扭构件设计时,为了使纵筋和箍筋都能较好地发挥作用,纵向钢筋与箍筋的配筋强度比值ζ应满足以下条件:0.6 1.7ζ≤≤。
8、在混凝土纯扭构件中,混凝土的抗扭承载力和箍筋与纵筋是完全独立的变量。
9、矩形截面钢筋混凝土纯扭构件的抗扭承载力计算公式0.35 1.2yv stlt t cor f A T f w A S ζ≤+只考虑混凝土和箍筋提供的抗扭承载力。
【2017年整理】第五章 钢筋混凝土受扭构件
第五章 受扭构件承载力计算一、填空题:1、钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力 ;扭矩的增加将使构件的抗剪承载力 。
2、由于配筋量不同,钢筋混凝土纯扭构件将发生 、 、 、 四种破坏。
3、抗扭纵筋应沿 布置,其间距 。
4、钢筋混凝土弯、剪、扭构件箍筋的最小配筋率 ,抗弯纵向钢筋的最小配筋率 ,抗扭纵向钢筋的最小配筋率 。
5、混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比ς应在 范围内。
6、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 形状,且箍筋的两个端头应 。
二、判断题:1、受扭构件中抗扭钢筋有纵向钢筋和横向钢筋,它们在配筋方面可以互相弥补,即一方配置少时,可由另一方多配置一些钢筋以承担少配筋一方所承担的扭矩。
( )2、受扭构件设计时,为了使纵筋和箍筋都能较好地发挥作用,纵向钢筋与箍筋的配筋强度比值ς控制在7.16.0≤≤ς。
( ) 3、在混凝土纯扭构件中,混凝土的抗扭承载力和箍筋与纵筋是完全独立的变量。
( )4、矩形截面纯扭构件的抗扭承载力计算公式t t W f T35.0≤+s f A A yv st cor 12.1ζ只考虑混凝土和箍筋提供的抗扭承载力( )5、对于承受弯、剪、扭的构件,为计算方便,规范规定: t t W f T 175.0≤时,不考虑扭矩的影响,可仅按受弯构件的正截面和斜截面承载力分别进行计算。
( )6、对于承受弯、剪、扭的构件,为计算方便,规范规定:035.0bh f V t ≤或01875.0bh f V t +≤λ时,不考虑剪力的影响,可仅按受弯和受扭构件承载力分别进行计算。
( )7、弯、剪、扭构件中,按抗剪和抗扭计算分别确定所需的箍筋数量后代数相加,便得到剪扭构件的箍筋需要量。
( )8、对于弯、剪、扭构件,当c c tf W T bh V β25.08.00≤+加大截面尺寸或提高混凝土强度等级。
( )9、对于弯、剪、扭构件,当满足t tf W T bh V 7.00≤+时,箍筋和抗扭纵筋按其最小配筋率设置。
第五章-受扭构件承载力计算
第五章 受扭构件承载力计算
基础 知识
➢ 材料特性 ➢ 设计方法
构件 设计
学习内容
➢ 受弯构件 ➢ 受剪构件 ➢ 受扭构件 ➢ 偏压、偏拉构件 ➢轴拉构件 ➢轴压构件 ➢变形、裂缝 ➢预应力混凝土结构
结构设计, 后续课程
➢ 桥梁工程
弯梁桥的截面上除有弯矩M剪力V外,还存在扭矩T。由
开裂后的箱形截面受扭构件的受力可比拟成空间桁架:
纵筋为受拉弦杆, 箍筋为受拉腹杆, 斜裂缝间的混凝土为受压腹杆。
裂缝 箍筋
纵筋
T T
F4+F4=Ast4st
F1+F1=Ast1st
s F3+F3=Ast3st
F2+F2=Ast2st
箱形截面的剪应力分布,可采用薄壁管理论
T
rqds
2q
1 2
rds
纵筋的拉力
对隔离体ABCD
F1 F2 qhcorctg
相应其它三个面的隔离体
F1' F4 ' qbcorctg F4 F3 qhcorctg F3' F2 ' qbcorctg
裂缝 箍筋
纵筋
T T
F4+F4=Ast4fy
C
D
F1+F1=Ast1fy
B
F3+F3=Ast3fy
As
F2+F2=Ast2fy
纯扭构件在工程中几乎是没有的。工程中构件往往要同时 承受轴力、弯矩、剪力和扭矩。对于钢筋混凝土弯扭构件, 轴力对配筋的影响很小,可以忽略不计。为简化计算,设计 中可分别计算在弯扭和剪扭共同作用下的配筋,然后再进行 叠加。
钢筋混凝土受扭构件—受扭构件的特点及配筋要求
当符合式(5-19)或式(5-20)条件时,可不考虑抗剪承载力, 仅按受弯构件的正截面受弯承载力和纯扭构件的受扭承载力分别 进行计算:
