第三章钢筋混凝土受弯构件(精)

合集下载

第三章 钢筋混凝土受弯构件正截面承载力计算

第三章 钢筋混凝土受弯构件正截面承载力计算

第三章钢筋混凝土受弯构件正截面承载力计算受弯构件(bendingmember)是指截面上通常有弯矩和剪力共同作用而轴力可以忽视不计的构件。

钢筋混凝土受弯构件的主要形式是板(Slab)和梁(beam),它们是组成工程结构的基本构件,在桥梁工程中应用很广。

在荷载作用下,受弯构件的截面将承受弯矩M和V的作用。

因此设计受弯构件时,一般应满意下列两方面的要求:(1)由于弯矩M的作用,构件可能沿弯矩最大的截面发生破坏,当受弯构件沿弯矩最大的截面发生破坏时,破坏截面与构件轴线垂直,称为正截面破坏。

故需进行正截面承载力计算。

(2)由于弯矩M和剪力V的共同作用,构件可能沿剪力最大或弯矩和努力都较大的截面破坏,破坏截面与构件的轴线斜交,称为沿斜截面破坏,故需进行斜截面承载力计算。

为了保证梁正截面具有足够的承载力,在设计时除了适当的选用材料和截面尺寸外,必需在梁的受拉区配置足够数量的纵向钢筋,以承受因弯矩作用而产生的拉力;为了防止梁的斜截面破坏,必需在梁中设置肯定数量的箍筋和弯起钢筋,以承受由于剪力作用而产生的拉力。

第一节受弯构件的截面形式与构造一、钢筋混凝土板的构造板是在两个方向上(长、宽)尺度很大,而在另一方向上(厚度)尺寸相对较小的构件。

钢筋混凝土板可分为整体现浇板和预制板。

在施工场地现场搭支架、立模板、配置钢筋,然后就地浇筑混凝土的板称为整体现浇板。

通常这种板的截面宽度较大,在计算中常取单位宽度的矩形截面进行计算。

预制板是在预制厂和施工场地现场预先制好的板,板宽度一般掌握在Inl左右,由于施工条件好,预制板不仅能采纳矩形实心板,还能采纳矩形空心板,以减轻板的自重。

板的厚度h由截面上的最大弯矩和板的刚度要求打算,但是为了保证施工质量及耐久性的要求,《大路桥规》规定了各种板的最小厚度;行车道板厚度不小于IOOmm人行道板厚度,就地浇注的混凝土板不宜小于80mm,预制不宜小于60mm。

空心板桥的顶板和底板厚度,均不宜小于80mm。

钢筋混凝土结构设计原理 -第三章 受弯构件正截面承载力计算

钢筋混凝土结构设计原理 -第三章 受弯构件正截面承载力计算

1.3 钢筋的构造
混凝土保护层c(Concrete cover)
定义:钢筋边缘到构件截面的最短距离 作用:1.保证钢筋和混凝土之间的粘结
2.避免钢筋的过早锈蚀 规范给出了各种环境条件下的最小混凝土保护层厚度c(P496, 附表1-8)。
1.3 钢筋的构造
板的配筋:由于受力性能不同,现浇和预制的配筋不同。
梁的配筋
纵向受力钢筋(主钢筋)、弯起钢筋或斜钢筋、箍筋、架立筋、水平纵向钢筋
1)钢筋骨架的形式
架立钢筋
箍筋
弯起钢筋
纵向钢筋
绑扎钢筋骨架
架立钢筋
斜筋
弯起钢筋
斜筋
纵向钢筋
焊接钢筋骨架示意图
2)钢筋种类
(1)主钢筋:承受弯矩引起的拉力,置于梁的受拉区。有时在受压区也配 置一定数量的纵向受力钢筋,协助混凝土承担压应力。
数量由正截面承载力计算确定,并满足构造要求 作用:协助混凝土抗拉和抗压,提高梁的抗弯能力。 直径: d12~ d32mm,≤d40mm
排列总原则:由下至上,下粗上细,对称布置
最小混凝土保护层厚度:应不小于钢筋的公称直径,且应符合规范要求 钢筋净距:
a) 绑扎钢筋
b) 焊接钢 筋
架立筋
箍筋 主钢筋

≥≥40mm
主钢筋
c
≥ (三层及三层以下)
c
净距

≥ (三层以上)

目录
1.受弯构件的截面形式和构造 2.受弯构件正截面受力全过程及破坏形态 3.受弯构件正截面承载力计算的基本假定 4.单筋矩形截面正截面承载力计算 5.双筋矩形截面正截面承载力计算 6.T形截面受弯构件
受剪破坏:M,V作用,沿剪压区段内的某个斜截面(与梁的纵轴线 或板的中面斜交的面)发生破坏

