金属中的气体元素及分析

金属中的气体元素及分析
金属中的气体元素及分析

金属中的气体元素及分析

邢华宝徐汾兰

马钢股份有限公司钢研所马鞍山 243000

金属中气体元素原定义为氢、氧、氮三种填隙式相元素,我国自1953年开展金属中气体分析工作以来,已有46年历史。它们以溶液和剩余相夹杂物的形式处于固体的和熔融的金属系统中,在一定条件下,这些元素在金属中形成真正的气体杂质,由于这种原因,氢、氧、氮称为“金属中气体生成元素”即这些元素可以在由凝聚相转变成气相后用气体分析器来测定。在实验过程中,由于气态反应产物的排出而使平衡移动时,氢、氧、氮和碳在高温和试剂的作用下可以从金属中定量在析出到气相中。这些化合物-H2O2、N2、CO、CO2、CH4、NH3、H2O等可以用气体分析方法来测定。因此象形成SO2、H2S、SO3等类化合物的硫也属于气体生成元素。这样金属中气体元素分析广义上指-将在分析过程中能形成气体状态而分析的氢、氧、氮、碳、硫五元素。

73年以前除了化学法定氮的蒸馏仪,碳硫分析管式炉和气体容量法定碳仪及硫滴定吸收杯等玻璃器皿外,气体分析基本上无独立完整的商品仪器,金属中气体分析的仪器装置大部分是自行设计研制的,这些装置对金属材料的发展起到了很大的作用,独立的冶金气体分析技术交流会至今已召开了九届,碳硫分析技术交流至今已经召开了七届(97年二组合并)。通过广大气体分析工作者和有关仪器厂家的共同努力,使金属中气体的行为研究、分析试样的取制、标准物质和分析仪器的研制,进口仪器的应用研究、标准方法的起草等方面都取得了明显的进展。

在庆祝建国50周年之际,对金属中气体分析方面所取得的成就作一简略回顾。

1. 金属中气体元素的行为和对金属材质的影响

在与金属接触的气体中,无论是地球的大气,真空系统的残留气体,或惰性气体中,总是有氢、氧、氮、碳、硫。因此在地球上不可能得到完全不含“气体”元素的金属。随着科学技术的发展,我们可以通过广泛的科学研究进一步探讨和认识气体元素在金属中的行为,已弄清了过去所不知道的固体中气体杂质形成的来源。作为理想的金属晶格而言,氢、氧、氮、碳(硫除外,它不属于间隙相元素),在达到一定浓度值以前,将仅以间隙溶液形式存在。半径分别接近于0.46、0.7、0.71、0.77(A )的氢、氧、氮、碳的原子填充到金属晶格的结点中间并不置换金属原子,使晶格对称性稍有扭曲。除间隙固溶体外,气体在金属中还能以剩余相(凝聚相和气态相)形式,围绕位错堆聚的形式以及在内表面上的吸着形式存在。

在相同的晶体结构范围内氢、氧、氮、碳在金属中的最大溶解度随着原子序数的增加,按钛-锌,锆-镉,铪-汞的方向,从百分之几十降到千分之几(原子百分数单位),在某些情况下,已达到用目前可行的方法所能检测的范围以外。在超过气体元素溶解度极限的情况下(在一定的温度和分压下),剩余相的形式的析出过程就开始了。

在实际金属中,杂质气体元素由气相经表面层转入凝聚相可以分为吸附、分解、表面溶液的形成、扩散、溶解杂质气体元素在固溶体和结构缺陷间的分配,剩余相的成核和析出几个阶段。气体杂质元素的原子在间隙固溶体和位错附近的堆聚区之间可以达到平衡分配,在温度急剧改变的情况下,原先接近平衡的气体-金属系统变成不平衡,为吸着和解吸过程的发展提供条件。

由填隙元素在固溶体金属中形成的固溶体能够在一定的浓度范围内存在。当这种浓度范围扩大为纯金属组分时,该固溶体称为初级固溶体。室温下通常此相浓度界限不大,且随着温度的升高而增大。在给定的温度下,超过溶解度时则形成次级固溶体(氢化物、氮化物或氧化物相)。次级固溶体的晶体结构与初级的不同。例如:400?C 时,氮在铁中形成一种填隙式固溶体,浓度可达0.4个氮原子/100个铁原子。此时氮含量在初级固溶体范围,未超过极限溶解度,该相呈体心立方晶形存在,这正是在相应温度下,溶剂金属铁的结构。当加入更多的氮,超过极限溶解度则形成次级相,Fe 4N(r ,

);它含有24.1-25.8个氮原子/100个铁原子的氮。这种次级相是面心立方结构。当氮含量达到35.5个氮原子/100个铁原子时,形成密堆积六角形ξ相,因此可看出加入气体会改变金属原子的堆积形式。 在金属原子的密堆积点阵中,存在两种填隙位置,即坐标数为6的“八面体的”位置和坐标数为4的“四面体的”位置,气体元素占据哪种位置取决于与其体积相适应的最高坐标数。较大的原子往往会占有八面体位置,而较注的则占有四面体的点阵位置,即氢倾向于占据填隙式四面体位置,而较大的氧和氮原子倾向于占据密堆积金属晶格中八面体的位置。

气体在金属中的溶解度在相应温度和溶化温度下都出现突变。铁的α和δ相是体心立方结构,而γ相铁是面心立方结构,填隙元素在面心立方晶格中的溶解度较大。

气体元素能使钢材产生缩孔、气泡、疏松、点状偏析、裂纹等缺陷。缩孔是钢锭冷却收缩时,因无液体补充而在钢锭内部形成的孔洞。钢中气泡是由于钢锭凝固时,碳-氧反应生成的气泡来不及排除就被围在钢锭内部产生的。疏松是一种微小孔洞分布在钢材内部。点状偏析形成的原因是钢件中已凝固或已呈糊状的金属部份,存在气泡或收缩孔隙,这些位置随后为富含低熔点组元和杂质的溶液所填充,就造成了点状偏析,点状偏析严重的钢中气体元素含量往往较高。而裂纹的产生通常是由于钢液凝固过程中发生了夹杂质物的集聚和气体溶解度的降低,并且一般集中在晶粒边界,形成了薄弱环节,以后当热处理或压力加工时产生的应力超过强度时,这种地方容易开裂产生裂纹。钢中气体元素除了与其它各种因素综合作用产生许多缺陷外,其本身还会对钢材性能产生各自独有的影响。

1.1 钢中氢及其对钢材性能的影响

氢对钢造成很多严重缺陷,危害性极大。白点是氢造成的严重缺陷之一。五十年代美国曾发生几起发电机转子,汽轮机转子和叶轮脆性断裂的严重事故,据断口分析其原因之一就是存在白点。

1.1.1 氢在钢中的溶解度与存在形式

氢在冶炼过程中,由锈蚀含水的炉料混入钢中,也从潮湿的大气中吸入。在含氢的还原性气氛中加热钢材时或酸洗钢材时氢也可以被吸收而扩散进入钢材内部。

氢以原子或离子(质子)的形式溶解于钢中,在一定温度下,钢液中氢的浓度[H]与氢的分压P H的平方根成正比。即:

[H]=K √ P H2

当温度为1600 ?C时K为0.0027,氢在铁中的溶解度随着温度和压力的下降而降低。氢在固体铁中的溶解度与铁的晶体结构有关,发生相变时,溶解度急剧变化.如铁于1534?C 由液态结晶为固态时氢的溶解度显著下降;在1390?C由δ-Fe转变为γ-Fe时溶解度重又增加,而在910?C由γ-Fe转变为α-Fe时溶解度又显著下降。

氢有很高的扩散能力,这主要是其原子半径较小,在铁的固体晶格中容易自由地移动,在α-Fe和γ-Fe中的扩散系数都随着温度的升高而增大。此外氢的扩散系数还和铁的晶体有关,在所有温度下,氢在α-Fe中的扩散系数都超过它在γ-Fe中的数值。因此在对普通钢中氢的热抽取法分析时900?C加热温度即可保证氢的扩散释放完全。

氢在碱性平炉钢中含量约为3-8ppm,酸性平炉钢中约为3-6个ppm,碱性电炉钢中约4-11个ppm,酸性电炉钢中约为3.5-8个ppm,转炉钢中约为3-6个ppm。

1.1.2 氢对钢材性能的影响

由于氢对钢的危害性极大,因此必须尽量除去。白点是由氢引起的最常见缺陷。引起钢产生白点的极限含量一般在2-3ppm,引起钢产生氢脆的极限含量更低,约为0.5ppm。

白点也称发裂,在调质处理后的纵向断口上呈现园形或椭园形的银白色有光泽的粗晶状斑点,故叫白点。白点的存在会使钢材的机械性能大大降低,有人测定,没有白点的钢试样拉伸强度极限σb=799.7TN/mm2延伸率δ=16.9%,断面收缩率ψ=28.5%。而白点面积为60%时σb=245N/mm2 ,δ=1.8%,ψ=2.8%.可见其对钢材性能的危害性。

现在对白点形成的原因及防止已有了较完整的措施。氢脆是由于氢引起的一种脆性断裂,对含氢试样作静载荷下的持久试验,在低于屈服应力的静载荷持续作用下,经过一定时间的孕育期后,在钢的表面或接近表面处产生断裂源。在应力作用下裂纹开始传播长大,最后产生突然断裂.目前普遍认为这种断裂是钢在受载后,缺口尖端处不但有应力集中,而氢原子在应力作用下向这里扩散集中,聚集在位错周围,使之不能自由运动,于是在这里产生局部硬化。在外力的作用下这里的基体不能通过变形使应力松弛,导致产生裂纹而产生的。

