文献综述-激光加工

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于激光加工技术的文献综述*

摘要:激光是20世纪的重大发明之一,因其具有单色性、相干性和平行性,特别适用于材料加工,激光加工是激光应用最有发展前途的领域。本文主要论述了激光加工技术的发展历史、应用原理、关键技术、发展趋势及前景。

关键词:激光加工,历史,原理,技术,前景

激光是最重大的发明之一,具有巨大的技术潜力。它具有强度高、方向性好、单色性好的特点,因此特别适合进行材料加工。[1]激光先进制造技术是最为广泛和活跃的激光应用领域之一,具有柔性、高效、高质量等综合优势,可应用于从计算机芯片到大型飞机、航空母舰等几乎所有的加工制造领域,在减量化、轻量化、再制造、节能、环保等方面发挥越来越重要作用。[2]

1.发展历史

1960年,梅曼(T·Maiman)发明了第一台红宝石激光器,标志着量子光学由理论发展到技术工程。1964年,帕特尔(C.Patel)发明了第一台CO2激光器;1965年,贝尔实验室发明了第一台YAG激光器。1968年后高功率CO2激光器发展迅速,1971年出现了第一台商用

1 kWCO2激光器。

激光加工用于工业生产,首先要有可靠稳定的、光束能量可调的、光束模式合适的激光器。70年代初,Y AG激光器开始作为微型件切割、焊接的重要光源,并逐步在生产中得到应用,如电子工业中的各种焊接、切割、退火及钟表行业中的打孔等。70年代后期,电子、钟表工业中出现了正规的激光加工工艺。尤其是集成电路的发展,迫切需要采用激光加工工艺提高其加工效率与质量,也助推了新的激光加工工艺的产生、发展和应用。

80年代,激光器质量又有了提高,其输出功率大幅提高:CO2激光器由几千瓦发展到上万瓦,Y AG激光器由几百瓦发展到数千瓦;这些激光器均实现了连续运行和脉冲运行的工作方式;激光的模式从多模输出发展到基模或接近基模输出;光束发散角也达到几个毫弧度。这样就更进一步推动了激光加工技术的普及与应用。

近年来,光纤激光器在技术上取得了巨大的发展,与传统的固体激光器相比较,具有很大的输出功率,光束质量好,转换效率高,柔性传输良好,使得光纤激光器在激光材料加工中具有很大吸引力。飞秒激光器的发展则使超微细(亚微米至纳米级)加工得以实现,并且可在透明材料内部进行加工。

激光加工是继机械加工、力加工、火焰加工和电加工之后一种崭新的加工技术,是利用激光束与物质相互作用的特性,对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔及微加工的一门综合性技术。从最小结构的计算机芯片到超大型飞机和舰船,激光加工都将是不可或缺的重要手段,加工制造业是激光应用最基本、最深入的领域。[3]

2.应用原理

由于激光的发散角小和单色性好,理论上可以聚焦到尺寸与光的波长相近的小斑点上,再加上其强度高,因此其加工的功率密度可达到108~1010W/cm2,温度可达1 万摄氏度以上。在这样的高温下,任何材料都将瞬时急剧熔化和汽化,并爆炸性地高速喷射出来,同时产生方向性很强的冲击。因此,激光加工是工件在光热效应下产生高温熔融和受冲击波抛出的综合过程。

激光加工的基本设备包括激光器、电源、光学系统及机械系统等四大部分。目前常用的激光器按激活介质的种类可以分为固体激光器和气体激光器,如图1、图2 所示。

激光加工过程大体上可分为如下几个阶段:

1)将激光束照射工件(在照射过程中,光的辐射能部分被反射,部分被吸收,部分因热传导而损失);

2)工件材料吸收光能;

3)光能转变成热能使工件材料无损加热(激光射到工件材料的深度很小,所以在焦点的中央,工件的表面温度迅速升高);

4)工件材料发生熔化、蒸发、汽化并溅出,从而从工件上去除或破坏掉;