建筑结构基础第3章 混凝土受弯构件

建筑结构基础第3章 混凝土受弯构件
看,尤其是采用绑扎骨架的钢筋混凝土梁承受剪力应优先采用箍筋。
(1)直径、根数要求:弯起钢筋是由纵向受力钢筋弯起而来的, 其直径大小同纵向受力钢筋,而根数由斜截面计算确定。位于梁最外侧 的钢筋不应弯起。弯起钢筋的弯起角度一般宜取45o,当梁截面高度大于 800时,宜采用45o 。
(2)锚固:在弯起钢筋的弯终点处应留有平行于梁轴线方向的锚 固长度,在受拉区不应小于20d,在受压区不应小于10d。 (3)间距:梁上部纵向受力钢筋的净距,不应小于30mm,也不应 小1.5d(为受力钢筋的最大直径);梁下部纵向受力钢筋的净距,不应小 于25mm,也不应小于d。见图3.3。
最小厚度(mm )
60 60 70 80 80 60 80 150
14
(二)板中的钢筋
单向板中一般配置有受力钢筋和分布钢筋两种钢筋。
(4)搭接长度:架立钢筋直径<10mm时,架立钢筋与受力钢筋的 搭接长度应≥100mm;架立钢筋直径≥10mm时,架立钢筋与受力钢筋的
搭接长度应≥150mm。
12
5.梁侧纵向构造钢筋
又称为腰筋,设置在梁的侧面。作用是承受因温度变化及混凝土 收缩在梁的侧面引起的应力,并抑制裂缝的开展。 当梁的腹板高度≥450时,在梁的两个侧面应沿梁的高度方向配 置纵向构造钢筋,每侧纵向构造钢筋的截面面积不应小于腹板截面面 积的0.1%,其间距不宜大于200。 粱两侧的纵向构造钢筋用拉筋联系。
大间距应符合表3.5要求。
11
4.架立钢筋
(1)作用:固定箍筋的位置,与纵向受力钢筋构成钢筋骨架,并
承受混凝土因温度变化、混凝土收缩引起的拉应力,改善混凝土的延性。
(2)直径:当梁的跨度小于4m,d≥8mm;当跨度为于4~6m,d≥ 10mm;当跨度大于6m,d≥12mm 。

第3章 钢筋混凝土受弯计算

第3章 钢筋混凝土受弯计算
►常用直径12、14、16、18、20、22和25mm ►根数不少于3(或4)根; ►梁箍筋宜采用HPB235(Ⅰ级)、 HRB335级(Ⅱ级)
;
和HRB400级(Ⅲ级)钢筋,常用直径6、8、10mm。
弯弯架架
架架架架
腰架
箍架
纵纵架架
梁的钢筋构造
c d1≥1.5d c c d1≥d ≥25mm c––保护层厚 60 d2 b c
应力、应变图均为直线 说明混凝土处于弹性阶段 说明混凝土处于弹性阶段, 应力、应变图均为直线—说明混凝土处于弹性阶段,应力 与应变成正比。 σ 0 = E c ε 0 与应变成正比。
Ia——拉区混凝土出现塑性特征 ε → ε tu ,拉区应力图呈 拉区混凝土出现塑性特征
曲线, 曲线,
M → M cr 即将开裂状态。 即将开裂状态。
当 ξ < ξ b 适筋梁破坏或少筋梁破坏 (2)最小配筋率
ρ min
3.4 单筋矩形截面受弯构件正截面承载力计算
3.4.1 基本公式与适用条件
∑X =0 ∑M = 0

α1 f cbx = As f y
x KM = α1 f cbx(h0 − ) 2
x KM = f y As (h0 − ) 2
• 受弯构件截面类型:梁、板
(a)
(b)
(c)
(d)
(e)
(f)
(g)
2截面尺寸
► 矩形截面梁的高宽比h/b 一般取2.0 ~ 3.5;
T 形截面梁的 h/b 一般取2.5 ~ 4.0
► 梁 肋 宽 b 一 般 取 为 100 、 120 、 150 、 ( 180 ) 、 200 、
(220)、250和300mm,300mm以下的级差为50mm;

第三章 钢筋混凝土受弯构件正截面承载力计算

第三章 钢筋混凝土受弯构件正截面承载力计算

第三章钢筋混凝土受弯构件正截面承载力计算第三章钢筋混凝土受弯构件正截面承载力计算第三章钢筋混凝土受弯构件正截面承载力计算第一节钢筋砼受弯构件的构造一、钢筋砼板的构造二、钢筋砼梁的构造一、钢筋砼板(reinforced concreteslabs)的构造1、钢筋砼板的分类:整体现浇板、预制装配式板。

2、截面形式小跨径一般为实心矩形截面。

跨径较大时常做成空心板。

如图所示。

3、板的厚度:根据跨径(span)内最大弯矩和构造要求确定,其最小厚度应有所限制:行车道板一般不小于100mm;人行道板不宜小于60mm(预制板)和80mm(现浇筑整体板)。

4、板的钢筋由主钢筋(即受力钢筋)和分布钢筋组成如图。

钢筋混凝土板桥构造图(1)主筋布置:布置在板的受拉区。

直径:行车道板:不小于10mm;人行道板:不小于8mm。

间距:间距不应大于200mm。

主钢筋间横向净距和层与层之间的竖向净距,当钢筋为三层及以下时,不应小于30mm,并不小于钢筋直径;当钢筋为三层以上时,不应小于40mm,并不小于钢筋直径的1.25倍。

净保护层:保护层厚度应符合下表规定。

序号构件类别环境条件ⅠⅡⅢ、Ⅳ1 基础、桩基承台⑴基坑底面有垫层或侧面有模板(受力钢筋)⑵基坑底面无垫层或侧面无模板465756852 墩台身、挡土结构、涵洞、梁、板、拱圈、拱上建筑(受力主筋)34453 人行道构件、栏杆(受力主筋)22534 箍筋22535 缘石、中央分隔带、护栏等行车道构件34456 收缩、温度、分布、防裂等表层钢筋15225梁构件,在不同环境条件下,保护层厚度值注:请点击<按扭Ⅰ,Ⅱ,Ⅲ&Ⅳ>,以查看不同保护层厚度值(2)分布钢筋(distribution steel bars):垂直于板内主钢筋方向上布置的构造钢筋称为分布钢筋作用:A、将板面上荷载更均匀地传递给主钢筋B、固定主钢筋的位置C、抵抗温度应力和混凝土收缩应力(shrinkage stress)布置:A、在所有主钢筋的弯折处,均应设置分布钢筋B、与主筋垂直C、设在主筋的内侧数量:截面面积不小于板截面面积的0.1%。