1.2 钢中氧对钢材性能的影响

氧对于把铁冶炼成钢是不可缺少的。铁中的杂质元素碳、硅、锰、磷、硫等就是通过氧化来去除或使之降低到需要的程度。但是在冶炼结束时,钢液中如残留过多的氧,钢液凝固后会在钢锭内部产生大量的气泡和非金属夹杂物,影响钢材质量,因此钢液成份达到所炼钢种的要求后,又必须采取加入脱氧剂的方式来降低钢液中的氧含量,但最终总会有少量氧主要以氧化物夹杂的形态存在于钢中。

1.2.1 氧在钢铁中的溶解度来源及存在形式

在1523?C的铁液中氧的溶解度为0.16%,1600?C时约为0.23%.钢中的碳含量对氧的溶解度有很大影响,如在和一个大气压的氧平衡时,含0.2%碳的钢液只能溶解0.01%的氧,超出这一数量的氧将与碳或铁化合成CO或FeO,钢中如加入铝、硅、钛等元素,氧就与之结合形成氧化物析出。而使钢液中氧的溶解度进一步降低。一般沸腾钢中氧含量为0.03%-0.07%,用硅脱氧的钢为0.010%-0.020%,铝镇静的钢氧含量约为0.001%-0.005%,它们大部份以氧化物夹杂形式存在于钢中。

钢中氧化物夹杂按其来源分为在夹杂物和外来夹杂物两大类,内在氧化物夹杂是钢在液态及凝固过程中,由于氧与钢中元素发生化学反应生成后,当钢液凝固时,它们来不及上浮而留在钢中而产生的。外来夹杂物主要是由冶炼及浇注时混入钢中的钢渣,或者是炉衬、出钢槽、盛钢缶及浇注系统中耐火材料发生剥落而混入钢液后,当钢液凝固时未能浮出而留在钢中造成的。也有部份是由于脱过氧的钢液在出钢和浇注时与大气接触,致使钢液两次氧化而生成的夹杂物。

钢中常见的有MnO,Al2O3,TiO2,V2O3,ZrO2等氧化物夹杂,也有FeO2?MnO,FeO?Al2O3,FeO?V2O3等较复杂的氧化物夹杂和2FeO?SiO2,3Al2O3?SiO2,2MnO?SiO2等复杂的硅酸盐夹杂物。

1.2.2 氧对钢材性能的影响

在实际生产中,普通钢材只要性能合格,并不作夹杂物分析,而用于重要用途的钢材,常把非金属夹杂物列为钢材出厂的常规检验项目之一。氧化物夹杂也是这种检验的重要项目之一。这些夹杂中Al2O3、尖晶石类氧化物AO?B2O3(其中A为二价金属,B为三价金属)等形成没有塑性的脆性夹杂物。它们的外形和尺寸在热加工时不变化,因此它们对钢材的性能随着夹杂物的数量、大小、形状的不同会产生或大或小的影响。即会引起局部应力集中而成为裂纹的起源,降低冲击韧性和疲劳强度。例如0Cr18Ni9钢中当氧含量为0.005%时冲出韧性αK为370J/cm2。当氧含量增至0.012%时,冲击韧性αK降至225J/cm2。另外氧含量还会降低钢的抗拉、屈服、延伸率,表1例出了18CrNiWA钢在不同氧含量和夹杂含量时机械性能的改变。

由表1可知,降低氧含量和夹杂含量将会明显提高钢的机械性能。

氧化物夹杂还会引起钢组织的不均匀性,如带状组织等。导致钢材性能的方向性,主要是横向塑性和韧性低于纵向塑性和韧性。

另外机械零件在制造过程中均需经历一系列冷热加工工序,钢中存在大量的氧化物夹杂时,会使工艺性能变坏,甚至引起裂纹及其它缺陷,致使零件报废。如铸件中局部聚积大量的氧化物夹杂时,由于降低了钢的强度和塑性,使铸件在凝固时,因体积收缩的应力作用而形成裂纹,导致报废。

钢在冷变形时,当钢中夹杂物多时,也会产生裂纹及其它缺陷。某厂曾统计过六种合金钢制成的汽轮机叶轮的冷弯试验结果,在所进行的1377次冷弯试验中有154个试样表面发现不同程度的撕裂,其中94%是由于钢中夹杂物引起的。

1.3 钢中氮及其对钢材性能的影响

钢中氮主要来源于炉料和大气,它对钢性能的影响与氢和氧有些不同,氢、氧尤其是氢对钢材产生非常有害的影响。因此在冶炼过程中尽量设法去除。而氮作为杂质元素虽在一定条件下导致钢材的蓝脆、时效等现象,并且超过某一限度时易在钢中形成气泡、疏松等缺陷。但它对钢材性能还有有利的作用,已被认为是一种重要的合金元素,并用中间合金和渗氮的方法加入钢中,以获得所需的钢材性质。

1.3.1 氮在钢中的溶解度和存在形式

氮在正常情况下以双原子分子存在,而以原子形式溶解在铁中。并服从平方根定律,即一定温度下正比于气相中氮分压的平方根:[N]=K√ P N2

其中[N]为溶解在铁中的氮;P N2为气相中氮的压力。当温度为1600?C时,K=0.045氮在液体铁中的溶解度随着温度降低而降低,凝固时急剧降低,氮在γ铁中的溶解度比在α和δ铁中高。但由于γ-Fe存在的温度范围内有铁氮化合物析出,且其析出为放热反应。故在γ铁中氮的溶解度随着温度的升高反而降低。

另外氮在铁中的溶解度受碳、锰、铬、铝、钒、钛、锆等元素的影响会增加或降低,尤其是铬、铝、钛、锆等和氮有较强亲和力的元素,因它们与氮易形成极稳定的氮化物,在惰性气氛熔化法分析时,由于炉子功率小温度不够,氮化物难以完全分解而导致分析结果偏低。

钢中残留的氮含量取决于钢的成份和冶炼方法,一般平炉冶炼的碳素钢中氮含量约为0.001%-0.008%;酸性转炉钢约为0.014%-0.018%。如钢中含有铬、铝、钒、钛、锆等氧化物形成元素,则钢中残留氮含量还会增加,如含铬10%-30%的钢,其氮含量可达0.017%-0.07%。

1.3.2 氮对钢性能的影响

氮作为合金元素加入钢中,其主要作用为:a.固溶强化及时效强化;b.形成和稳定奥氏体组织;c.改善高铬和高铬镍钢的宏观组织,使之致密坚实,并提高其强度;d.用渗入法与钢表面层中的铬、铝等元素化合形成氮化物,增加钢表面层的硬度、强度、耐磨性和抗蚀性。

但是氮在一定条件下也会对钢带来不利影响,当钢中残留的氮含量较高时,会导致钢宏观组织疏松、甚至形成气泡。在热和冷加工时也会遇到困难。

氮与α铁形成间隙固溶体,随着温度的下降其溶解度也不断降低,当冷却较快时,α铁中氮来不及析出而处于过饱和状态,这样含氮的铁素体钢从高温快冷后回火或在室温中停留时间较长时,从过饱和的α固溶体中析出弥散分布的氮化物过渡相,将使钢产生时效脆性。此种时效脆性将伴随着强度和硬度的提高,使塑性和韧性显著降低。

氮还是导致钢产生蓝脆的主要原因。所谓蓝脆就是当温度在150-400?C左右时,钢的塑性、韧性显著下降,由于这一温度下钢表面呈现蓝色的氧化皮,固称为蓝脆。这是由于溶解在α铁中的氮在温度升高时迅速析出,造成了脆性。

另外氮与钢中的铬、铝、钒、钛、锆等合金形成的氮化物由于其具有很高的熔点和硬度,在热加工时不能变形,当其分布不均聚集在一起时将会对钢造成很大的危害。

1.4 钢中碳对钢材性能的影响

碳在金属中的最大溶解度,随着原子序数的增加,按Ti-Zn-Zr-Cd的方向从百分之几降到千分之几。碳在钢中的形式以碳化物(Fe3C)为主,固溶体为辅,是决定钢的强度的主要元素。钢中碳含量增加时,强度升高,塑性和韧性降低,为此需要在整个熔炼过程中控制其含量。当钢中有形成稳定碳化物时,铌、钛、钒、钼、钨等元素时,其屈服强度的提高更为显著。随着碳含量的增加钢的焊接性能显著下降,故在普通低合金钢中碳含量一般不超过0.22%。碳还增加钢的冷脆性和时效敏感性,降低钢的抗大气腐蚀能力。

1.5 钢中硫对钢材性能的影响

硫是由矿石、生铁、燃料进入钢中的,它在钢中的溶解度极小,它与铁形成硫化铁,硫化铁与铁能形成低熔点的共晶体,其熔点为985?C.当钢在1000-1200?C的温度下进行锻轧时,低熔点共晶体即熔化,使钢晶粒间的结合能力大为减弱,强度剧烈降低使钢极易产生裂纹或破裂。这种现象称为“热脆”。

高的含硫量除显著降低钢的疲劳强度和塑性外,还使钢的耐蚀性和焊接性能变坏。

硫还极易在钢中产生偏析,在钢锭中其偏析程度可达600%,所以硫在高级优质钢中含量不得超过0.025%;优质钢中为0.035%-0.040%;普通钢中为0.050%。

2. 钢中气体分析的取制样

由于钢中气体元素对钢材质量影响极大,快速准确地测定其含量,为冶炼工艺及时提供数据,以便控制其含量范围对提高产品质量是必须的。一个测试数据的准确性如何,首先取决于试样是否具有代表性和制样方法是否合理。尤其是钢中氢的测定,即使是同一炉取样,在同一台仪器上分析,其结果由于取制样的问题会出现较大差异。为此70年代未和80年代初全国组织了二次攻关,并于84年要重庆特钢钢研所召开了现场技术表演会。国外的冶金分析工作者也进行了大量的研究以后,现定氢取样方法可分为快速淬火法和封闭模法二大类。