V≤0.35 ft bh0
(5-19)
V≤
ft bh0
(5-20)
当符合式(5-21)要求时,可不考虑抗扭承载力,仅按受弯和受剪 承载力分别进行计算:
2024/2/7
(1) 少筋破坏。少筋破坏过程迅速而突然,属于脆性破坏。 设计时应避免少筋破坏的发生。
(2) 适筋破坏。当受扭箍筋和纵筋配置都适量时,构件开裂 后并不会立即破坏,随着扭矩的增加,构件将出现多条大体连 续、倾角接近于45º的螺旋状裂缝(图5.4b),此时裂缝处原混凝 土承担的拉力改由与裂缝相交的钢筋承担。
2024/2/7
图5.5 受扭钢筋的构造
第5章 钢筋混凝土 受扭构件
2024/2/7
图5.1 常见受扭构件示例
(a) 雨篷梁;(b) 框架边梁;(c) 吊车梁
2024/2/7
5.1 受扭构件的受力特点及配筋构造
2024/2/7
5.1.1 受扭构件的受力特点
钢筋混凝土受扭构件中矩形截面居多,并且纯扭构件的受 力性能是其他复合受力分析的基础,现以矩形截面纯扭构件为 例讨论受扭构件的受力特点。
2024/2/7
图5.2 纯扭构件的弹性应力分布
图5.3 素混凝土纯扭构件破坏的截面形式
2.钢筋混凝土矩形截面纯扭构件的破坏形态
由前面分析可知,在纯扭构件中配置受扭钢筋时,最合理 的配筋方式是在靠近构件表面处设置呈45º走向的螺旋形钢筋, 其方向与混凝土的主拉应力方向相平行。但螺旋形钢筋施工复 杂,且这种配筋方法也不能适应扭矩方向的改变,实际很少采
叶见曙结构设计原理第四版第5章
图5-4 矩形截面纯扭构件
图5-5 矩形截面纯扭构件剪应力分布
6
矩形截面钢筋混凝土受扭构件的开裂扭矩,只能近似地 采用理想塑性材料的剪应力图形进行计算,同时通过试验来 加以校正,乘以一个折减系数0.7。于是,开裂扭矩的计算 式为
Tcr =0.7Wt ftd
(5-2)
式中 Tcr——矩形截面纯扭构件的开裂扭矩; ftd ——混凝土抗拉强度设计值; Wt——矩形截面的抗扭塑性抵抗矩,Wt =b2(3h-b)/6。
st
= st,min
Ast,min bh
=0.08
2t -1
fcd fsd
(5-28)
Ast,min——纯扭构件全部纵向钢筋最小截面面积(mm2); h ——矩形截面的长边长度(mm); b ——矩形截面的短边长度(mm); ρst——纵向抗扭钢筋配筋率 ,ρst=Ast/bh; Ast ——全部纵向抗扭钢筋截面积(mm2)。
26
(3)抗弯受拉纵向钢筋As和受压纵向钢筋As’是分别配置 在截面受拉边缘区和受压边缘区,为集中配筋布置。
抗扭纵向钢筋Ast是在截面周边对称均匀形式布置的形式。
h
Ast /3 A's
Ast /3 As Ast /3 b
弯扭剪构件的纵向钢筋(n=3) 配置示意图
配置在截面受(拉)压边缘区 的纵筋,按叠加后所需纵向钢筋面 积截面来选择钢筋直径和布置。
和工字形截面受扭构件的截面配筋计算。 需要解决的问题: 所受扭矩在构件截面上的分配; 纵向钢筋和箍筋的设计。
1 ) T形、工字形截面扭矩分配 T形、工字形截面可以看作是由简单矩形截面所组成的复 杂截面。
T形、工字形截面分块示意图
(1) 在计算其抗裂扭矩、抗扭极限承载力时,可将截 面划分为几个矩形截面,并将扭矩Td 按各个矩形分块的抗扭 塑性抵抗矩按比例分配给各个矩形分块,以求得各个矩形分 块所承担的扭矩。
钢筋混凝土受扭构件
—Acor—截面核心部分的面积: ,此 Acor bcor hcor 处 、 为bcor箍筋hcor内表面范围内截面核 心部分的短边、长边尺寸;
— —受扭构件纵向钢筋与箍筋的配筋强度 比值。
2. 混凝土纯扭构件的极限扭矩
配置受扭钢筋对提高受扭构件抗裂性能的作用不 大,但当混凝土开裂后,可由钢筋继续承担拉力. (1)受扭钢筋的形式
受扭构件中主拉应力与构件轴线成45°角,因此合 理的配筋方式应采用与轴线成45°的螺旋形箍筋。 但螺旋形箍筋施工复杂,且只能适应一个方向的扭 矩,一般多采用横向箍筋与纵向钢筋组成的钢筋骨 架来抵抗扭矩作用。
建筑结构概论
钢筋混凝土受扭构件
扭转是构件除承受弯矩、剪力、轴力外另一种基 本受力形式之一。钢筋混凝土受扭构件中,常见的 有现浇框架结构中的边梁,厂房结构中受横向制动 力作用时的吊车梁,以及钢筋混凝土雨蓬梁等构件。