第三章钢筋混凝土正截面全篇

第三章钢筋混凝土正截面全篇
10
一、梁的受力分析
2、试验过程
试验采用逐级加荷的方式,每加一次,停一分钟, 再加。
适筋梁受弯试验
3、试验结果分析
➢弯矩与挠度曲线
➢截面应变分布规律
➢钢筋应力与M的关系曲线
梁的受力工作可分为三个阶段,分别 是弹性阶段,裂缝开展阶段和破坏阶 段。
12
二、梁正截面工作的三个阶段
13
M M cr
带裂缝工作阶段 有裂缝,挠度还不 明显 曲线
受压区高度减小, 混凝土压应力图形 为上升段的曲线, 应力峰值在受压区 边缘
大部分退出工作
20~ 30kN/mm2<σs< f用y 于裂缝宽度及变 形验算
破坏阶段 钢筋屈服,裂缝宽,挠 度大 接近水平的曲线
受压区高度进一步减小, 混凝土压应力图形为较 丰满的曲线;后期为有 上升段与下降段的曲线, 应力峰值不在受压区边 缘而在边缘的内侧 绝大部分退出工作
14
阶阶段段ⅡⅡ AAss
MMccrr<<MM<<MMyy εs<εy
σσssAAss
第Ⅱ阶段:裂缝开展阶段
AAss
εεyy
MMyy ffyyAAss
该阶段为构件的正常工作阶段,进入带缝工作阶段。裂缝 首先从试件纯弯段内某一个最为薄弱的截面受拉边缘产生,而 后向中和轴延伸。同时受拉区的其它部位也会产生裂缝并向中 和轴延伸。
第Ⅲ阶段
未裂阶段 没有裂缝,挠度很小 大致成直线 直线
前期为直线,后期为有 上升段的曲线,应力峰 值不在受拉区边缘 σs≤20~30kN/mm2 Ia阶段用于抗裂验算
带裂缝工作阶段 有裂缝,挠度还不 明显 曲线
受压区高度减小, 混凝土压应力图形 为上升段的曲线, 应力峰值在受压区 边缘

第三章 受弯构件

第三章 受弯构件

适筋梁正截面受弯的三个阶段
在试验过程中,荷载由零开始直到梁正截面破坏。整个 过程可以分为如下三个阶段:
●第一阶段(未裂阶段,或弹性阶段):砼开裂前; ●第二阶段(带裂缝阶段):砼开裂后到钢筋屈服前; ●第三阶段(破坏阶段):钢筋开始屈服直到截面破坏
1、第I阶段-砼开裂前
荷载较小时, 梁截面内弯矩较小, 钢筋砼梁的工作情况与匀质 弹性梁相似: 其应变沿梁截面高度为直线变化, 应力与应变成正比,受拉区和受压区的应力分布图形均为三角形 梁的荷载~曲率(挠度)曲线为直线。
仍为直线。 此时的弯矩值称为 当荷载增大到受拉边缘砼 开裂弯矩Mcr 即将开裂时,为截面即将开 裂的临界状态(Ⅰa)。此时, a可作为受弯构件抗 Ⅰ 受压区应力仍直线分布。 裂度计算依据。Ⅰa钢筋
的应力约为20~30N/mm2
2、带裂缝工作阶段(Ⅱ阶段)
●在开裂瞬间,纯弯段内抗拉能力最薄弱的某一截面首
u
cr
cr
y
u
f
●在该阶段,随着荷载增加,
由于裂缝不断开展地向上延伸, 受压区砼的压应变不断增大, 其塑性性质越来越明显,在该阶段 受压区砼的应力分布图形为曲线分布
M
σsAs
esey
第Ⅱ阶段截面应力应变分布
随着荷载继续增加,当 钢筋应力达到屈服强度 时,梁的受力性能将发 生质的变化。 此时的受力状态记为 Ⅱa状态,弯矩称为屈 服弯矩,记为My,此 后: 梁的受力将进入破坏 阶段(Ⅲ阶段) 弯矩与挠度或截面曲率 曲线出现明显的转折点



第3章
钢筋混凝土受弯构件
§3.1 概 述
受弯构件:指截面上受弯矩和剪力共同作用而轴力可 以忽略不计的构件。 正截面:与构件计算轴线相垂直的截面为正截面。 在实际工程中,梁和板是典型的受弯构件。它们也是 土木工程中数量最多、使用面最广的一类构件。因此, 掌握受弯构件的设计与计算方法具有重要的意义。 既然梁和板都是受弯构件,那么,梁和板的区别在 于什么呢?

第3章钢筋混凝土受弯构件习题和思考题及答案

第3章钢筋混凝土受弯构件习题和思考题及答案

第三章钢筋混凝土受弯构件问答题1. 适筋梁正截面受弯全过程可划分为几个阶段?各阶段的主要特点是什么?与计算有何联系?1。

答:适筋梁正截面受弯全过程可划分为三个阶段—混凝土开裂前的未裂阶段、混凝土开裂后至钢筋屈服前的裂缝阶段和钢筋开始屈服前至截面破坏的破坏阶段.第Ⅰ阶段的特点是:1)混凝土没有开裂;2)受压区混凝土的应力图形是直线,受拉区混凝土的应力图形在第Ⅰ阶段前期是直线,后期是曲线;3)弯矩与截面曲率基本上是直线关系.a I 阶段可作为受弯构件抗裂度的计算依据。

第Ⅱ阶段的特点是:1)在裂缝截面处,受拉区大部分混凝土推出工作,拉力主要由纵向受拉钢筋承担,但钢筋没有屈服;2)受压区混凝土已有塑性变形,但不充分,压应力图形为只有上升段的曲线;3)弯矩与截面曲率是曲线关系,截面曲率与挠度的增长加快了.阶段Ⅱ相当于梁使用时的受力状态,可作为使用阶段验算变形和裂缝开展宽度的依据。