2.1 快速淬火法

分炉外取样和炉内取样法两种,均采用快速水淬急冷方式,将液态金属迅速凝固通过相变点至常温,使绝大部份氢来不及扩散析出,被固溶在试样中。

2.1.1 炉外取样法

也叫二次取样法,包括样模法、洗耳球-石英管法、取样枪-石英管法、针筒-石英管法、真空套管法。

2.1.1.1 样模法

我国于50年代初开始使用,当时试样直径为20mm,后经多次试验改进,1980年后定为直径6mm,样模制作材料有铸钢、铸铁、铜三种,其中铜的最好,是国际标准委员会推荐方法。取样时首先将内壁用砂纸去锈,并将模预热至300?C左右,用干净样勺从熔池内取出钢水,扒开钢渣(未脱氧的钢液插入铝条,其量视各冶炼期活度氧而定)注入样模。浇注完后立即打开样模将试样置入≤20?C的冷水中搅动急冷至常温后取出,擦干后放入液氮或干冰中冷藏待加工分析。

2.1.1.2 吸耳球石英管法

20世纪60年代后期开始使用,当时石英管内径为14mm,后来衍变为内径6mm.它是将吸耳球与石英管用一根金属管连接起来(连接处不能漏气),取样时挤扁吸耳球将石英管未端斜插入同样模法一样取得的钢水样勺内,慢慢放松吸耳球,使钢水吸入石英管内至你所需要的长度后,停止放松吸耳球并保持现状,随即将石英管置入冷水中打碎,使试样直接接触冷水(同样模法)急冷。

2.1.1.3 针筒法和取样枪法

同吸耳球石英管法相似,均是将石英管置于针筒或取样枪前端,插入同样模法一样取得的钢水样勺中,利用针筒内或取样枪内活塞抽动形成的负压,使钢水吸入法石英管内后再置入冷水中(同吸耳球-石英管法)急冷。

2.1.1.4 真空吸管法

是用GG17硬质玻璃管(内径6mm)在煤气-氧气火焰上封一头,封口加厚,并将侧面吹制成一薄壁泡,再用真空汞将管内真空度抽成0.001Mpa后封口,取样时用一夹子夹往取样管,将有薄壁泡端斜插入同样模法一样取得的钢水样勺内,待薄壁泡熔化,钢水迅速进入取样管后立即将取样管移入冷水中(同样模法)急冷。

2.1.1.5 真空套管法

它由一根内径7mm玻璃管和一根内外径分别为5.6mm和6.5mm的奥氏体不锈钢管构成,制作时先将钢管用真空热抽取法在850?C脱气2小时,使残留氢小于0.1ppm,然后插入一头已制成薄壁泡的玻璃管内,再抽真空到0.001Mpa封口,取样时同真空吸管法。此方法取样时钢水凝固过程中析出的氢被不锈钢管吸收,测定时不锈钢管同试样一起测定,减少了氢的损失。

2.1.2 炉内取样法

也叫一次取样法,它适合各种冶炼炉内上有渣层复盖,内含不定量溶解氧的钢水或包内、模内已脱过氧的钢液取样作各种气体元素分析,由于省去了样勺取样暴露在大气下的环节。避免了钢水的二次氧化、二次氮化,碳与氧炉外再反应等影响气体变化的因素,所取试样可作氢、氧、氮、碳、硫全分析,使测定结果更接近冶炼过程中气体含量的真值。该方法取样装置是将两根内径分别为18mm和6mm的石英管在氢、氧火焰上焊接加工成两头缩孔开口(在18mm管内置铝箔)的取样管。用耐高温水泥将其固定在耐火泥头上,外用防渣帽保护组成取样器。取样时将取样器置于取样枪头部斜插入溶池钢液中。防渣帽熔化后,钢液在静压力下自行进入取样器内脱氧池后段上升至取样管段,提枪出溶池迅速将取样装置前端置入冷水中拔下取样器,打碎石英管使试样急冷(同样模法)。取样要点(a).枪管与钢液面呈30-40?C夹角。(b).插枪过渣层时要迅速,枪管斜入钢液深度50-60cm。(c).取样枪在钢液中停留6-8秒,提枪时要稳,不能抖动。(d).脱氧剂铝箔量为理论值的1.8倍。

2.2 封闭模法

适用于已脱氧的钢水取样,此种取样器在取样后钢液冷却凝固过程中放出的氢气贮存在取样器的两层所夹的空间内,然后用专门的仪器测定取样器空间的氢气,再用惰气热抽取法测定试样中的残余氢,两者相加为总氢量。

2.3 制样

对氢试样的制备为避免氢损失,对脆性试样可以采用打断方式,对于直径较小的可以用剪线钳剪断,一般日常分析可用流水冷却的砂轮切片机切割,用锉刀或砂布研磨(不能产生热量)去除表面黑皮再用四氯化碳、丙酮洗涤后冷风吹干,再分析。

对氧试样由于其表面积直接影响分析结果,不能用屑样,棒状、块状试样表面应用锉刀或碳化硅砂布研磨出新表面,为使其不被氧化,应避免试样发热,然后用丙酮清洗,干燥后分析。

氮、碳、硫试样可在块状试样上车、钻成屑样,但如试样上有氧化物、锈、脱碳层、油脂等必须用切削研磨、酸洗、脱脂等方法去除。

3. 金属中气体分析用标准物质的研制

为了有效地检定分析仪器的精确度,提高分析数据的准确可靠性。我国首先由上钢一厂中试室研制出了三种钢中氧标准物质,填补了国内空白。此后北京钢研总院、上钢五厂也相继研制出数种定氧标钢,1980年上海新光金属厂研制出钢中氢标准样品,1984年起上海钢研所根据冶金部要求研制钢中氢一级标准样品,现在经各有关单位的通力合作已研制出数个牌号的系列化钢中氢、氧、氮气体标准样品。碳硫分析专用标钢生产也已形成系列化生产,含量和制作工艺也由原来的选择现成材料到有目的的冶炼制作标钢,低含量标钢也能生产,如含量为1.3ppm、S值为0.1ppm的氢标样,形状从柱状到球状,重量固定可免称量,可以说取得了一定的成绩,为气体分析的准确性提供了保证。

4. 国内分析仪器的研制

国内仪器有的是科研单位自行根据需要研制的。有的是和仪器厂家共同研制,由仪器厂生产的。其主要方法如下:

氢的测定是:主要有惰性气体加热(熔融)色谱法、真空热抽取色谱法、真空脉冲气相色谱法、惰气脉冲色谱法、悬浮熔融色谱法、熔融金属氢在线、平衡分压测定法。

氧的测定:抽取方法有真空熔融法、惰性气氛熔融法、直流碳电弧熔融法、惰性气氛脉冲加热法、氢还原法;测试方法有微压法、库仑法、电导法、气相色谱法、红外法等。

氮的测定:主要有惰性气氛脉冲加热色谱法、悬浮熔融气相色谱法以及化学法(凯氏

法)仪器型号及厂家和主要技术指标见表2。

上述国产仪器中,由于种种原因,有些仪器已停止生产,有的尚在继续生产,但都为我国金属中气体分析在不同历史时期做出了贡献。

5. 国外金属中气体仪器概况

随着改革开放和科研生产的需要,从70年代后期,我国陆续引进了一些美国LECO 公司、日本堀场制作所、德国斯创林、莱宝、埃尔特等公司的气体分析仪,这些仪器自动化程度和分析精度高,其主要技术指标见表3。

上述进口仪器其原理与国产仪器类似,但在设计上有其独到之处,如日本堀场EMGA 系列仪器采用了测量石墨坩埚的阻值,调节加热功率来控制试样熔融温度,以保证分析条件的实施。德国斯创林用光导纤维连接热敏元件控制石墨坩埚温度,均对提高分析精度有益。美国LECO公司的EF-500型炉子除了用电流与功率控制外,还直接用温度控制,且大部分新型仪器均有故障内诊功能,为使用者提供了方便。这些进口仪器在国产仪器的推陈出新时都值得借鉴。这些仪器虽然结构较复杂,但分析工作者通过摸索、总结、交流,都能让其发挥作用,有的还挖掘开发出新的功能,如对LECO公司定氢仪扩展为氢氮联测,使其一机多用,节约了另购仪器的外汇。

6. 国家标准方法的制定

为了使金属中气体分析测定方法统一和规范化,世界各国均在制定国家标准,我国在湿法化学分析如氮、碳、硫的国家标准均已制定了,但仪器分析金属中气体元素的国家标准尚不齐全,只有碳、硫、氧的标准,氢、氮均无国家标准,有待今后有关单位共同协作

将其完善。

7. 金属中气体元素分析方法进展

随着科技技术的发展,对材料的要求越来越高,为了提高钢材质量,冶炼工艺上对气体元素必须加以控制,原来的事后分析其周期已远远不能满足生产上的需要,必须研究新方法,缩短分析周期,及时反馈分析数据指导冶炼工艺。现在用直读光谱临线分析钢中碳、硫周期已大大缩短。由于光栅加工工艺的提高和远紫外光电倍增管的问世,90年代后用165.7nm的谱线代替193.09nm的谱线测定碳检测限由5ppm达到1ppm,用149.47nm的谱线代替174.27nm的谱线测定钢中氮检测限也已达到5ppm,可以说是新突破。钢中氧的测定用130.22nm谱线检测限为15ppm。

