新技术讲座体会-大数据
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新技术讲座体会
大数据时代微创新对于企业发展的重要性
事实上从2009年开始,大数据这个概念就是街头巷尾热议的时尚名词,2013年这一概念依然是炙手可热的话题,有关大数据的信息更是不胜枚举。从物联网到云计算再到现今的大数据,互联网时代形成的新的商业模式、经济形态等使人们的生活方式发生了变化,也给企业的发展带来了巨大的挑战。
所谓的“大数据”有两个方面的内涵——海量和非结构化,其特性被归纳为4个V,即Volume,Variety,Value,Velocity,分别对应:数据体量巨大;数据类型繁多;数据本身有潜在的价值,但价值比较分散;数据高速产生,需高速处理。大数据意味着包括交易和交互数据集在内的所有数据集,其规模或复杂程度超出了常用技术按照合理的成本和时限捕捉、管理及处理这些数据集的能力。
简言之,大数据就是将碎片化的海量数据在一定的时间内完成筛选、分析,并整理成为有用的资讯,帮助用户完成决策。借助大数据企业的决策者可以迅速感知市场需求变化,从而促使他们作出对企业更有利的决策,使得这些企业拥有更强的创新力和竞争力。
后工业社会时代,随着新兴技术的发展与互联网底层技术的革新,数据正在呈指数级增长,所有数据的产生形式,都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。
不论是传统的石油行业还是传统银行业亦或是零售业,都意识到数据的重要性。传统的石油巨头们在寻求信息化的转型,很多巨头每年在信息化建设中投入的比例往往占到公司盈利比例的1%-3%不等。据媒体报道,埃克森美孚曾在此前一次全球性招标中,一次性投入10亿美元来采购信息化服务。传统的商业银行也努力和互联网“合作共赢”,并进行模式创新,如推出POS网络商户贷款业务。民生银行正致力筹建电子商务银行。全球最大零售商沃尔玛也在其社交基因组计划中整合了用户在社交网络中的关系数据,用以更精准地推测消费者的偏好。
而小企业在大数据时代同样有机会。正如电子科技大学互联网科学中心主任周涛此前接受记者采访时所说的,大数据具备了工业革命最重要的因素,新能源是计算,新材料是数据,更聪明的头脑是先进的工业技术。要用聪明的头脑从数据中分析出更大的价值。
面对大数据,小企业要找到提供差异化服务的点,收集大量的数据信息,从数据中找到新的价值并衍生出其他营利方式。例如,一家专门提供包车和租车服务商旅运输公司,正常情况下是竞争不过传统出租车的,但如果通过获取在线叫车服务的乘客、司机的双向数据,如此可以针对不同客户的需求提供个性化的服务以此来实现超越。
未来10年是大数据时代
从全球范围来看,很多人都把2012年看做是大数据时代的元年。在这一年里,很多行业在大数据方面的管理、规划和应用已经觉醒。电商、金融、电信等行业数据有着长期的数据积累。我认为做好大数据业务驱动是关键,要具备以下几个条件:第一、数据的管理,尤其是非结构化大数据的管理;第二,大数据的加工和被消费;第三,高效、面向业务的数据挖掘算法。
事实上,很多互联网公司,例如亚马逊、Google、腾讯,更愿意将自己定位为数据企业。因为信息时代,数据成为经营决策的强有力依据,给企业带来了发展和引领行业的机遇。银行也同样拥有丰富的数据矿藏,不仅存储处理了大量结构化的账务数据,而且随着银行渠道快速渗透到社交网络、移动端等媒介,海量的非结构化数据也在等待被收集和分析。未来的金融业将更多地受到科技创新力的驱动,也越来越倾向于零售营销:对于金融业来说,大数据意味着巨大的商机,可强化客户体验,提高客户忠诚度。形象地说,数据的收集能力加上数据的分析能力等于企业智商,这关乎商业决策的速度和准确性,关乎企业的生存和发展。