第Ⅲ阶段的特点是:1)纵向受拉钢筋屈服,拉力保持为常值;裂缝截面处,受拉区大部分混凝土已退出工作,受压区混凝土压应力曲线图形比较丰满,有上升曲线,也有下降段曲线;2)由于受压区混凝土合压力作用点外移使内力臂增大,故弯矩还略有增加;3)受压区边缘混凝土压应变达到其极限压应变实验值0cu 时,混凝土被压碎,截面破坏;4)弯矩—曲率关系为接近水平的曲线。

第Ⅲ阶段末可作为正截面受弯承载力计算的依据。

2. 钢筋混凝土梁正截面受力全过程与匀质弹性材料梁有何区别?2.答:钢筋混凝土梁正截面受力全过程与匀质弹性材料梁的区别有:钢筋混凝土梁从加载到破坏的全过程分为三个阶段;从第Ⅱ阶段开始,受拉区混凝土就进入塑性阶段,梁就开始带裂缝工作,受拉区拉力都由钢筋来承担,直到第Ⅲ阶段末整个梁破坏,而匀质弹性材料梁没有这两个阶段,始终是在弹性阶段内工作的.3.钢筋混凝土梁正截面有哪几种破坏形态?各有何特点?3。

答:钢筋混凝土梁正截面有适筋破坏、超筋破坏和少筋破坏三种。

第3章钢筋混凝土受弯构件正截面承载力计算(精)

第3章钢筋混凝土受弯构件正截面承载力计算(精)

第3章 钢筋混凝土受弯构件正截面承载力计算1.对梁、板的截面尺寸有何构造规定?答:梁的高度h 常根据刚度要求取为跨度l 0的1/8~1/12;矩形截面梁的宽度b 按高宽比h /b =2~3,T 形截面梁的肋宽b 按高宽比h /b =2.5~4选择。

然后结合下列要求初步确定。

(1)矩形截面的宽度或T 形截面的肋宽b 常取120、150、180、200、220、……、250mm ,250mm 以上则以50mm 为模数递增。

(2)梁高h 常取250、300、350、400、……、800mm ,以50mm 递增;800mm 以上则以100mm 递增。

一般的受力板,其厚度h 可取为板跨度l 0的1/12~1/35。

考虑施工方便和使用要求,板厚不宜小于50mm ;水工建筑物中板的厚度不宜小于100mm 。

板厚在250mm 以下时,板厚以10mm 递增;板厚在250mm 以上时,以50mm 递增;板厚超过800mm 时,则以100mm 递增。

板的宽度一般由使用要求和布置条件确定。

对预制构件,常要求构件轻薄,便于吊装和运输,因此在考虑截面尺寸时,级差尺寸可根据具体情况适当加以调整,不受上述规定限制。

2.梁内钢筋直径、根数、间距及布置有何构造规定?答:钢筋直径:为了保证钢筋骨架的刚度,梁内纵向受力钢筋的直径不能太细。

同时为了防止混凝土裂缝过大和钢筋在混凝土中可能滑动,也不宜采用很粗的钢筋。

梁内常用的纵向受力钢筋直径为10~28mm 。

在同一根构件中,受力钢筋直径最好相同。

为了选配钢筋方便和节约钢材起见,有时也可选用两种不同直径的钢筋,此时应使两种钢筋直径相差2mm 以上,以便施工时容易识别,但也不宜超过4~6mm ,以使截面受力均匀。

钢筋根数:梁中受力钢筋的根数太多时,会增加浇筑混凝土的难度,根数太少时又不足以选择弯起钢筋来满足斜截 面抗剪要求。

同时,如果钢筋根数少而直径粗,受力不均匀,加工也不方便。

在梁中,钢筋根数至少为两根,以形成钢筋骨架的需要,钢筋总数根据承载力计算确定。

第三章-钢筋混凝土受弯构件正截面承载力计算

第三章-钢筋混凝土受弯构件正截面承载力计算
截面抗裂验算是建立在第Ⅰa阶段的基础之上,构 件使用阶段的变形和裂缝宽度的验算是建立在第 Ⅱ阶段的基础之上,而截面的承载力计算则是建 立在第Ⅲa阶段的基础之上的。
§3.3 建筑工程中受弯构件正截面承载力计算方法
3.3.1 基本假定 建筑工程中在进行受弯构件正截面承载力计 算时,引人了如下几个基本假定; 1.截面应变保持平面; 2.不考虑混凝土的抗拉强度; 3.混凝土受压的应力一应变关系曲线按下列 规定取用(图3-9)。
εcu——正截面处于非均匀受压时的混凝土极限压应变 ,当计算的εcu值大于0.0033时,应取为0.0033;
fcu,k——混凝土立方体抗压强度标准值;
n——系数,当计算的n大于2.0时,应取为2.0。
n,ε0,εcu的取值见表3—1。
由表3-1可见,当混凝土的强度等级小于和等于C50时,
n,ε0和εcu均为定值。当混凝土的强度等级大于C50时,随 着混凝土强度等级的提高,ε0的值不断增大,而εcu值却逐渐
M
f y As (h0
x) 2
(3-9b)
式中M——荷载在该截面上产生的弯矩设计值; h0——截面的有效高度,按下式计算
h0=h-as
h为截面高度,as为受拉区边缘到受拉钢筋合力作用点的距离。
对于处于室内正常使用环境(一类环境)的梁和板,
当混凝土强度等级> C20,保护层最小厚度(指从构件 边缘至钢筋边缘的距离)不得小于25mm,板内钢筋的混凝 士保护层厚度不得小于15mm
当εc≤ ε0时 σc=fc[1-(1- εc/ ε 0)n]
当ε0≤ εc ≤ εcu时 σc=fc
(3-2) (3-3)
(3-4)
(3-5)
(3-6)
式中 σc——对应于混凝土应变εc时的混凝土压应力;