5)作用结束以及加工区冷凝。[4]

3.主要技术

3.1激光切割技术

一般激光切割时,切割头中安装可以将激光聚焦到一个很小光斑的透镜。激光切割是利用聚焦的高功率密度激光束照射切割材料,在超过激光的阈值功率密度的前提下,激光束大部分能被材料吸收,由此引起激光照射点的温度急剧上升,达到一定温度后被切材料开始汽化或者燃烧。同时,由切割头喷出一股与光束同轴的气流,从切口底部吹出汽化或燃烧的材料,并形成孔洞继而穿透。随着激光束与被切材料的相对运动,最终形成切缝,从而使激光穿透变为激光切割。

影响激光切割的因素有很多,主要包括3 个方面:切割材料特性、激光光学特性、加工工艺参数。具体来说,有以下几个因素: 激光功率、切割速度、辅助气体种类流量及压力、离焦量和入射角等等。[5]

3.2激光焊接技术

激光焊接技术是把激光束经过聚焦后形成高能量密度的激光脉冲对材料进行微小区域内的局部加热,将材料熔化后形成特定熔池,从而达到焊接的目的。

目前,用于大功率激光焊接的激光器主要是CO2气体激光器和Nd:YAG固体激光器两种。CO2气体激光器输出的激光波长为10.6μm,它是以CO2混合气体作为激光活性介质,通过放电产生激励。Nd:YAG固体激光器输出的激光波长为1.06μm,它是以掺有钕(Nd)或钇(Yb)金属离子的YAG晶体作为激光活性介质,主要通过光泵浦来发射激光。同CO2激光器相比,Nd:YAG激光器主要优势是光束可以通过光纤进行传播,且其波长短,有利于材料表面的吸收,尤其对焊接铜合金和铝合金等材料更为优越。[6]

3.3激光打标技术

激光打标系统的工作原理是:通过打标软件或其他辅助软件在计算机中编辑好打标所需的图形、文字,并转换为打标软件所能识别的文件格式,再通过振镜系统伺服控制卡转换成扫描振镜所能识别的电信号。这些电信号按一定的频率分别传输到扫描振镜头和声光电源的输入端口。在一系列电信号的控制下,振镜在X,Y二维进行有序摆动,使激光输出点扫描出相应的图形和文字;与此同时声光电源在相应电信号的控制下使声光Q 开关产生所需的频率调制信号,从而将连续激光调制成一定频率的激光脉冲,最后将激光输出点扫描出的图形和文字刻蚀在工件上。

计算机对激光打标系统的控制是通过控制振镜系统来实现的。振镜系统是由伺服控制卡与摆动电机组成的高精度伺服控制系统,输入一个驱动信号,摆动电机就会按一定电压与角度的转换比例摆动一个角度。控制卡除输出两路振镜控制信号及一路激光控制脉冲信号外,还提供了脚踏开关接口。[7]

3.4激光快速成形技术

激光快速成形技术是20世纪末发展起来的一种材料制备新技术,以快速成形原理与激光熔覆制造思想为基础,通过结合计算机辅助设计、激光加工、凝固技术、数控技术、材料以及力学等学科先进技术,将激光快速成形技术获得的独特凝固组织通过逐层堆积并扩展到整个三维实体零件,从而使传统的材料成形多步制造工艺集成为一步制造,极大地提高了工件制造效率以及材料性能并节省了成本,被认为是制造领域的一次重大变革,代表先进制造技术和材料制备技术的最新发展方向,目前,已应用于金属、陶瓷、塑料以及各种复合材料的制备和零件修复中。

激光快速成形技术具有以下突出特点:利用“离散+堆积”的増材成形思想,通过同步送丝或激光熔覆数字化成形一步实现工件的精确成形;属近净成形制造技术;适用的材料种类不受限制;制造工艺与所生产零件的尺寸、复杂程度无关,能够快速生产传统制造工艺难

相关文档
最新文档