钢筋混凝土构件受扭可以分成两大类: 一类为平衡扭转:构件中的扭矩由外荷载直接作 用产生,扭矩可以直接由荷载静力平衡求出,与构 件的抗扭刚度无关。如图6-1中的吊车梁、挑檐梁。 另一类为协调扭转:在超静定结构,扭矩是由相 邻构件的变形受到约束而产生的,扭矩大小与受扭 构件的抗扭刚度有关。如图6-2中现浇框架中的边 梁。
b2 6
3h b
ft
称为矩形截面抗扭塑性抵抗矩。
ft
素混凝土既非完全弹性,又非理想塑性,是介于
两者之间的弹塑性材料。因而受扭时的极限应力分
布将介于上述两种情况之间。素混凝土构件的受扭
承载力即开裂扭矩为
Tcr 0.7Wt ft
当荷载产生的扭矩满足下式
Tcr 0.7Wt ft
则认为混凝土的抗扭能力足以承受由荷载产生的外 扭矩作用,抗扭钢筋仅需按构造设置。
混凝土构件受扭
svtAsvbt s0.28ft fyv stlAstlbh0.85ft fy TTu 0.2W tcfc,当 h0/b4时 TTu 0.1W 6tcfc,当 h0/b6时
线性插值 混凝土构件受扭
五、实用抗扭承载力计算公式
2. T形、I形截面
将截面分成若干个矩形截面, 求Tui
Tu Tui
注意翼缘抗扭抵抗矩的计算
第5章 受扭构件扭曲截面承载力
混凝土构件受扭
一、工程实例
平衡扭转----静定问题
约束扭转----超静定问题
受扭构件中通常也配置纵筋和箍筋ቤተ መጻሕፍቲ ባይዱ抵御扭矩
混凝土构件受扭
二、纯扭构件的破坏特征
1. 素混凝土纯扭构件
T(T)
素混凝土纯扭构件 先在某长边中点开裂
2
1
1
2
Tmax
T(T)
裂缝
形成一螺旋形裂缝,一裂即坏
1. 截面设计
T形截面或I形截面----设计步骤
验算截面 T(尺 0.16 寸 ~0.2): cW t fc
将截面分成若干个矩形
求每个矩形 矩所 T: wW W 承 ttwT,担 Tf' W 的 W ttf' T,扭 Tf W W ttfT
选定 1.0~1.3 由设计公: 式 A s sv 1t 求 sv t每 A bsvs t个 0.2f8 矩 t fyv 形 s A sv 1t
混凝土构件受扭
五、抗扭承载力计算公式应用
1. 截面设计
矩形截面----构造要求
Ast//3
135
Ast//3
º
Ast//3
纵筋沿截面均匀布置,否则亦可 能出现局部超筋,对设计题可能 会出现不安全的结果
第五章 钢筋混凝土受扭构件承载力计算
沿45°角主拉应力方向配置螺旋钢筋,并将螺旋钢筋配置 在构件截面的边缘处,由于45°角方向螺旋钢筋不便于施 工,为此,通常在构件中配置纵筋和箍筋来承受主拉应力 承受扭矩作用效应。 钢筋混凝土受扭构件在扭矩作用下,混凝土开裂以前 钢筋应力是很小的,当裂缝出现后开裂混凝土退出工作, 斜截面上拉应力主要由钢筋承受,斜裂缝的倾角α 是变化 的,结构的破坏特征主要与配筋数量有关。 ⑴当混凝土受扭构件配筋数且较少时(少筋构件)结构 在扭矩荷载作用下,混凝土开裂并退出工作,混凝土承担 的拉力转移给钢筋,由于结构配置纵筋及箍筋数量很少, 钢筋应力立即达到或超过屈服点,结构立即破坏。破坏形 态和性质同无筋混凝土受扭构件,共破坏类似于受弯构件 时的少筋梁,属于脆性破坏,在工程设计中应予避免。
根据极限平衡条件,结构受扭开裂扭矩值为
(5-3)
实际上,混凝上既非弹性材料 又非理想的塑性材 料。而是介于二者之间的弹塑性材料、对于低强度等 级混凝土。具有一定的塑性性质;对于高强度等级混 凝土,其脆性显著增大,截面上混凝土切应力不会象 理想塑性材料那样完全的应力重分布,而且混凝土应 力也不会全截面达到抗拉强度ft因此投式(5-2)计算的受 扭开裂扭矩值比试验值低,按式(5-3)计算的受扭开裂 扭矩值比试验值偏高。 为实用计算方便,纯扭构件受扭开裂扭矩设计时 采用理想塑性材料截面的应力分布计算模式,但结构 受扭开裂扭矩值要适当降低。试验表明,对于低强度 等级混凝上降低系数为0.8,对于高强度等级混凝上降 低系数近似为0.8。为统一开裂扭矩值的计算公式,并 满足一定的可靠度要求其计算公式为
§5.3建筑工程中受扭构件承载力计算
5.3.1纯扭构件承载力计算
1. 矩形截面钢筋混凝土纯扭构件
矩形截面是钢筋混凝土结构中最常用的截面形式。纯扭 构件扭曲截面计算包括两个方面内容:一为结构受扭的开裂 扭矩计算,二为结构受扭的承载力计算。如果结构扭矩大于 开裂扭矩值时应按计算配置受扭纵筋和箍筋用以满足截面 承载力要求;同时还应满足结构受扭构造要求。