钢筋混凝土课件 第3章 正截面受弯

钢筋混凝土课件 第3章 正截面受弯

3.2 受弯构件正截面受力全过程及破坏特征 3.2.1 正截面的破坏特征 3. 超筋破坏 当梁的配筋率 比较大时,梁发生超筋破坏。 破坏特征: (1) 由于 比较大,受拉钢筋还没有屈服时,受压区混 凝土已经被压碎(其承载力较高)。 (2) 截面破坏时,没有明显预兆——脆性破坏。 (3) 梁发生超筋破坏时,混凝土被压碎,但钢筋强度未 充分利用,故在实际工程的设计中应予避免。 防止措施:主要是通过限制梁的最大配筋率 max或限 制梁的最大受压区高度。
3.2 受弯构件正截面受力全过程及破坏特征 3.2.1 适筋梁受力破坏的全过程 2. 适筋梁的受力全过程 跨中截面在弯矩作用下,中和轴以上受压,简称“受 压区”,中和轴以下受拉,简称“受拉区”。 试验结果表明:适筋梁从开始加载到破坏,其正截面 的受力全过程分成三个阶段: (1) 第Ⅰ阶段——整体工作阶段:从开始加载到拉区混 凝土即将开裂;受力特 点为:压区应力由混凝 M M 土承担,拉区因混凝土 A A <f =f ( = ) 未开裂,由钢筋和混凝 应力分布 应变分布 应力分布(阶段末) 第一阶段跨中截面应变及应力分布 土共同承担拉力。
分布钢筋 受力钢筋
3.2 受弯构件正截面受力全过程及破坏特征 3.2.1 适筋梁受力破坏的全过程 1. 试验装置 ⑴ 反力支撑系统;
P
外加荷载
数据采 集系统
荷载分配梁
h0 h
⑵ 加载系统;
⑶ 量测系统; ⑷ 数据处理系统 。
试验梁
应变计
位移计
b
L/3 L L/3
As
As bh0
根据适筋梁的荷载试验,可测出梁从开始加载到破 坏整个受力过程中各测点的应变和梁的挠度变形,然后 根据各测点的应变和跨中变形,分析跨中截面的应力分 布规律。

03--水工钢筋砼--钢筋混凝土受弯构件正截面承载力计算(1-7) 2012

03--水工钢筋砼--钢筋混凝土受弯构件正截面承载力计算(1-7) 2012

3.1 受弯构件的截面形式和构造
五.板内钢筋直径和间距
(一)受力筋 1、直径 ➢一般板:6~12mm ➢水工厚板:12mm~25mm~36mm~40mm ➢同一板受力筋可有两种直径,但差2mm以上
h0
分布筋(f6@300)
≥ 70
C≥Cmin
受力筋
3.1 受弯构件的截面形式和构造
五.板内钢筋直径和间距
h
1、常用梁宽:
为统一模板尺寸、便于施工,通常采用 梁宽度b=120、150、180、200、220、 b
250mm,250mm以上者以50mm为模
数递增。
2、常用梁高:
h
梁 高 度 h=250 、 300 、 350 、
400 、 …800mm , 800mm 以 上 者 以
b
100mm为模数递增。
梁的试验
b
As
h h0
a
3.2 受弯构件正截面的试验研究
一、梁的试验和应力—应变阶段
(一)梁的试验 3、试验过程: ➢开裂前,截面为平面 ➢开裂后不再平面但接近平面,认为符合平截面假定 ➢荷载加大,中和轴上移 ➢整个过程分3阶段
3.2 受弯构件正截面的试验研究
一、梁的试验和应力应变阶段
(二)应力应变3阶段 1、第I阶段--未裂阶段: ➢荷载很小,应力应变之间线性; ➢ 荷载↑,砼拉应力达到ft,拉区 呈塑性变形;压区应力图接近三 角形; ➢ 砼达到极限拉应变(εt=εtu),截面 即将开裂(Ⅰ状态),弯矩为开裂弯 矩Mcr; ➢ Ⅰ状态是抗裂计算依据
二、截面尺寸
(二)板厚(Slab Thickness) 水工建筑物的板厚度变化范围很大,厚的可达几米,
薄的可为100mm。 板厚度模数为10mm,250mm以上板厚模数可为

建筑结构 第3章

建筑结构  第3章

图3.5 弯起钢筋的布置
⑤纵向构造钢筋及拉筋
当梁的截面高度较大时,为了防止在梁的侧面
产生垂直于梁轴线的收缩裂缝,同时也为了增强钢
筋骨架的刚度,增强梁的抗扭作用,当梁的腹板高 度hw≥450mm时,应在梁的两个侧面沿高度配置纵 向构造钢筋,并用拉筋固定,如图3.8。 每侧纵向构造钢筋(不包括梁的受力钢筋和架
h min . h0
min
ft max 0.45 , 0.2% fy
(2)不超筋: b 防止发生超破坏筋
截面设计类
②超筋梁
纵向受力钢筋配筋率大于最大配筋率的梁称 为超筋梁。这种梁由于纵向钢筋配置过多,受压 区混凝土在钢筋屈服前即达到极限压应变被压碎 而破坏。破坏时钢筋的应力还未达到屈服强度, 因而裂缝宽度均较小,且形不成一根开展宽度较 大的主裂缝(图3.14(b)),梁的挠度也较小。 这种单纯因混凝土被压碎而引起的破坏,发生得 非常突然,没有明显的预兆,属于脆性破坏。实 际工程中不应采用超筋梁。
图3.1 单跨静定梁的计算简图
(a)悬臂梁;(b)简支梁;(c)、(d)外伸梁
第一节 构造要求 1.1 梁的构造要求
1.1.1 截面形式及尺寸 梁的截面形式主要有矩形、T形、倒T形、L 形、I形、十字形、花篮形等,如图3.2所示。 为了方便施工,梁的截面尺寸通常沿梁全长保持 不变。在确定截面尺寸时,要满足下述构造要求。 ①对于一般荷载作用下的梁,当梁的高度不小于 表3.1规定的最小截面高度时,梁的挠度要求一 般 能得到满足,可不进行挠度验算。
图3.6 箍筋的布置
梁内箍筋宜采用HPB235、HRB335、HRB400级
钢筋。
箍筋的形式可分为开口式和封闭式两种,如图