另外利用ZrO2固体电解质在线测定钢液中活度氧含量,已有成熟的商品仪器,灵敏度达0.1ppm。利用平衡分压法在线测定钢液中氢含量、氮含量,利用碳氧平衡的数学模型在线测定钢液中碳含量,比利时电测-骑士公司均已有商品仪器推出。我国北京钢研总院也研制出了钢液中在线测氢仪,填补了国内空白,达到国际先进水平,是冶金分析方法的一个新突破。在线分析虽然受到缺乏合适耐高温电解质的限制,但它是我们冶金分析工作者方法研究的方向,希望通过各方的共同努力,取得更大的进展。

土壤中重金属形态分析方法

土壤中重金属形态分析方法 赵梦姣 (湖北理工学院环境科学与工程学院) 摘要:介绍了土壤重金属的形态及各种分析方法, 重点说明了土壤中重金属形态分布及影响因素;讨论了影响土壤环境中重金属形态转化的因素, 重金属形态与重金属在土壤中的迁移性、可给性、活性的关系, 重金属污染土壤修复与重金属形态分布的关系。形态分析在一定程度上反映自然与人为作用对土壤中重金属来源的贡献, 并反映重金属的生物毒性。 关键词: 土壤; 重金属; 形态分析;分析方法 自20 世纪70 年代以来重金属污染与防治的研究工作备受关注,目前重金属污染物已被众多国家列为环境优先污染物。重金属的总量往往很难表征其污染特性和危害,环境中重金属的迁移转化规律、毒性以及可能产生的环境危害更大程度上取决于其赋存形态[1],不同的形态产生不同的环境效应。土壤的重金属污染是当今面积最广、危害最大的环境问题之一,其所含的重金属可以通过食物链被植物、动物数十倍的富集[2], 但土壤中的重金属的毒性不仅与其总量有关, 更大程度上由其形态分布所决定。环境中重金属的迁移性、生物有效性及生物毒性与重金属污染物在土壤中的存在形态有关, 因此, 土壤中的重金属形态分析已成为现代分析化学特别是环境分析化学领域的一个热门研究方向。

1重金属的形态及形态分析方法 根据国际纯粹与应用化学联合会的定义,形态分析是指表征与测定的一个元素在环境中存在的各种不同化学形态与物理形态的过程[3]。形态分析的主要目的是确定具有生物毒性的重金属含量,当所测定的部分与重金属生物效应或毒性一致时,形态分析的目的就可实现。重金属形态是指重金属的价态、化合态、结合态和结构态4个方面,由于土壤化学结构复杂及各种影响因素复杂多变,对土壤中的重金属形态分析,与水环境中重金属的分析方法:如溶出伏安法、离子选择电极法不同,土壤中重金属大多采用连续提取的形态分析方法对样品进行浸提和萃取,然后用原子吸收光谱法测定提取液中的每种形态重金属的浓度,许多学者关于土壤中重金属形态提出了不同的方法。FORSTNER[4]则提出了7步连续提取法,将重金属形态分为交换态、碳酸盐结合态、无定型氧化锰结合态、有机态、无定型氧化铁结合态、晶型氧化铁结合态、残渣态; SHUMAN[5]将其分为交换态、水溶态、碳酸盐结合态、松结合有机态、氧化锰结合态、紧结合有机态、无定形氧化铁结合态和硅酸盐矿物态8种形态;为融合各种不同的分类和操作方法,CAMBRELL[6]认为土壤中重金属存在7种形态,即水溶态、易交换态、无机化合物沉淀物、大分子腐殖质结合态、氧化物沉淀吸收态、硫化物沉淀态和残渣态;而具有代表性的形态分析方法是由TIESSER等人提出的[7]。将土壤或者沉积物中的金属元素分为可交换态、碳酸盐结合态、铁-锰氧化物结合态、有机物结合态与残渣态。在TIESSER方法的基础上,欧共体标准物质局(European

重金属各元素

重金属各元素 砷 砷(As)是人体非必须元素,元素砷的度相较低而砷的化合物均有剧毒,三价砷化合物比五价砷化合物毒性更强,有机砷对人体和生物都有剧毒,砷通过呼吸道、消化道和皮肤接触人体。如摄入量超过排泄量,砷就会再人体的肝、肾、肺、子宫、胎盘、骨骼、肌肉等部位,特别是在毛发、指甲中蓄积,从而引起慢性砷中毒,潜伏期可长达几年甚至几十年。慢性砷中毒有消化系统症状、神经系统症状和皮肤病变等。砷还有至癌作用,能引起皮肤癌。砷危害植物作物的原因是由于砷阻碍了作物中水分的输送,使作物根以上的地上部分氮和水分的供给受到限制,造成作物枯黄。在一般情况下,土壤、水、空气、植物和人体都含有微量砷,对人体不会造成伤害。砷是我国实施排放总量控制的指标之一,砷的污染主要来源于采矿、冶金、化工、化学制药、农药生产、纺织、玻璃、制革等部门的工业废水。 测定砷的两个比色法,新银盐分光光度法和二乙氨基二硫代甲酸银光度法,其原理相同,具有类似的选择性。但新银盐分光光度法测定速度快、灵敏度高,适合于水和废水的测定,特别是对天然水样,而二乙氨基二硫代甲酸银光度法适合分析水和废水,但使用三氯甲烷,会污染环境。氢化物发生原子吸收法是将水和废水中的砷以氢化物形式吹出,通过加热产生砷原子,从而进行定量。样品采集后,用硫酸将样品酸化至pH<2保存,废水样品酸化至含酸达1%。现多以采用原子荧光法测定。 镉 镉(Cd)不是人体必须的元素,镉的毒性很大,它可通过食物链进入动物和人体,可以在人体内蓄积,主要蓄积在肾脏,引起泌尿系统的功能变化,镉在人体内形成镉硫蛋白,它与含羟基、氨基、巯基的蛋白质分子结合,影响酶的功能,导致蛋白尿和糖尿等;镉还能影响维生素D3的活性,使骨质疏松、萎缩、变形等。镉对植物的危害表现在其破坏叶绿素,从而降低光合作用,还能使花粉败育,影响植物生长、发育和繁殖。水中含镉0.1mg/L时,可轻度抑制地表水的自净作用。用含镉0.04mg/L的水进行农业灌溉时,土壤和稻米就会受到明显的污染。

最新金属材料说课稿

金属材料说课稿 一、教材分析 本节课化学九年级下册第八单元课题1《金属材料》。金属材料是与我们的生活密切联系的教学内容,本课题围绕学生熟悉的生活用品开展学习,通过学生分组实验、讨论、归纳总结得出金属的一些共同的物理性质和各自的特性,通过阅读课文了解常见金属与合金的主要成分性能和用途,让学生体会到化学就在我们的生活中,增强学生发现生活、感受生活的意识,从而实现“教学生活化”的教学理念。 基于以上对教材的分析,我确定了教学目标如下: 知识与技能: 1.通过日常生活中广泛使用金属材料等具体事例,认识金属材料与人类生活和社会 发展的密切关系。 2.使学生了解金属的物理性质,知道物质的性质很大程度上是可以决定用途的,但 并非唯一因素。 3.了解常见合金的成分性能和用途。 过程与方法: 1.学习收集、整合信息的方法。 2.引导学生自主探究金属的物理性质。 3.通过情景设置,使学生具有较强的问题意识,能够发现和提出有探究价值的化学 问题。通过学生动手实验,培养学生的实验能力和分析问题的能力。 情感态度和价值观: 通过实验激发学生学习化学的兴趣,培养学生实事求是的科学态度。培养学生将化学知识应用于生活实践的意识,能够对与化学有关的社会问题和生活问题做出合理的解释。 重点 1、金属材料的物理性质 2、物质性质与用途的关系 难点 性质决定用途,但不是唯一因素。 二、学情分析:

在物理教学过程中,学生已经对金属的相关性质有了初步的了解,在生活中也经常的接触到一些金属制品,如:不锈钢炊具,铜导线,铁钉、金项链等等,并且学生对合金一词也并不陌生,铝合金窗户随处可见。因此,学生对金属、金属材料及其在生活中的应用已经有了不同程度的认识。通过前边的学习,学生已经具备了一定的问题探究能力也能够通过查找资料、调查研究进行一些分析总结和评价。 三、说教法、学法 根据化学课程标准“要培养学生科学探究能力,提高学生的科学素养”的要求,以及本节课的内容。我确定的教学方法是:采用实验探究法,按照提出问题—实验探究—观察分析—得出结论的程序实行探究式讨论教学。 学法指导是教师在传授知识,发展能力的同时,对学生进行学习方法的指导,使学生进行有效的学习。由于本课实验的探究的内容很多,学生的思维又特别活跃,学生的创新能力能够逐步得到发展。 四、说教学流程 (一)创设情境,导入新课 1.展示金属结构建筑物实物图片(大桥、埃菲尔铁塔等)了解金属在生活中的用途及性质。 2 .你所知道的金属有哪些? 你见过哪些金属制品? 引导学生通过看录相、上网查资料等了解人类发现金属、认识金属、使用金属的历史,利用学生的生活背景,让学生说出日常生活中接触到的金属制品。使学生感觉到我们的生活离不开金属材料。体现了“从生活走进化学”的新课标教学理念。接着利用多媒体播放金属材料在生产、生活和社会等各个领域中的应用资料,进一步突出化学与社会的密切联系,同时也增强了学生对金属材料的兴趣和好奇心,从而产生了解金属性质的探究欲。 (二)探索学习,掌握新知 从废弃金属用品的循环利用作为事例进行探索金属的物理性质。通过让学生讨论,总结出金属的物理性质。让每组的学生代表说出实验和讨论的结果,其他同学补充。培养学生分析问题、正确表达实验结论和分析结果的能力。 指导学生阅读课文,了解金属共同的物理性质和部分重要金属的特性。培养学生的自学能力、阅读能力和归纳能力。 利用课件给出讨论题: 1、为什么菜刀、镰刀、锤子等用铁制而不用铅制?