项目5 钢筋混凝土受扭构件
(5.16) (5.17)
当4<hw/b<6时,按线性内插法确定。 式中βc——混凝土强度影响系数,混凝土强度等级不超过C50时,取1.0;混凝土强度等级为 C80时,取0.8;其间按线性内插确定。
5.2
受扭构件承载力计算要点
②为避免少筋破坏,同样需满足式(5.7)和式(5.8)的要求。
当满足式(5.18)要求时,可不进行构件剪扭承载力计算,仅按构造要求配置箍筋和抗扭纵筋
基础考核
三、简答题 1.钢筋混凝土纯扭构件有几种破坏形式?各有什么特点?计算中如何避免少筋破坏和完全超筋
破坏? 2.简述素混凝土纯扭构件的破坏特征。 3.在抗扭计算中有两个限值,0.7ft和0.25βcfc,它们起什么作用? 4.《混凝土结构设计规范(2015年版)》是如何考虑弯矩、剪力和扭矩共同作用的?βt的意义
基础考核
二、选择题
1.钢筋混凝土受扭构件,受扭纵筋和箍筋的配筋强度比0.6<ζ<1.7,说明当构件破坏时,()
。
A.纵筋和箍筋都能达到屈服
B.仅箍筋达到屈服
C.仅纵筋达到屈服
D.纵筋和箍筋都不能达到屈服
2.在钢筋混凝土受扭构件设计时,《混凝土结构设计规范(2015年版)》(GB 50010-2010
。按照构件截面上存在的内力情况,受扭构件可分为 、 、 、 和 等多种受力情况,其中以弯 、剪、扭复合受力情况最为常见。
2.钢筋混凝土纯扭构件根据配筋量的不同可分为以下四种类型的破坏形态: 、 、 和 。 3.受扭钢筋由 和 两部分组成。 4.扭矩与弯矩或剪力同时作用于构件时,会使原来单独内力作用时的承载力 。
截面设计时,已知截面的内力M、V、T,材料的强度等级,截面尺寸;求纵向钢筋和
箍筋的截面面积。 其计算步骤如下:
混凝土结构设计原理 第五章 受扭构件承载力计算
fy Astl s z Ast1 ucor f yv
试验表明,当0.5≤z ≤2.0范围时,受扭破坏时纵筋和箍 筋基本上都能达到屈服强度。 《规范》建议取0.6≤z ≤1.7, 当z >1.7时,取z =1.7 设计中通常取z =1.~1.2。
《规范》矩形受扭承载力计算公式
Tu 0.35 f tWt 1.2 z
对于矩形截面一般剪扭构件,
Tu 0.35 t f tWt 1.2 z f yv
Ast1 Acor s
nAsv1 Vu 0.7(1.5 t ) ft bh0 1.25 f yv h0 s
1.5 t V Wt 1 0.5 T bh0
称为剪扭构件混凝土强度 降低系数,小于0.5时取 0.5;大于1时取1。
ft
Tcr , p
b f t (3h b) f tWt 6
2
◆
混凝土材料为弹塑性材料。
◆ 达到开裂极限状态时开裂扭矩介于Tcr,e和Tcr,p之间。 ◆ 引入修正降低系数考虑应力非完全塑性分布的影响。
◆ 根据实验结果,修正系数在0.87~0.97之间,《规范》 为偏于安全起见,取 0.7。开裂扭矩的计算公式为
A's + Astl /3
+
As 4
Astl /3
=
Astl /3
Astl /3
As+ Astl /3
Asv1 s
Ast 1 s
2
Asv1 s
+
=
Asv1 Ast 1 + s s
对于弯剪扭构件,为防止少筋破坏 ★按面积计算的箍筋配筋率
Asv ft sv sv,min 0.28 bs f yv
结构设计原理课后习题答案解析(第三版)
结构设计原理课后习题答案解析(第三版)结构设计原理课后习题答案1 配置在混凝⼟截⾯受拉区钢筋的作⽤是什么?混凝⼟梁的受拉能⼒很弱,当荷载超过c f 时,混凝⼟受拉区退出⼯作,受拉区钢筋承担全部荷载,直到达到钢筋的屈服强度。
因此,钢筋混凝⼟梁的承载能⼒⽐素混凝⼟梁提⾼很多。
2解释名词:混凝⼟⽴⽅体抗压强度:以边长为150mm 的混凝⼟⽴⽅体为标准试件,在规定温度和湿度下养护28天,依照标准制作⽅法,标准试验⽅法测得的抗压强度值。
混凝⼟轴⼼抗压强度:采⽤150*150*300的混凝⼟⽴⽅体为标准试件,在规定温度和湿度下养护28天,依照标准制作⽅法和试验⽅法测得的混凝⼟抗压强度值。
混凝⼟抗拉强度:采⽤100*100*150的棱柱体作为标准试件,可在两端预埋钢筋,当试件在没有钢筋的中部截⾯拉断时,此时的平均拉应⼒即为混凝⼟抗拉强度。