3第三章(14):钢筋混凝土受弯构件正截面承载力计算3.6

3第三章(14):钢筋混凝土受弯构件正截面承载力计算3.6
120mm,150mm ( 180mm), 200mm (220mm), 250mm,300mm,350mm,…,300mm 以上每级 级差为 50mm。
混凝土结构设计原理
第 3章
板的截面尺寸确定
板的宽度一般较大,计算时取单位宽度(b=1000mm)进行计算;
厚度应满足①单跨简支板的最小厚度不小于l0/35; ②多跨连续板的最小厚度不小于l0 /40 ; ③悬臂板的最小厚度(指的是悬臂板的根部 厚度)不小于l0 /12。同时 ,应满足表3-3的规定,并以10mm为模数。
混凝土结构设计原理
第4章
c
d 8 ~ 12mm
板: ≤ C20时,c=20mm ≥ C25时,c=15mm
as =c+d/2 as=20mm。 h0=h-20
h0 h
梁正截面的三种破坏形态
(a)少筋梁;(ρ<ρmin)
承载力很小,一裂即断,没 有预兆,脆性,应避免。
(b)适筋梁;(ρmin≤ρ≤ρb )
混凝土结构设计原理
3.3.2计算简图
第3章
x=β1x0
C ——受压区合力;T ——受拉区合力
等效:指两个图形不但压应力合力的大小相等,而且 合力的作用位置完全相同。
混凝土结构设计原理
第 3章
X 0 α1ƒcbx=ƒyAs
(3-2)
Ms 0 M≤Mu=α1ƒcbx(h0-x/2) (3-3a)
但混凝土用量和模板费用增加,并影响使用净空高度;
● 反之,b、h(h0)越小,所需的As就越大,r 增大。
衡量截面尺寸是否合理的标准是:实际配筋率是否处 于常用配筋率范围内。
经济配筋率 梁:(0.6~1.5)% 板:(0.4~0.8)%

第三章-钢筋混凝土受弯构件正截面承载力计算 (1)

第三章-钢筋混凝土受弯构件正截面承载力计算 (1)
❖ 荷载↑,钢筋应力先达到屈
服强度fy;
❖ 压区砼边缘应变随后达到极
限压应变ecu,砼发生纵向水
平裂缝压碎(Ⅲ状态),弯
矩为极限弯矩Mu。
❖ 阶段Ⅲ是正截面承载力计算
依据。
适筋梁正截面受弯三个受力阶段的主要特点
二.正截面破坏特征
钢筋混凝土构件的计算理论是建立在试验基础上的。 大量试验结果表明,受弯构件正截面的破坏特征取决于配筋 率、混凝土的强度等级、截面形式等因素。但以配筋率对构 建破坏特征的影响最为明显,在同截面、同跨度和同样材料 的梁,配筋率不同,其破坏形态也将发生本质的变化。
于最大骨料粒径的1.5倍。
四.梁内钢筋直径和间距
❖纵向受力钢筋尽可能排成一排,当根数较多时,也
可排成两排,但因钢筋重心向上移,内力臂有所减小。 在受力钢筋多于两排的特殊情况,第三排及以上各排 的钢筋水平方向的间距应比下面两排的间距增大一倍。 钢筋排成两排或两排以上时,应避免上下排钢筋互相 错位,否则将使混凝土浇筑困难。
内力特点:截面上通常有弯矩和剪力,轴力可以忽略不计。
常用截面式:
(a)
(b)
(c)
(d)
(e)
(f )
(g)
建筑工程受弯构件常用截面
(a)
(b)
(d)
(e)
(g)
(c) (f)
(h)
桥涵工程受弯构件常用截面
第三章 钢筋砼受弯构件正截面承载力计算
受弯构件的两种破坏形态:
由弯矩引起的破坏,破坏截面垂直于梁纵轴线,称 为正截面破坏,必须通过计算配置足够数量的纵向 钢筋来确保正截面的受弯承载力。
间距不能太稀,最大间距可取: 板厚h≤200mm时:250mm h>1500mm时:0.2h及400mm 200mm<h≤1500mm时:300mm

第三章受弯构件正截面承载力计算(精)

第三章受弯构件正截面承载力计算(精)