金属和金属材料教材分析

第八单元金属和金属材料教材分析 【单元教材概览】 ⑴本单元在初中化学《新课程标准》内容中:身边的化学物质—金属与金属矿物、物质的化学变化—认识几种化学反应(置换反应)、金属活动性顺序、及有关含杂质的化学方程式计算。 ⑵本单元主要围绕金属的性质、冶炼、防蚀、回收与利用等内容呈现学习情景和素材,强调学生从生产、生活中发现问题并获取信息。强调学生通过探究性学习获取知识。 ⑶本单元是教材中首次出现的系统研究和认识金属及合金的性质、冶炼、金属保护和用途的内容。通过前几单元的学习,学生对物质的组成及表示方法、质量守恒定律、化学方程式等基础已经有了一定的了解,对化学实验等探究性学习活动已经有了一定的实践体验。在此基础上安排了本单元内容,既能使学生用化学用语描述物质的性质和变化。又能让学生进一步学习和运用探究学习的方法。 【知识结构透视】物理性质 1、存在金纯金属 与氧气反应 2、回收利用属化学性质与酸反应置换反应 与硫酸铜反应金属活动顺序 金属资源3、冶炼材性能 合金 4、有关含杂质料用途 的计算问题 金属的锈蚀的条件 【单元目标聚焦】 1、知识与技能目标 了解金属的物理特征,能区分常见的金属和非金属;认识金属材料在生产、生活和社会发展中的重要作用。知道常见的金属(铁、铝、铜)与氧气的反应;初步认识常见金属与盐酸、稀硫酸的置换反应,以及与部分盐溶液的置换反应,能用置换反应解释一些与日常生活有关的化学问题。能用金属活动性顺序表对有关的置换反应进行简单的判断,并能解释日常生活中的一些现现象。知道一些常见金属(铁、铝)等矿物;了解从铁矿石中将还原出来的方法。了解常见金属的特性及其应用,认识加入其他元素可以改良金属特性的重要性;知道生铁和钢等重要的合金。知道废弃金属对环境的污染,认识回收金属的重要性。会根据化学方程式对含有某些杂质的反应物或生成物进行有关计算。了解金属锈蚀的条件以及防止金属锈蚀的简单方法。 2、过程与方法 ⑴通过对生活中常见的一些金属材料选择的讨论引导学生从多角度分析问题。 ⑵通过金属活动顺序探究实验,让学生进一步学习和运用探究性学习方法。 3、情感态度与价值观 ⑴通过日常生活中广泛使用金属材料等具体事例,认识金属材料与人类生活和社会发展的密切关系。 ⑵引导学生主动参与知识的获取过程,学习科学探究的方法,培养学生进行科学探究的能力。 ⑶通过废弃金属对环境的污染,让学生树立环保意识。认识金属资源保护的重要性,让

土壤重金属形态分析的改进BCR方法

BCR连续提取法分析土壤中重金属的形态 ?1、重金属形态 ?2、重金属形态研究方法及发展历程 ?3、本实验的目的 ?4、实验原理 ?5、实验步骤 ?6、数据处理 1.重金属形态 ?重金属形态是指重金属的价态、化合态、结合态、和结构态四 个方面,即某一重金属元素在环境中以某种离子或分子存在的实际形式。 ?重金属进入土壤后,通过溶解、沉淀、凝聚、络合吸附等各种 作用,形成不同的化学形态,并表现出不同的活性。 ?元素活动性、迁移路径、生物有效性及毒性等主要取决于其形 态,而不是总量。故形态分析是上述研究及污染防治等的关键 2、重金属形态研究方法及发展历程 ?自Chester 等(1967)和Tessier 等(1979)的开创性研究以来, 元素形态一直是地球和环境科学研究的一大热点。 ?在研究过程中,建立了矿物相分析、数理统计、物理分级和化学 物相分析等形态分析方法。

?由于自然体系的复杂性,目前对元素形态进行精确研究是很困 难,甚至是不可能的。 ?在诸多方法中,化学物相分析中的连续提取(或逐级提取) (Sequential extraction) 技术具操作简便、适用性强、蕴涵信息丰富等优点,得到了广泛应用。 逐级提取(SEE) 技术的发展历程 ?60~70年代(酝酿期) ?以Chester 和Hughes(1967) 为代表的一些海洋化学家尝试 用一种或几种化学试剂溶蚀海洋沉积物,将其分成可溶态和残留态两部分,进而达到研究微量元素存在形态的目的。 ?70 年代末(形成期)

?在前人研究的基础上,Tessier et al. (1979) 用不同溶蚀能力的化学试剂,对海洋沉积物进行连续溶蚀和分离操作,将其分成若干个“操作上”定义的地球化学相,建立了Tessier 流程。 ?80 年代(发展期) ?不同学者在对Tessier 流程改进的基础上,先后提出了20 多种逐级提取流程。其中,影响较大的逐级提取流程有Salomons 流程(1984) 、Forstner 流程(1985) 、Rauret et al流程(1989) 等。 ?90 年代(成熟期) ?为获得通用的标准流程及其参照物,由BCR 等主办的以“沉积物和土壤中的逐级提取”(1992) 、“环境风险性评价中淋滤/ 提取测试的协和化”(1994) 和“敏感生态系统保护中的环境分析化学”(1998) 等为主题的欧洲系列研讨会先后召开,并分别出版了研究专刊。 ?Ure et al. (1993) 在Forstner (1985) 等流程的基础上,提出了Ure 流程,后经Quevauviller et al. (1997 ,1998) 修改,成为BCR 标准流程,并产生了相应的参照物(CRM 601) 。 ?BCR 为欧洲共同体参考物机构( European Community Bureau of Reference) 的简称,是现在欧盟标准测量和测试机构(Standards Measurements and Testing Programme ,缩写为SM &T) 的前身。 ?Rauret et al. (1999) 等对该流程作了改进,形成了改进的BCR

2019届中考化学真题分类汇编:金属和金属材料_含解析

金属和金属材料 1.(2018天津)人体内含量最高的金属元素是() A.铁 B.锌 C.钾 D.钙 【答案】D 【解析】人体内含量最高的金属元素是钙,故选D。 2.(2018北京)下列含金属元素的物质是() A.H2SO4 B.Al2O3 C.NO2 D.P2O5 答案:B 解析:在答案中只有铝(Al)属于金属元素,其他的H、S、O、N、P均为非金属元素,故B正确。 3.(2018江西)常温下为液态的金属是 A.汞 B.金 C.银 D.铝 【答案】A 【解析】常温下,铝、银、金等大多数金属都是固体,但金属汞熔点最低,常温下为液态。故选A。 点睛:大多数金属具有延展性、具有金属光泽、是热和电的良导体,其中延展性最好的金属是金,导电性最好的金属是银,绝大多数金属的熔沸点高,熔点最高的是钨,绝大多数的金属硬度大,硬度最大的是铬。 4.(2018河北)图3所示的四个图像,分别对应四种过程,其中正确的是() A.①分别向等质量Mg和Cu中加入足量等质量、等浓度的稀硫酸 B.②分别向等质量且足量的Zn中加入等质量、不同浓度的稀硫酸 C.③分别向等质量且Mg和Zn中加入等质量、等浓度的稀硫酸 D.④分别向等质量的Mg和Zn中加入等质量、等浓度且定量的稀硫酸 【答案C 【解析】①Cu不与稀硫酸反应生成氢气;②足量的Zn与20%的稀硫酸反应生成氢气多;③、④Mg比Zn活泼,加入等质量、等浓度的稀硫酸,Mg产生氢气快,最后氢气质量相等。故选C。 5.(2018重庆A)常温下向一定质量的稀盐酸中逐渐加入镁条,充分反应(忽略挥发)。下列图像正确的是()

A.①② B.②③ C.①④ D.②④ 【答案】C 【解析】①常温下向一定质量的稀盐酸中逐渐加入镁条,反应开始前溶液质量大于0,随着反应的进行,溶液质量不断增加,直至稀盐酸反应完,溶液质量达到最大,之后溶液质量不变;②镁与稀盐酸反应放热,随着反应的进行,温度不断升高,稀盐酸反应结束后,溶液温度开始下降;③镁与稀盐酸反应生成氢气,反应开始前氢气质量等于0,随着反应的进行,氢气体积不断增加,直至稀盐酸反应完,氢气体积达到最大,之后氢气体积不变;④根据质量守恒定律可知反应前后氢元素个数、质量均不变,即反应前后氢元素质量不变。故选C。 6.(2018海南)为了探究金属与酸反应的规律,某实验小组进行了如下实验,取等质量的铁片、镁片、锌片,分别与等体积、等浓度的稀盐酸反应,用温度传感器测得反应温度变化曲线如下图所示。 (1)请分析反应中温度升高的原因:_________________; (2)根据曲线总结出金属活动性的相关规律:__________。 【答案】(1).金属与酸反应放出热量(2).相同条件下,金属越活泼,与酸反应放出的热量越多(必须指明条件相同 【解析】(1)金属与酸反应过程中放出热量,使温度升高;(2)根据金属活动性规律可知:相同条件下,金属越活泼,与酸反应放出的热量越多。 7.(2018安徽)废旧电路板中主要含有塑料、铜和锡(Sn)等,为实现对其中锡的绿色回收,某工艺流程如下。