混凝⼟劈裂抗拉强度:采⽤150mm ⽴⽅体试件进⾏劈裂抗拉强度试验,按照规定的试验⽅法操作,按照下式计算A F A F 673.02f ts ==π 3 混凝⼟轴⼼受压的应⼒—应变曲线有何特点?影响混凝⼟轴⼼受压应⼒—应变曲线有哪⼏个因素?完整的混凝⼟轴⼼受压的应⼒-应变曲线由上升段OC ,下降段CD,收敛段DE组成。
0~0.3fc 时呈直线;0.3~0.8fc 曲线偏离直线。
0.8fc 之后,塑性变形显著增⼤,曲线斜率急速减⼩,fc 点时趋近于零,之后曲线下降较陡。
D 点之后,曲线趋于平缓。
因素:混凝⼟强度,应变速率,测试技术和试验条件。
4 什么叫混凝⼟的徐变?影响徐变有哪些主要原因?在荷载的长期作⽤下,混凝⼟的变形随时间增长,即在应⼒不变的情况下,混凝⼟应变随时间不停地增长。
这种现象称为混凝⼟的徐变。
主要影响因素:混凝⼟在长期荷载作⽤下产⽣的应⼒⼤⼩,加载时龄期,混凝⼟结构组成和配合⽐,养⽣及使⽤条件下的温度和湿度。
5 混凝⼟的徐变和收缩变形都是随时间⽽增长的变形,两者有和不同之处?徐变变形是在长期荷载作⽤下变形随时间增长,收缩变形是混凝⼟在凝结和硬化的物理化学反应中体积随时间减⼩的现象,是⼀种不受外⼒的⾃由变形。
受扭构件的配筋构造要求
(2)少筋受扭构件 构件的受扭承载力与素混凝土没有实质差别,破坏过程 迅速而突然,类似于受弯构件的少筋破坏。 (3)超筋受扭构件 钢筋未达到屈服强度,构件即由于斜裂缝间混凝土被压 碎而破坏,这种破坏与受弯构件的超筋梁类似。
注意:少筋受扭构件和超筋受扭构件均属脆性破坏, 设计中应予避免。
3.钢筋混凝土弯、剪、扭构件
1.受扭纵筋 受扭纵筋应沿构件截面 周边均匀对称布置。矩形截 面的四角以及T形和Ι形截面 各分块矩形的四角,均必须 设置受扭纵筋。受扭纵筋的 间距不应大于200mm,也不应 大于梁截面短边长度。
受扭纵向钢筋的接头和锚固要求均应按受拉钢筋 的相应要求考虑。
架立筋和梁侧构造纵筋也可利用作为受扭纵筋。
2.受扭箍筋 受扭箍筋必须做成封闭式,且应沿截面周边布置 。箍筋末端弯折135°,弯钩端头平直段长度不应小 于10d。 受扭箍筋的间距s及直径d 均应满足受弯构件的最 大箍筋间距smax及最小箍筋直径的要求。
2.钢筋混凝土纯扭构件 配置受扭钢筋对提高受扭构件抗裂性能的作用不
大,当混凝土开裂后,可由钢筋继续承担拉力,最合 理的配筋方式是在构件靠近表面处设置呈45°走向的 螺旋形钢筋。但这种配筋方式不便于施工,且当扭矩 改变方向后则将完全失去效用。
在实际工程中,一般是采用由靠近构件表面设置的 横向箍筋和沿构件周边均匀对称布置的纵向钢筋共同组 成的抗扭钢筋骨架。
承载力之间的相关性:扭矩与弯矩或剪力同时作用于 构件时,一种承载力会因另一种内力的存在而降低。
(1)弯扭相关性 扭矩的作用使纵筋产生拉应力,加重了受弯构件纵向受 拉。
(2)剪扭相关性
弯剪扭复合受扭构件由于其三种内力的比值及配筋 情况的不同影响,有三种典型的破坏形态:
(1)弯型破坏。构件破坏开始于底面及两侧的混 凝土开裂,底部钢筋屈服,然后顶部混凝土压碎。这类 破坏主要因弯矩引起。
第5章 受扭构件
2. T形和工字形截面纯扭构件承 载力计算 总扭矩T由腹板、受压翼缘 和受拉翼缘三个矩形块承担
bf'
hf '
腹板:
受压翼缘:
Wtw TW T Wt
Tf Wtf Wt
T
h
b
hw
T
hf
受拉翼缘:
Tf
0.875 f t bh0 时,可按 (1)当 V 0.35 f t bh0 或 V 1
受弯构件的正截面受弯承载力和纯扭构件的受扭承载 力分别进行计算。 (2)当
T 0.175 f tWt
时,可按受弯构件的正截面受弯
承载力和斜截面的受剪承载力分别进行计算。
(3)其它情况按弯剪扭构件进行承载力计算。
sv ,min
Asv ,min bs
ft 0.28 f yv
4. 构造要求 (1)纵筋 受扭纵筋应对称设置于截面的周边; 伸入支座长度应按充分利用强度的受拉钢筋考虑。 (2)箍筋 箍筋的最小直径和最大间距要 满足表4-2和表4-3要求; 箍筋要采用封闭式。
5.2.5 弯剪扭构件计算方法确定 《规范》规定:矩形截面弯剪扭构件,可按下列规定进 行承载力计算:
2纯扭构件的破坏特征
1). 素混凝土纯扭构件