第三章受弯构件正截⾯承载⼒计算(精)第三章钢筋混凝⼟受弯构件正截⾯承载⼒计算⼀、填空题:1、对受弯构件,必须进⾏抗弯、抗剪验算。

2、简⽀梁中的钢筋主要有纵向受⼒筋、箍筋、弯起钢筋、架⽴筋四种。

3、钢筋混凝⼟保护层的厚度与环境类别、混凝⼟强度有关。

4、受弯构件正截⾯计算假定的受压混凝⼟压应⼒分布图形中,=0ε 0.002 、=cu ε 0.0033 。

5、梁截⾯设计时,采⽤C20混凝⼟,其截⾯的有效⾼度0h :⼀排钢筋时、两排钢筋时。

6、梁截⾯设计时,采⽤C25混凝⼟,其截⾯的有效⾼度0h :⼀排钢筋时、两排钢筋时。

7、单筋梁是指的梁。

8、双筋梁是指的梁。

9、梁中下部钢筋的净距为 25mm ,上部钢筋的净距为 30mm 。

10、受弯构件min ρρ≥是为了防⽌,x a m .ρρ≤是为了防⽌。

11、第⼀种T 型截⾯的适⽤条件及第⼆种T 型截⾯的适⽤条件中,不必验算的条件分别为和。

12、受弯构件正截⾯破坏形态有、、三种。

13、板中分布筋的作⽤是、、。

14、双筋矩形截⾯的适⽤条件是、。

15、单筋矩形截⾯的适⽤条件是、。

16、双筋梁截⾯设计时,当sA '和s A 均为未知,引进的第三个条件是。

17、当混凝⼟强度等级50C ≤时,HPB235,HRB335,HRB400钢筋的b ξ分别为 0.614 、 0.550 、 0.518 。

18、受弯构件梁的最⼩配筋率应取和较⼤者。

19、钢筋混凝⼟矩形截⾯梁截⾯受弯承载⼒复核时,混凝⼟相对受压区⾼度b ξξφ,说明。

⼆、判断题:1、界限相对受压区⾼度b ξ与混凝⼟强度等级⽆关。

(∨)2、界限相对受压区⾼度b ξ由钢筋的强度等级决定。

(∨)3、混凝⼟保护层的厚度是从受⼒纵筋外侧算起的。

(∨)4、在适筋梁中提⾼混凝⼟强度等级对提⾼受弯构件正截⾯承载⼒的作⽤很⼤。

( × )5、在适筋梁中增⼤梁的截⾯⾼度h 对提⾼受弯构件正截⾯承载⼒的作⽤很⼤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同济大学出版社
第三章钢筋混凝土受弯构件
计算公式的应用
截面设计 1、已知截面的弯矩设计值M、截面尺寸b×h、材 料强度fy、和a1、fc,要求确定受拉钢筋面积As和 受压钢筋面积。
双筋矩形截面的计算公式只有两个,现在有3个未知数As、和x,因 此必须补充一个方程式才能求解。为了节约钢材,充分发挥混凝土 的抗压强度,可以假定受压区高度等于界限受压区高度,即
第三章钢筋混凝土受弯构件
基本计算公式
基本计算公式
1 ffcc
M
x =b xn
x
f c bx C= fc1bx
N 0 M 0
x h0
1 fc bx f y As
x M u 1 f c bx( h0 ) 2
Ts=sfsA s s yA
同济大学出版社
第三章钢筋混凝土受弯构件
x (h0 as' ) M M u 1 f c bx(h0 ) f y As 2
同济大学出版社
第三章钢筋混凝土受弯构件
T形截面受弯构件承载力计算
一、概述
二、计算公式及适用条件 三、基本计算公式的应用
同济大学出版社
第三章钢筋混凝土受弯构件
概述
bf‘
概述
hf‘
x
h
h0
b
挖去受拉区混凝土,形成T形截 面,对受弯承载力没有影响。
④纵向受拉钢筋的应力取等于钢筋应变与其弹性模量的乘积, 但其绝对值不应大于其相应的强度设计值
同济大学出版社
第三章钢筋混凝土受弯构件
等效矩形应力图
等效矩形应力图
fc C
1 fc
M
xc
yc
z
M
x=b1 xc
C yc
z
Ts
M = C· z
x β 1xc
C f bx
Ts 1 c
同济大学出版社
第三章钢筋混凝土受弯构件
承载力校核
已知:截面尺寸b,h(h0)、截面配筋As,以及材料 强度设计值fy、fc,弯矩设计值M 求:截面的受弯承载力 Mu(>?M) 未知数:受压区高度x和受弯承载力Mu 基本公式:两个
同济大学出版社
第三章钢筋混凝土受弯构件
三、双筋矩形截面受弯构件承载力计算
一、概述
二、计算公式及适用条件 三、计算公式的应用
同济大学出版社
第三章钢筋混凝土受弯构件
第Ⅲ阶段——破坏阶段
当受压区边缘混凝土达到极限压应变εcu时,梁受 压区两侧及顶面出现纵向裂缝,混凝土被完全压 碎,截面发生破坏。这一特定工作阶段称为第Ⅲa 阶段第Ⅲa阶段为梁的承载能力极限状态,其状态 可作为受弯承载力计算的依据。
同济大学出版社
第三章钢筋混凝土受弯构件
况(单独梁、整浇肋形楼盖梁)等因素有
关。
同济大学出版社
第三章钢筋混凝土受弯构件
翼缘计算宽度
考 虑 情 况
bf
T 形截面 倒 L 形截面 独立梁 肋形梁(板)
肋形梁(板) 按计算跨度 l0 考虑 按梁(肋)净距 Sn 考虑 当 h f h0 0.1 当 0.1 h f h0 0.05 当 h f h0 0.05
基本公式的适用条件
1、为了防止将构件设计成少筋构件,要求构件的 配筋面积As不得小于按最小配筋率所确定的钢筋 面积As,min,即 As≥As,min 《规范》规定:对受弯构件,ρmin取0.2%和 0.45ft/fy中的较大值。 最小配筋率ρmin的数值是根据钢筋混凝土受弯构件的 破坏弯矩等于同样截面的素混凝土受弯构件的破 坏弯矩确定的
工程结构
第三章钢筋混凝土 受弯构件
同济大学出版社
第三章钢筋混凝土受弯构件
第一节 正截面承载力计算
一、概述 二、单筋矩形截面受弯构件承载力计算 三、双筋矩形截面受弯构件承载力计算 四、T形截面受弯构件承载力计算 五、构造要求