重金属分析方法

微波消解_电感耦合等离子体质谱法同时检测大米中的6种重金属元素_梁书怀 准确称取大米约0.5g(精确至0.0001g)于50mL密闭式聚四氟乙烯的微波消解罐中,加入7.0mL硝酸在智能控温电加热器中预消解3h后,再加入2.0mLH2O2在设定的微波消解条件进行消解。消解完毕后,冷至室温。打开消解罐,用少量 水冲洗上盖内壁,合并至罐中。置消解罐中于140~160℃智能控温电加热器中赶酸,待溶液剩约1.0mL时,用水洗涤消解罐3~5次,洗液合并于50mL塑料容量瓶中,用水定容至刻度,混匀备用。

ICP_OES_ICP_MS测定葵花子中28种无机元素_刘宏伟

微波消解-电感耦合等离子体质谱法测定蔬菜中5 种重金属李延升

微波消解-石墨炉原子吸收法测定沉积物中重金属的全量及形态 陈坚 采用BCR( Community Bureau of Reference) 顺序提取法提取重金属形态,同步分析沉积物中的As,Cd,Cr,Pb,Co,Cu,Mn,Zn,Ni 9 种元素的含量和形态。 欧盟BCR 形态提取法是目前广泛用于提取沉积物重金属形态的方法,具有很好的再现性,便于国内外不同实验室之间的数据对比验证[8 ~10]

KaziT G,Jamali M K,Kazi G H,et al.Anal Bioanalhem,2005,383: 297 叶宏萌,袁旭音,赵静.中国环境科学,2012,( 10) : 1853 Davidson C M,Duncan A L,Littlejohn D,et al.AnalChim Acta,1998,363: 45

金属和金属材料练习题(含答案)(word)

金属和金属材料练习题(含答案)(word) 一、金属和金属材料选择题 1.人体内含量最高的金属元素是() A.铁 B.锌 C.钾 D.钙 【答案】D 【解析】 人体内含量最高的金属元素是钙,故选D。 2.往AgNO3和Cu(NO3)2的混合溶液中加入一定量的铁粉,充分反应后过滤,向滤渣中加入稀盐酸,有气泡产生.根据上述现象分析,你认为下面结论错误的是 A.滤渣一定有Fe粉B.滤渣一定有Cu粉 C.滤液中一定有Fe2+D.滤液中一定有Ag+、Cu2+ 【答案】D 【解析】 【分析】 【详解】 根据金属活动性顺序的应用:位于前面的金属能把位于后面的金属从化合物的溶液中置换出来。由于铁位于银和铜的前面,故铁能与硝酸银、硝酸铜发生置换反应,由于银的活动性比铜弱,故铁先与硝酸银反应,把硝酸银中的银完全置换出来以后再与硝酸铜发生置换反应。向反应的滤渣中加入稀盐酸,产生了大量的气泡,说明铁过量,即铁已经把硝酸银中的银和硝酸铜中的铜完全置换出来了,故滤渣的成分是银、铜、铁,滤液的成分是硝酸亚铁。故选D。 3.以下实验能比较出铜和银的金属活动性强弱的是() A.测定两金属的密度 B.铜片放入硝酸银溶液中 C.将两种金属相互刻画 D.铜片、银片分别放入稀硫酸中 【答案】B 【解析】 试题分析:比较金属活动性强弱要通过化学变化且出明显现象才能表现出来,A.测定两金属的密度,不能比较出铜和银的金属活动性强弱;B.铜片放入硝酸银溶液中能比较出铜和银的金属活动性强弱,因为金属铜能置换出金属银;C.将两种金属相互刻画不能比较出铜和银的金属活动性强弱;D.铜片、银片分别放入稀硫酸中,二者多无明显现象,不能比较出铜和银的金属活动性强弱;故答案选择B 考点:金属活动性顺序

重金属的危害特性及重金属分析方法原理介绍

重金属的危害特性及重金属分析方法原理介绍 一、重金属的危害特性 从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。 (一)自然性: 长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。 (二)毒性: 决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~ 0.001mg/L之间。 (三)时空分布性: 污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。 (四)活性和持久性: 活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。如汞可转化成甲基汞,毒性很强。与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。 (五)生物可分解性: 有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。 (六)生物累积性: 生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。二是污染物在人体某些器官组织中由于长期摄入的累积。如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。 (七)对生物体作用的加和性: 多种污染物质同时存在,对生物体相互作用。污染物对生物体的作用加和性有两类:一类是协同作用,混合污染物使其对环境的危害比污染物质的简单相加更为严重;另一类是拮抗作用,污染物共存时使危害互相削弱。 二、重金属的定量检测技术

金属元素分析方法

金属元素分析方法 原铁矿中二氧化硅、三氧化铝、三氧化二铁的测定试剂:氢氧化钠;盐酸;准确含量的标样准确称取0.2 克试样至银坩埚中,加入2-3 克氢氧化钠固体,并与试样充分搅拌均匀,加盖放入730 度左右的马弗炉中烧15 分钟取出,少冷却,用镊子夹住用热水冲洗银坩埚,用(1+1)盐酸冲洗银坩埚及盖子,在用水冲洗坩埚,将试液转移到已有20mL 盐酸的250mL 的容量瓶中,待冷却后加水稀释至标线,此溶液做测定二氧化硅、三氧化铝、三氧化二铁的母液。 一、分光光度法测定三氧化二铁 试剂:磺基水杨酸;氨水 准确移取母液5.00mL至100mL容量瓶中,加10mL5^磺基水杨酸,用(1+1)氨水调至黄色并过量3-4 滴,用水稀释至刻度。同时做标样。 二、分光光度法测定二氧化硅试剂:钼酸铵、草酸、硫酸亚铁铵、硫酸 草硫混酸配置:a .30克草酸b.30克硫酸亚铁胺把a放入500mL烧杯中,用沸水把草酸充分溶解;把b放入500mL烧杯中,用沸水充分溶解;却后加169mL(1+1)硫酸搅匀,放入 a 中,加水稀释到1000mL 。 分析步骤:准确移取母液 5.00mL 至100mL 容量瓶中,,加入40mL (1+99)盐酸,加5mL 钼酸铵(10%的水溶液),摇匀静置(显色)可放到热水中保温使显色,10 分钟后,加20mL 草硫混酸,用水稀释至刻度摇匀。同时做标样。将 b 冷 磷的分析 一:钢铁中磷的分析 1 、分析原理: 试样以硝酸溶解,加高锰酸钾将磷全部氧化为正磷酸,加钼酸铵形成磷钼蓝,用氯化亚锡将还原为磷钼蓝,测量吸光度。 2 、试剂 (1)硝酸:(2+5) (2)高锰酸钾(4%) (3)钼酸铵-- 酒石酸钾钠混合液: 将20%钼酸铵溶于20%酒石酸钾钠等体积混合,当日配置。 (4)氟化钠--氯化亚锡溶液;100mL2.4%氟化钠溶液中加0.2克氯化亚锡,氟化钠预先配置,用时加氯化亚锡。

重金属元素对人体的危害及检测方法

人体内重金属元素的危害及检测方法 (山东大学化学与化工学院2010级化学基地班耿轶峥 201000112008) 一、选定课题的简要说明: 近年来,随着我国工业化快速发展,大气、水土的污染形势日益严峻,人体中金属含量超标已经越来越多的在各地发生,其对人体造成的危害不容无视,如铅毒症、水俣病等。这些中毒症状往往会给人体带来严重的永久性损伤,进而导致残疾甚至死亡。因而,只有了解重金属以及其摄入过多的症状,才能有效防范重金属中毒。 由于危害人体健康的重金属含量极低,常规检查不易查出,一旦查出时往往已经出现严重的并发症,研制灵敏度更高、准确度更好、速度更快的检测方法便是现阶段追求的目标,本文将例举集中常用的测定重金属元素的检测方法。 二、信息检索说明: 1 检索关键词:重金属、人体、危害 2 检索工具和数据库: 2.1 中国期刊全文数据库 2.2 万方数据系统 三、综述: 以上检索共查找到了相关文献85篇,另外又对比参考了各个数据库推荐的相似文献,其中重点参考了中国期刊全文数据库中的20余篇文章。在经过对其的学习和理解并通过自己的总结及相应参考后,现将该课题内容和自己的启示心得综述如下。 摘要对什么是重金属目前尚无严格的定义,化学上跟据金属的密度把金属分成重金属和轻金属,常把密度大于4.5g/cm3的金属称为重金属。如:金、银、铜、铅、锌、镍、钴、铬、汞、镉等大约45种。从环境污染方面所说的重金属是指:汞、镉、铅、铬以及类金属砷等生物毒性显著的重金属。对人体毒害最大的有5种:铅、汞、铬、砷、镉。这些重金属在水中不能被分解,人饮用后毒性放大,与水中的其他毒素结合生成毒性更大的有机物或无机物。通常认可的重金属分析方法有:微谱分析(MS)、紫外可分光光度法(UV)、原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)、电感耦合等离子质谱法(ICP-MS)。 目录