素混凝土纯扭构件 先在某长边中点开裂 主拉应力、主压应力成45度角
T(T)
T(T)
2
1 2
裂缝
1
Tmax
形成一螺旋形裂缝,一裂即坏
受压区
三边受拉,一边受压
2). 钢筋混凝土纯扭构件
一、开裂前的应力状态
max
钢筋混凝土受扭构件
2. 最小刚度原则
最小刚度原则: 最小刚度原则:取同号弯矩区段内弯矩 最大截面的弯曲刚度作为该区段的弯曲刚度, 最大截面的弯曲刚度作为该区段的弯曲刚度,即在 简支梁中取最大正弯矩截面的刚度为全梁的弯曲刚 而在外伸梁、连续梁或框架梁中, 度,而在外伸梁、连续梁或框架梁中,则分别取最 大正弯矩截面和最大负弯矩截面的刚度作为相应正、 大正弯矩截面和最大负弯矩截面的刚度作为相应正、 负弯矩区段的弯曲刚度。 负弯矩区段的弯曲刚度。
第五章
钢筋混凝土受扭构件
第五章 件
钢筋混凝土受扭构
知识点: 知识点:受扭构件概述和构造要求。
教学目标:了解受扭构件的构造要求。 教学目标:
一、受扭构件概述
受扭构件也是一种基本构件 两类受扭构件: 两类受扭构件: 平衡扭转 约束扭转
平衡扭转 1. 平衡扭转
◆ 构件中的扭矩可以直接由荷载静力平衡求出 受扭构件必须提供足够的抗扭承载力, ◆ 受扭构件必须提供足够的抗扭承载力,否则不
随着配置钢筋数量的不同, 随着配置钢筋数量的不同,受扭构件的破坏形态 配置钢筋数量的不同 也可分为:适筋破坏、少筋破坏和 也可分为:适筋破坏、少筋破坏和超筋破坏
1. 适筋破坏:箍筋和纵筋配置都合适 破坏:箍筋和纵筋配置都合适 与临界( 与临界(斜)裂缝相交的钢筋都能先达到屈服,然后混凝土压坏 裂缝相交的钢筋都能先达到屈服, 钢筋都能先达到屈服 与受弯适筋梁的破坏类似, 与受弯适筋梁的破坏类似,具有一定的延性
1. 钢筋混凝土受弯构件的截面刚度
(1)钢筋混凝土受弯构件截面刚度的特点 钢筋混凝土构件的截面刚度为一变量, 钢筋混凝土构件的截面刚度为一变量, 其特 点可归纳为: 点可归纳为: 随弯矩的增大而减小。这意味着, 1)随弯矩的增大而减小。这意味着,某一 根梁的某一截面,当荷载变化而导致弯矩不同时, 根梁的某一截面 , 当荷载变化而导致弯矩不同时 , 其弯曲刚度会随之变化; 其弯曲刚度会随之变化; 随纵向受拉钢筋配筋率的减小而减小。 2 ) 随纵向受拉钢筋配筋率的减小而减小 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 受扭构件承载力计算一、填空题:1、钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力 降低 ;扭矩的增加将使构件的抗剪承载力 降低 。
2、由于配筋量不同,钢筋混凝土纯扭构件将发生 、 、 、 四种破坏。
3、抗扭纵筋应沿 周边均匀 布置,其间距 mm 200≤ 。
4、钢筋混凝土弯、剪、扭构件箍筋的最小配筋率yv t sv f f 28.0min ,=ρ ,抗弯纵向钢筋的最小配筋率 %2.0和yt f f 45.0 ,抗扭纵向钢筋的最小配筋率 。
5、混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比ς应在 7.1~6.0 范围内。
6、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 封闭 形状,且箍筋的两个端头应 锚入核心混凝土至少10d 。
二、判断题:1、受扭构件中抗扭钢筋有纵向钢筋和横向钢筋,它们在配筋方面可以互相弥补,即一方配置少时,可由另一方多配置一些钢筋以承担少配筋一方所承担的扭矩。
(× )2、受扭构件设计时,为了使纵筋和箍筋都能较好地发挥作用,纵向钢筋与箍筋的配筋强度比值ς控制在7.16.0≤≤ς。
( )3、在混凝土纯扭构件中,混凝土的抗扭承载力和箍筋与纵筋是完全独立的变量。
( × )4、矩形截面纯扭构件的抗扭承载力计算公式t t W f T 35.0≤+s f A A yv st cor12.1ζ只考虑混凝土和箍筋提供的抗扭承载力( × )5、对于承受弯、剪、扭的构件,为计算方便,规范规定: t t W f T 175.0≤时,不考虑扭矩的影响,可仅按受弯构件的正截面和斜截面承载力分别进行计算。