大数据技术的发展带来企业经营决策模式的转变,驱动着行业变革,衍生出新的商机和发展契机。驾驭大数据的能力已被证实为领军企业的核心竞争力,这种能力能够帮助企业打破数据边界,绘制企业运营全景视图,做出最优的商业决策和发展战略。金融行业在大数据浪潮中,要以大数据平台建设为基础,夯实大数据的收集、存储、处理能力;重点推进大数据人才的梯队建设,打造专业、高效、灵活的大数据分析团队;不断提升企业智商,挖掘海量数据的商业价值,从而在数据新浪潮的变革中拔得头筹,赢得先机。事实上,如何把大数据带来的大生意抓住,是金融行业不能停止思考的问题。
毫无疑问,未来10年是大数据的10年。
大数据时代给企业带来挑战,数据驱动业务是关键
当数以亿计的数据可以在虚拟的空间中自由穿梭时,当各种数据的获取变得瞬间即达时,大数据对政府、对企业、乃至对个人,都产生了深远的影响。对于大多数企业来说,大数据是既是机遇也是挑战。一方面,“得数据者得天下”,通过对大量的数据进行科学的分类整理以及分析,能够为企业的外部营销、内部运营和领导层决策等提供强大的数据支撑,不断提升企业运营效率,提升企业管理水平。可以说,利用互联网与物联网等带来的海量数据,通过挖掘、分析与业务应用,企业可以在激烈的市场竞争中赢得优势。另外一个方面,海量的数据也给企业进行数据挖掘、分析带来巨大的挑战。如何从纷繁复杂的数据中挖掘出有利于企业发展的信息,并利用好这些信息指导企业运营,对于一个企业来说显得至关重要。“用数据说话”,如何让数据产生真正的价值成为了摆在企业管理者面前不得不跨越的鸿沟。
选用一体化及端到端业务系统,应对数据分析难的问题
“大数据”话题的日趋白热化以及对企业管理带来的深远影响,让许多企业管理者更加关注数据带来的业务价值,纷纷想要通过数据分析工具来挖掘数据价值,从而更好地指导企业的发展。然而,在数据挖掘、分析的过程中,一些弊端渐渐流露出来,海量的数据分析起来要耗费非常大的精力,还常常出现错误,得不到想要的分析结果。
先进BI技术+一体化,数据分析又快又准
BI(商业智能)系统是CIO十分欢迎的系统,因为它可以让企业CEO亲自体验到信息化的价值所在,移动BI的逐渐普及也加快了CEO们应用商业智能系统的速度。众所周知,BI的源头是数据,BI的对象也是数据。根据IDC的预测,从2009年到2020年,数据总量将增长44倍,达到35ZB。其中,80%的数据都是非结构化数据。毫无疑问,随着大数据时代的来临,海量数据给BI带来了前所未有的压力。如何有效地利用大数据,以及其中所沉淀的信息,成为未来的一大竞争焦点。
嵌入先进BI技术,数据挖掘一步到位。面对瞬息万变的市场环境,企业必须对海量的数据进行快速的分析,以最快的速度为企业管理者提供有价值的信息,这对数据分析速度有严格的要求。商业智能技术为企业提供快捷数据仓库,与传统数据仓库包含数据库系统开发、数据清理、数据集成及数据挖掘的整个过程不同,该数据仓库简化数据挖掘的步骤,数据挖掘一步到位,不仅最小化数据集成的需要,还提供行业特定的预先集成解决方案,提高数据分析效率,帮助企业更好地应对大数据“大”的挑战。
数据集成是重中之重
大数据时代已经来临,随着IT应用的发展,企业积累的数据越来越多。而随着社交网络、移动计算和传感器等新渠道和新技术的不断涌现,生产了大量的新型数据,各种各样的数据散落在不同的系统中。各数据之间有哪些关联性?哪个数据是可信的?如何从海量的数据中挖掘出有价值的、易用的客户信息?要回答这些问题,企业需要一个单一、完整、可信的客户数据视图。而创建一个单一、完整、可信的客户数据视图,数据集成是关键。没有集成的数据,其商业价值为零。
大数据时代带来的海量数据需要先进的信息化手段进行分析,这让企业的IT 管理面临更加严峻的局势。基于一体化及端到端管理,借助先进的商业智能技术,提升数据分析的准确率及速度,让大数据分析变得又快又准,且易用,帮助企业更好地实现商业价值。数据集成让组织机构能够将传统的交易数据与全新的交互数据组合起来,从而获得在其他情况下无法达成的洞察力和价值。比如,可以通过社交媒体了解客户的喜恶,以此充实客户资料来提高目标行销效率。
企业搜索提升决策质量