金属成分分析

金属成分分析:按标准、要求对相应材质进行定量分析,判断其是否符合相应标准或要求。如果供应商提供的原材料、半成品和成品的材料实际化学成分不符合协议标准,那么它将成为影响产品最终性能的关键因素。 此外,随着现代冶金技术的进步,已经证明了一些具体元素的重要性,过去这些元素被称为“其他元素”,如今更确切的称之为“微量元素。 我们的化学试验室配备了一流的设备,能将测量的不确定度减小到最低。 我们所采用的软件可以分析以下材料: ?碳钢、低合金钢、中合金钢、高合金钢、不锈钢、工具钢、粉末冶金钢材 ?铁 ?铝合金 ?铜合金 ?镍合金 ?钛合金 ?锌合金 ?电镀材料 可检测以下常见金属类型以及未知金属成分分析: 1、不锈钢成分分析—不锈钢牌号鉴定:304、304L、316等不锈钢;元素含量检测:镍Ni、铬Cr、钼Mo、铁Fe等; 2、合金成分分析检测——铜合金、铝合金、锌合金、焊锡及其他合金:碳C,氮N,硫S,磷P,硅Si,铜Cu,铁Fe,铝Al,锡Sn,钼Mo,镍Ni,铬Cr,锰Mn,钛Ti,钨W,铅Pb,锌Zn……; 3、金属材料中常规金属元素分析检测、氧氮氢气体元素检测、贵金属检测、重金属检测、RoHS检测及其他各类材料金属成分检测。 材质:铁基合金(碳钢,不锈钢,工具钢,铸铁等) 铜基合金(纯铜,黄铜,白铜,青铜等) 铝基合金(变型铝,铸铝,纯铝等) 镁基合金(镁铝锌,镁铝硅等) 镍基合金(高温合金,精密合金等 钛基合金(纯钛,T,TC11等) 锡基合金(纯锡,铅锡合金,无铅焊锡等) 锌基合金(纯锌,锌铝合金等) 序号No. 类别Category 项目Items A 化学性能Chemical Analysis A-1 矿石类分析定性测定 A-2 矿石类分析定量测定 A-3 钢铁材料常规元素C,S,Si,Mn,P(ICP法) A-4 钢铁材料合金元素(ICP法) A-5 铜合金与铝合金常规元素C,S,Si,Mn,P(ICP法) A-6 铜合金与铝合金合金元素 A-7 镍合金,钛合金,金属焊料元素测定 A-8 金属材料痕量元素N O H 稀土元素 A-9 异物分析异物能谱测定

土壤中重金属形态分析的研究进展(完整版)

土壤中重金属形态分析研究进展 罗小三,周东美,陈怀满 土壤与农业可持续发展国家重点实验室,中国科学院南京土壤研究所(210008) E-mail:dmzhou@https://www.360docs.net/doc/f511847472.html, & trhjhx@https://www.360docs.net/doc/f511847472.html, 摘要:本文简要介绍了元素形态分析的概念、方法及其应用,概括和评述了当前土壤重金属的形态分析方法,详细讨论了各种形态分离手段和痕量重金属的测定技术,提出了土壤重金属形态分析领域亟待解决的问题和发展方向。 关键词: 土壤 重金属 形态分析 环境 1. 引言 从上世纪70年代开始,环境科学家就认识到,重金属的生物毒性在很大程度上取决于其存在形态,元素总量已经不能很好地说明环境中痕量金属的化学活性、再迁移性、生物可给性以及最终对生态系统或生物有机体的影响[1,2]。事实上,重金属与环境中的各种液态、固态物质经物理化学作用后以各种不同形态存在于环境中,其赋存形态决定着重金属的环境行为和生物效应[3]。正因如此,通过元素形态分析方法定量确认环境中重金属的各种形态已成为环境分析化学研究领域的新热点,其环境介质包括土壤、沉积物、水体、植物和食品等[4-6]。随着工作的不断深入,特别是分析测试技术的迅猛发展,元素的形态分析方法日趋完善,并且在化合物生物地球化学循环、元素毒性及生态毒性确定、食品质量控制、临床分析等领域显示出独特的作用[7]。 土壤环境处于大气圈、水圈、岩石圈及生物圈的交接地带,它是地表环境系统中各种物理、化学以及生物过程、界面反应、物质与能量交换、迁移转化过程最为复杂和最为频繁的地带。而重金属土壤污染对食品安全和人类健康存在严重威胁。因此,研究土壤中重金属的形态尤为重要。但土壤是一个多组分多相的复杂体系,类型多样,其组成、pH和Eh等差异明显,加上重金属来源不同、在土壤中的形态复杂,使得土壤中重金属形态分析更为困难[8]。 本文对元素形态分析的概念、方法、常用技术、应用进行了概括,对当前土壤中重金属的形态分析方法进行了详细介绍和评述,并提出了存在的问题和将来的预期发展方向。 2. 元素形态分析的概念 2.1 元素形态 元素形态的概念可追溯到1954年Goldberg为改善对海水中痕量元素的生物地球化学循环的理解而将其引入[9]。其后,元素的形态得到广泛研究,但不同的学者对形态有不同的理解和认识。Stumm[10]认为形态是指某一元素在环境中的实际存在的离子或分子形式; - 1 -

化妆品中重金属元素的分析方法

化妆品中重金属元素的分析方法 化妆品中重金属元素的分析方法 摘要:重金属污染,尤其是化妆品中的重金属元素在人体内的积累,严重威胁着人类的健康。化妆品中铅、铬等重金属的含量引起了人们的广泛关注。然而,我国在化妆品中重金属元素的含量分析中,还缺乏行之有效的方法,存在着许多的不足之处。本文旨在通过对近些年中国内外针对化妆品中的重金属元素的分析方法进行对比,希望能够获得符合我国化妆品行业实际情况的、行之有效的、快速准确的分析方法,以期避免人们受到化妆品中重金属元素的侵害,保护人类的身体健康。 关键词:化妆品金属元素分析方法 近几年来,我国化妆品市场发展迅猛,增长速度十分迅速,化妆品消费者的消费观念也发生了很大的变化,更加的多样化,层次性也更加明显。根据统计,国产化妆品占我国化妆品市场的一半左右,化妆品近乎走进了每一个人的生活,其购买率和使用率逐年升高。 重金属的污染是一个慢性过程,具有隐蔽性的特性,其危害一般不会立马生效,而是能够在人体内部潜藏很长一段时间,通过不断的积累,逐渐的对人体健康造成危害。目前,在我国的化妆品行业卫生标准中,仅仅包含了铅、汞、砷三种重金属元素,其他诸如铬、锌、锰等重金属元素并未列入检测行列。同时我国针对化妆品中中技术元素的分析方法也不够快速准确,有很多需要改进的地方。 1.我国化妆品金属元素分析的研究现状 我国作为化妆品行业的出口国,对化妆品出口方面受各国贸易壁垒的影响非常巨大。由于我国对于化妆品中的重金属元素的分析方法起步较晚,在对化妆品中重金属元素的含量分析的技术还不够成熟。我国出台的《化妆品卫生规范》中,增大了对重金属元素的管理力度。随着我国化妆品行业的迅猛发展,我国在化妆品中重金属元素的分析方法上,进行了大量的研究,并取得了一些可喜的成就。 目前我国在对化妆品中重金属元素汞的含量的测定主要采用原

金属和金属材料练习题(含答案)经典

金属和金属材料练习题(含答案)经典 一、金属和金属材料选择题 1.下列含金属元素的物质是() A.H2SO4 B.Al2O3 C.NO2 D.P2O5 【答案】B 【解析】 【详解】 A、硫酸是由氢元素、硫元素和氧元素组成,他们都是非金属元素,故错误; B、Al2O3是由铝元素和氧元素组成,故含有金属元素,故正确; C、二氧化氮是由氮元素和氧元素组成,氮元素和氧元素都是非金属元素,故错误; D、P2O5是由磷元素和氧元素组成,磷元素和氧元素都是非金属元素,故错误。故选B。 2.自从央行公告第四套人名币1角硬币从2016年11月1日起只收不付后,“菊花1角”身价飞涨。一个很重要的原因是,“菊花1角”材质特殊导致日渐稀少,其使用了铝锌材质。铝、锌元素的部分信息如下,则说法正确的是() A.铝比锌的金属活泼性更弱 B.相等质量的铝和锌和足量稀硫酸反应,铝产生的氢气多 C.锌原子的最外层电子数比铝多17 D.铝的相对原子质量为 【答案】B 【解析】 【详解】 A、铝比锌的金属活泼性更强,故A错误; B、由产生氢气的质量=,可知,相等质量的铝和锌和足量稀硫酸反应,铝产生的氢气多,故B正确; C、由于最外层电子数不超过8个,锌原子的核外电子数比铝多17,不是最外层电子数比铝多17,故C错误; D、由元素周期表中一个格的含义可知,铝的相对原子质量为26.98,单位是“1”,故D错误。 故选:B。 3.用“W”型玻璃管进行微型实验,如图所示。下列说法不正确的是()

A.a处红棕色粉末变为黑色 B.b处澄清石灰水变浑浊证明有CO2生成 C.a处的反应化学方程式为CO+Fe2O3=2Fe+CO2 D.可利用点燃的方法进行尾气处理 【答案】C 【解析】 【详解】 A、一氧化碳具有还原性,能与氧化铁反应生成铁和二氧化碳,a处红棕色粉末变为黑色,故选项说法正确。 B、二氧化碳能使澄清的石灰水变浑浊,b处澄清石灰水变浑浊,证明有CO2生成,故选项说法正确。 C、a处的反应化学方程式为3CO+Fe2O3高温 2Fe+3CO2,故选项说法错误。 D、一氧化碳具有毒性,能污染环境,为防止污染空气,尾气不经处理不能直接排放,一氧化碳具有可燃性,可利用点燃的方法进行尾气处理,故选项说法正确。 故选:C。 4.已知X、Y、Z三种金属能发生下列反应:X+H2SO4=XSO4+H2↑;Y+Z(NO3)2=Y(NO3)2+Z;Z+X(NO3)2=Z(NO3)2+X.则X、Y、Z三种金属与氢的活动性由强到弱的顺序为()A.X>H>Y>Z B.X>H>Z>Y C.Z>Y>X>H D.Y>Z>X>H 【答案】D 【解析】 【详解】 根据X+H2SO4=XSO4+H2↑可知金属X活动性位于氢之前,再根据Z+X(NO3)2=Z(NO3)2+X,可知金属Z能置换金属X,Z的活动性在X前,又因为Y+Z(NO3)2═Y(NO3)2+Z,所以Y能置换Z,Y的活泼性在Z之前,故可得出X、Y、Z三种金属与氢的活动性由强到弱的顺序为Y>Z >X>H,故选D。 5.下列反应中属于置换反应的是() A.CO+CuO Cu+CO2 B.CaO + H2O=Ca(OH) 2 C.Zn+CuSO4=ZnSO4+Cu D.SO2+2NaOH=Na2SO3+H2O