( )6、对于承受弯、剪、扭的构件,为计算方便,规范规定:035.0bh f V t ≤或01875.0bh f V t +≤λ时,不考虑剪力的影响,可仅按受弯和受扭构件承载力分别进行计算。
( )7、弯、剪、扭构件中,按抗剪和抗扭计算分别确定所需的箍筋数量后代数相加,便得到剪扭构件的箍筋需要量。
( × )8、对于弯、剪、扭构件,当c c t f W T bh V β25.08.00≤+加大截面尺寸或提高混凝土强度等级。
( √ )9、对于弯、剪、扭构件,当满足t tf W T bh V 7.00≤+时,箍筋和抗扭纵筋按其最小配筋率设置。
这时只需对抗弯纵筋进行计算。
( √ )10、钢筋混凝土弯、剪、扭构件中,弯矩的存在对构件抗剪承载力没有影响(√ )11、钢筋混凝土弯、剪、扭构件中,剪力的存在对构件抗扭承载力没有影响( × )12、钢筋混凝土弯、剪、扭构件中,弯矩的存在对构件抗扭承载力没有影响( × )三、选择题:1、钢筋混凝土纯扭构件,抗扭纵筋和箍筋的配筋强度比7.16.0≤≤ζ,当构件破坏时,( A )。
A 纵筋和箍筋都能达到屈服强度B 仅纵筋达到屈服强度C 仅箍筋达到屈服强度D 纵筋和箍筋能同时达到屈服强度2、混凝土构件受扭承载力所需受扭纵筋面积stl A ,以下列( A )项理解是正确的。
A stl A 为对称布置的包括四角和周边全部受扭纵筋面积B stl A 为对称布置的四角受扭纵筋面积 Cstl A 为受扭纵筋加抗负弯矩的上边纵筋面积 D stl A 为受扭纵筋加抗正弯矩的下边纵筋面积3、混凝土构件受扭承载力所需受扭纵筋面积1st A ,以下列( )项理解是正确的。
A 1st A 为沿截面周边布置的受扭箍筋单肢截面面积B 1st A 为沿截面周边布置的全部受扭箍筋面积C 1st A 为沿截面周边布置的受扭和受剪箍筋面积D 1st A 为沿截面周边布置的受扭和受剪箍筋单肢截面面积4、设计钢筋混凝土受扭构件时,其受扭纵筋与受扭箍筋强度比ς应( D )。
A 5.0B 0.2C 不受限制D 在7.1~6.0之间5、受扭构件的配筋方式可为( B )。
A仅配抗扭箍筋B配置抗扭纵筋和抗扭箍筋C仅配置抗扭纵筋D仅配置与裂缝方向垂直的45°方向的螺旋状钢筋6、下列关于钢筋混凝土弯剪扭构件的叙述中,不正确的是( B )。
A扭矩的存在对构件的抗弯承载力有影响B剪力的存在对构件的抗扭承载力没有影响C弯矩的存在对构件的抗扭承载力有影响D扭矩的存在对构件的抗剪承载力有影响7、矩形截面抗扭纵筋布置首先是考虑角隅处,然后考虑( A )。
A截面长边中点B截面短边中点C截面中心点D无法确定8、受扭构件中的抗扭纵筋( B )的说法不正确。
A应尽可能均匀地沿周边对称布置B在截面的四角可以设抗扭纵筋也可以不设抗扭纵筋C在截面四角必设抗扭纵筋D抗扭纵筋间距不应大于200mm,也不应大于短边尺寸9、对受扭构件中的箍筋,正确的叙述是( C )。
A箍筋可以是开口的,也可以是封闭的B箍筋必须封闭且焊接连接,不得搭接C 箍筋必须封闭,但箍筋的端部应做成135°的弯钩,弯钩末端的直线长度不应小于5d和50mm D箍筋必须采用螺旋箍筋10、剪扭构件的承载力计算公式中( A )。
A混凝土部分相关,钢筋不相关B混凝土和钢筋均相关C混凝土和钢筋均不相关D混凝土不相关,钢筋相关四、简答题:1、受扭构件如何分类?2、什么是抗扭计算的变角空间桁架理论?3、简述受扭构件的配筋形式。
4、钢筋混凝土纯扭构件有哪些破坏形态?以哪种破坏作为抗扭计算的依据?5、纯扭构件计算中如何避免少筋破坏和超筋破坏?6、受扭构件计算公式中,ζ的物理意义是什么?起什么作用?有何限制?7、对钢筋混凝土T形、倒L形、工字形截面受扭构件,截面怎样分块?8、什么叫弯、剪、扭相关性?规范如何考虑其相关性的?β怎样计算?取值范围?9、钢筋混凝土剪扭构件混凝土受扭承载力降低系数t10、受弯、受剪和受扭钢筋各应配置在截面的什么位置?哪些钢筋可以合并设置?11、钢筋混凝土弯剪扭构件对截面有哪些限制条件?12、弯、剪、扭构件,什么条件下可不进行抗扭钢筋的计算,而只按构造要求配筋?13、受扭构件中对箍筋有哪些要求?14、受扭构件中,纵向抗扭钢筋应如何布置?15、对于弯矩、剪力、扭矩共同作用下的T形、倒L形、工字形截面构件,如何考虑各部分截面的抗力?五、计算题:5-1 某矩形截面纯扭构件,承受扭矩设计值为m KN T .18=,截面尺寸mm 500250⨯,C25混凝土,箍筋为HRB335级钢筋,纵筋为HRB400级钢筋。