同济大学出版社
第三章钢筋混凝土受弯构件
一、概述
受弯构件是钢筋混凝土结构中应用最广泛的一种 构件。梁和板是典型的受弯构件。梁和板的区别 在于:梁的截面高度一般大于其宽度,而板的截 面高度则远小于其宽度。梁的截面形式一般有矩 形、T形和I形;板的截面形式有矩形、多孔形和 槽形等仅在受弯构件受拉区配置纵向受力钢筋的构 件称为单筋受弯构件,同时也在受压区配置纵向 受力钢筋的构件称为双筋受弯构件
同济大学出版社
第三章钢筋混凝土受弯构件
二、计算公式的应用
情况2 已知:截面尺寸b,h(h0),材料强度fy、 fy’、 fc , 弯矩设计值M,受压钢筋截面面积 As’ 求:求所需的受拉钢筋截面面积 As 基本公式:2个
同济大学出版社
第三章钢筋混凝土受弯构件
二、计算公式的应用
二、计算公式的应用
1 f cbx f y As f y As
hf
bf
节省混凝土,减轻自重。
受拉钢筋较多,可将截面底部适当增大,形成工形截面。工 形截面的受弯承载力的计算与T形截面相同。
同济大学出版社
第三章钢筋混凝土受弯构件
受压翼缘越大,对截面受弯越有利
(x减小,内力臂增大) 但试验和理论分析均表明,整个受压翼缘 混凝土的压应力增长并不是同步的。 计算上为简化采有效翼缘宽度bf ’, 即 认为在bf ’范围内压应力为均匀分布, bf ’范围以外部分的翼缘则不考虑。 它 与翼缘厚度h’f 、梁的跨度l0、受力情
bf’ hf’
1 fc
x
h
h0
M
b
x
C=1 fc Ac’
? Ac’
hf bf
Ts= fyAs
同济大学出版社
第三章钢筋混凝土受弯构件
基本公式
第一类T形截面
界限情况
第二类T形截面
x hf
x hf
1 f cbf hf f y As
M f 1 f cbf hf (h0 hf 2 )
同济大学出版社
第三章钢筋混凝土受弯构件
二、单筋矩形截面受弯构件承载力计算
1、基本假定 2、计算简图 3、基本计算公式 4、基本公式的适用条件 5、基本公式的应用
同济大学出版社
第三章钢筋混凝土受弯构件
基本假定
根据《规范》规定,采用下述4个基本假定: ①截面应变保持平面。 ②不考虑混凝土的抗拉强度。 ③混凝土受压的应力与应变曲线采用曲线加直线段。 当εc≤ ε0时, 当ε0 < εc ≤ εcu时,σc=fc
x hf
1 f c bf hf f y As
M M f
1 f c bf hf f y As
M M f
同济大学出版社
第三章钢筋混凝土受弯构件
第一类T形截面
计算公式与宽度等于bf ’的矩形截面相同
1 f c bf x f y As
x M M u 1 f c b f x(h0 ) 2
同济大学出版社
第三章钢筋混凝土受弯构件
截面设计步骤
1、令Mu=M,即受弯构件能够承担的弯矩刚好等于 外荷载产生的弯矩; 2、画单筋矩形截面正截面受弯承载力计算简图; 3、列两个基本平衡方程; 4、求受压区高度x、钢筋数量As; 5、根据As实际配置受拉钢筋-构造要求; 6、验算两个适用条件;
同济大学出版社
第二类T形截面
同济大学出版社
第三章钢筋混凝土受弯构件
一、计算公式及适用条件
一、计算公式及适用条件
f y As 1 fcbx f As
' y
x M u 1 f c bx (h0 ) f y' As' (h0 as' ) 2
同济大学出版社
第三章钢筋混凝土受弯构件
计算公式及适用条件
适用条件: (1)x≤ξbh0 (2) x≥2as 当不满足 上式的条件时,受压钢筋的应力达不到, 这时可近似地取x≥2as ,对受压钢筋合力作用点 取矩,得 M≤Mu = fyAs(h0-as’)
同济大学出版社
第三章钢筋混凝土受弯构件
一、概述
对于单筋梁,梁中通常配有纵向受力钢 筋、架立筋和箍筋,有时还配有弯起钢筋 对于板,通常配有受力钢筋和分布钢筋。 受力钢筋沿板的受力方向配置,分布钢筋 则与受力钢筋相垂直,放置在受力钢筋的 内侧
同济大学出版社
第三章钢筋混凝土受弯构件
适筋受弯构件正截面工作 试验
第三章钢筋混凝土受弯构件
第Ⅰ阶段——截面开裂前阶段
当开始加载不久,截面内产生的弯矩很小,这时梁的弯矩 挠度关系、截面应力应变关系、弯矩钢筋应力关系均成直 线变化。由于应变很小,混凝土基本上处于弹性工作阶段, 应力与应变成正比,受压区和受拉区混凝土应力分布图形 为三角形由于混凝土应力应变曲线受拉时的弹性范围比受 压时的小得多,因此随着荷载的增大,受拉区混凝土首先 出现塑性变形,受拉区应力图形呈曲线分布,而受压区应 力图形仍为直线。当荷载增大到某一数值时,受拉边缘的 混凝土达到其实际的抗拉强度ft和抗拉极限应变εtu,截面 处于将裂未裂的临界状态这种工作阶段称为第Ⅰa阶段, 相应的截面弯矩称为抗裂弯矩Mcr . Ⅰa阶段所表示的截面 应力状态,可作为受弯构件抗裂验算的依据。
受弯构件正截面的破坏形式
(1)适筋破坏 这种破坏的特点是受拉区纵向受力钢筋首先屈服,然后受压区混凝 土被压碎。梁完成破坏之前,受拉区纵向受力钢筋要经历较大的塑 性变形,沿梁跨产生较多的垂直裂缝,裂缝不断开展和延伸,挠度 也不断增大,所以能给人以明显的破坏预兆 (2)超筋破坏 其特点是破坏时受压区混凝土被压碎而受拉区纵向受力钢筋没有达 到屈服。梁破坏时由于纵向受拉钢筋尚处于弹性阶段,所以梁受拉 区裂缝宽度小,形不成裂缝,破坏没有明显预兆,呈脆性性质 (3)少筋破坏 其特点是一裂即坏。梁受拉区混凝土一开裂,裂缝截面原来由混凝 土承担的拉力转由钢筋承担.破坏时钢筋和混凝土的强度虽然得到了 充分利用,但破坏前无明显预兆,呈脆性性质
相关文档
最新文档