环境类别为二类,试计算截面的配筋数量。
(注:2/9.11mm N f c =,2/27.1mm N f t =,2/360mm N f y =,2/300mm N f yv =)5-2 某雨篷梁,承受弯矩、剪力、扭矩设计值为m KN M .25=, KN V 40=,m KN T .6=,截面尺寸mm 240240⨯,C25混凝土,箍筋为HRB335级钢筋,纵筋为HRB400级钢筋。
环境类别为一类a ,试计算雨篷梁的配筋数量。
(注:2/9.11mm N f c =,2/27.1mm N f t =,2/360mm N f y =,2/300mm N f yv =)参考答案一、填空题:1、降低 降低2、少筋破坏 适筋破坏 部分超筋破坏 完全超筋破坏3、周边均匀布置mm 200≤ 4、yv t sv f f 28.0min ,=ρ %2.0和yt f f 45.0 y t s t l f f Vb T 6.0min ,=ρ 5、7.1~6.06、封闭 锚入混凝土核心至少10d二、判断题:1、×2、√3、×4、×5、√6、√7、×8、√9、√ 10、√ 11、× 12、×三、选择题:1、A2、A3、A4、D5、B6、B7、A8、B9、C 10、A四、简答题:1、钢筋混凝土结构在扭矩作用下,根据扭矩形成的原因,可以分为两种类型:(1)平衡扭转:若结构的扭矩是由荷载产生的,其扭矩可根据平衡条件求得,与构件抗扭刚度无关,这种扭转称为平衡扭转。
(2)协调扭转或称附加扭转:超静定结构中由于变形的协调使截面产生的扭转,称为协调扭转或附加扭转。
2、钢筋混凝土构件受扭时,核芯部分的混凝土所起的抗扭作用很小,因此可将其开裂后的破坏图形比拟为一个空间桁架,纵筋可看成这个空间桁架的弦杆,箍筋可看成这个空间桁架的竖杆,斜裂缝之间的混凝土条带可看成这个空间桁架的斜压腹杆。
原设计《规范》假定斜裂缝与水平线的倾角α成45°,而新《规范》根据近年来的试验结果和理论分析认为,α角随着纵向钢筋和箍筋的配筋强度比值ζ而变化,称为变角空间桁架理论法。
3、(1)配置横向钢筋(抗扭箍筋)——靠近构件表面设置横向的抗扭箍筋;(2)配置抗扭纵向钢筋——沿周边均匀对称布置纵向抗扭钢筋。
4、(1)少筋破坏:当抗扭箍筋和纵筋或者其中之一配置过少时。
破坏具有突然性,属脆性破坏。
(2)适筋破坏:当构件中的箍筋和纵筋配置适当时,破坏具有延性性质,有较明显的预兆。
(3)超筋破坏:①部分超筋:当构件中的箍筋或纵筋有一种配的太多时,有一定预兆;②当受扭箍筋和纵筋都太多时,破坏突然发生,属脆性破坏。
钢筋混凝土受扭构件应以适筋破坏为依据,设计时,应设计成具有此种破坏特征的受扭构件。
5、(1)为防止超筋破坏:通过控制截面尺寸不能太小,《规范》做如下规定: t c c W f T 8.025.0⨯≤β(0.8是考虑了可靠度要求对W t 的折减)(2)防止少筋破坏:《规范》对受扭构件的箍筋和纵筋的数量分别规定了最小配筋率,以防止此种破坏的发生。
①受扭箍筋的最小配筋率:yvt sv st sv f f bs A 28.02min ,1=≥=ρρ ②受扭纵筋最小配筋率:yt tl stl tl f f Vb T bh A 6.0min ,=≥=ρρ③2 Vb T 时,取2=VbT ;对纯扭构件,剪力设计值V=1。
6、(1)ζ受扭纵向与横向钢筋配筋强度比:cor st yv stl y st yv cor stly A f sA f s A f A f μμζ11/==(2)试验表明,为了使抗扭钢筋(抗扭箍筋和抗扭纵筋)都能发挥其作用,达到屈服,应将其用量控制在合理的范围内。
实际工程中采用控制纵向钢筋和箍筋的配筋强度比ζ,可以达到上述目的。
(3)试验表明:当ζ在0.25.0≤≤ζ变化时,纵筋与箍筋在构件破坏时基本上都能达到屈服强度,但为慎重起见,建议取7.16.0≤≤ζ。
在工程设计中,为了设计方便,通常取1.0~1.2(1.2比较理想)。
7、对于T 形、倒L 形、工字形截面的受扭构件,可近似地将其截面视为由若干个矩形截面组成。
分块的方法与腹板的宽度有关,当腹板的宽度大于上下翼缘的高度时,按图5-1(a )所示方式划分计算比较方便;当腹板的宽度小于上下翼缘的高度时,按图5-1(b )所示方式划分计算比较方便。