重金属元素对人体的危害及检测方法

人体内重金属元素得危害及检测方法 一、选定课题得简要说明: 近年来,随着我国工业化快速发展,大气、水土得污染形势日益严峻,人体中金属含量超标已经越来越多得在各地发生,其对人体造成得危害不容无视,如铅毒症、水俣病等。这些中毒症状往往会给人体带来严重得永久性损伤,进而导致残疾甚至死亡。因而,只有了解重金属以及其摄入过多得症状,才能有效防范重金属中毒。 由于危害人体健康得重金属含量极低,常规检查不易查出,一旦查出时往往已经出现严重得并发症,研制灵敏度更高、准确度更好、速度更快得检测方法便就是现阶段追求得目标,本文将例举集中常用得测定重金属元素得检测方法. 二、信息检索说明: 1检索关键词:重金属、人体、危害 2 检索工具与数据库: 2.1中国期刊全文数据库 2。2 万方数据系统 三、综述: 以上检索共查找到了相关文献85篇,另外又对比参考了各个数据库推荐得相似文献,其中重点参考了中国期刊全文数据库中得20余篇文章。在经过对其得学习与理解并通过自己得总结及相应参考后,现将该课题内容与自己得启示心得综述如下。 摘要对什么就是重金属目前尚无严格得定义,化学上跟据金属得密度把金属分成重金属与轻金属,常把密度大于4、5g/cm3得金属称为重金属.如:金、银、铜、铅、锌、镍、钴、铬、汞、镉等大约45种.从环境污染方面所说得重金属就是指:汞、镉、铅、铬以及类金属砷等生物毒性显著得重金属。对人体毒害最大得有5种:铅、汞、铬、砷、镉。这些重金属在水中不能被分解,人饮用后毒性放大,与水中得其她毒素结合生成毒性更大得有机物或无机物。通常认可得重金属分析方法有:微谱分析(MS)、紫外可分光光度法(UV)、原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)、电感耦合等离子质谱法(ICP-MS)。 目录 1重金属中毒得危害

金属和金属材料教材分析

第八单元金属和金属材料教材分析 【单元教材概览】 ⑴本单元在初中化学《新课程标准》内容中:身边的化学物质一金属与金属矿物、 物质 的化学变化一认识几种化学反应(置换反应) 、金属活动性顺序、及有关含杂质的化学方程 式计算。 ⑵本单元主要围绕金属的性质、冶炼、防蚀、回收与利用等内容呈现学习情景和素材, 强调学生从生产、生活中发现问题并获取信息。强调学生通过探究性学习获取知识。 ⑶本单元是教材中首次出现的系统研究和认识金属及合金的性质、 冶炼、金属保护和用 途的内容。通过前几单元的学习,学生对物质的组成及表示方法、 质量守恒定律、化学方程 式等基础已经有了一定的了解, 对化学实验等探究性学习活动已经有了一定的实践体验。 在 此基础上安排了本单元内容,既能使学生用化学用语描述物质的性质和变化。 又能让学生进 一步学习和运用探究学习的方法。 厂 (物理性质 r * 与酸反应 》 置换反应 9硫酸铜反应/金属活动顺序 “性能 电 「用途 t 金属的锈蚀的条件 1、 知识与技能目标 了解金属的物理特征,能区分常见的金属和非金属;认识金属材料在生产、生活和社会 发展中的重要作用。知道常见的金属(铁、铝、铜)与氧气的反应;初步认识常见金属 与盐酸、稀硫酸的置换反应,以及与部分盐溶液的置换反应,能用置换反应解释一些与 日常生活有关的化学问题。能用金属活动性顺序表对有关的置换反应进行简单的判断, 并能解释日常生活中的一些现现象。知道一些常见金属(铁、铝)等矿物;了解从铁矿 石中将还原出来的方法。了解常见金属的特性及其应用,认识加入其他元素可以改良金 属特性的重要性;知道生铁和钢等重要的合金。知道废弃金属对环境的污染,认识回收 金属的重要性。会根据化学方程式对含有某些杂质的反应物或生成物进行有关计算。了 解金属锈蚀的条件以及防止金属锈蚀的简单方法。 2、 过程与方法 ⑴通过对生活中常见的一些金属材料选择的讨论引导学生从多角度分析问题。 ⑵通过金属活动顺序探究实验,让学生进一步学习和运用探究性学习方法。 3、 情感态度与价值观 ⑴通过日常生活中广泛使用金属材料等具体事例, 认识金属材料与人类生活和社会发展 的密切关系。 ⑵引导学生主动参与知识的获取过程,学习科学探究的方法,培养学生进行科学探究的 能力。 ⑶通过废弃金属对环境的污染,让学生树立环保意识。认识金属资源保护的重要性,让 学生产生金属资源的危机意识。 【重点、难点扫描 】 【知识结构透视】 【单元目标聚焦】

环境监测中的重金属元素分析方法研究探讨

环境监测中的重金属元素分析方法研究探讨 发表时间:2020-01-14T09:38:53.690Z 来源:《基层建设》2019年第28期作者:王芳 [导读] 摘要:重金属污染源多,具有生物积累性,且对生物和环境具有一定的危害性。 广西保利环境监测有限公司广西柳州 545000 摘要:重金属污染源多,具有生物积累性,且对生物和环境具有一定的危害性。本文结合重金属元素的特性,对重金属污染来源及其危害进行阐述,并对重金属元素的前处理、干扰消除及分析方法进行讨论。 关键词:环境监测;重金属元素;方法 引言 目前,我国经济和社会迅速发展,为工业发展提供了良好的基础,使工业得到发展,但发展工业的同时也给环境带来了各种各样的污染,其中重金属毒性最强,污染最严重,也最难控制,已经严重危害人们的健康和污染生态环境。因此有关部门将重金属污染治理列为环境保护工作的重点,加强了环境法律法规的宣传,并开展了各项治理工作。因此重金属污染源监测是我国环境保护工作的重要组成部分,为污染源环境保护管理工作提供了大量的基础数据和决策依据。 一、重金属污染源 重金属污染是由多个方面以及综合因素造成的。据调查研究显示,重金属污染主要来自工业生产、农业生产、城市生活和环境事故污染等。工业上,冶炼厂矿石的采集、筛选、冶炼、加工等环节产生了大量废弃的重金属,部分企业排放重金属含量未达标的废气、废水和废渣;农业上,过度地施用含有重金属较多的化肥和农药,造成残留的重金属进入水体和土壤中;在城市生活中,汽车轮胎磨损和尾气排放、含铅汽油的燃烧、生活垃圾焚烧等都会引起重金属污染;在环境事故上,突发的环境污染事故也会带来环境污染,比如近年来中国十大污染事故中的湖南浏阳镉污染事件、云南曲靖铬渣污染、广西龙江镉污染事件等。这些重金属分别以液态、气态、固态的形式进入水体、土壤、空气中。 二、重金属污染的危害 重金属污染还被列入“中国环境优先污染物黑名单”中。优先污染物具有难降解,在环境中有一定残留水平,出现频率较高,具有生物积累性,具有致癌、致畸、致突变(“三致”)性质、毒性较大。 由于大自然中存在食物链,重金属能通过水体、土和空气进入到植物和动物体内。进入人体的重金属,会与蛋白质、核酸等发生作用,引起酶失活,改变了蛋白质的结构,这种改变是不可逆的,进而破坏组织细胞功能,引起疾病。另外重金属还会富集在人体内脏中,难排泄,造成积累性慢性中毒。典型重金属急性中毒症状有恶心、呕吐、头痛等现象,慢性中毒会导致贫血、神经病变、癌症等疾病,严重的会导致死亡。 三、重金属元素分析方法综述 环境监测中,受重金属污染的样品主要包括固体和液体两大类,采集到的样品在分析测试前都要根据样品分析方法进行前处理排除干扰,并转化为适应仪器检测的状态。重金属的分析方法主要包括电化学法和光学分析法两大类,目前常用的光学分析方法主要包括紫外可见分光光度法(UV-Vis)、原子吸收分光光度法(AAS)、原子荧光法(AFS)、电感耦合等离子体发射光谱法(ICP)等。在选择分析方法时,应该根据样品浓度高低、方法适用范围、分析方法检出限等因素综合考虑。 四、重金属元素分析的过程 1.前处理 分析过程中,前处理是分析工作中最重要的一个环节,可以排除或消除干扰,前处理的效果能直接影响结果的准确性。 由于水质基体成分较为复杂,常含有一些悬浮物或有机物,会吸附重金属,导致分析结果偏低,可以通过过滤和加酸消解等手段达到消除干扰的目的。分析可溶态金属时,在酸化前通常会对水样进行过滤,以除去悬浮物质,再对水样进行酸化保存,而分析金属总量时则直接对水样进行酸化保存,并加酸加热消解,使有机物在加热过程中挥发。 固体样品主要指的是沉积物和土壤等样品,这些材质较好分离,一般的处理方法有过滤分离法和使用酸性物质消解的方法。酸消解方法通常采用HCl-HNO3-HF-HClO4全分解法、HNO3-HCl-HF、HNO3-HCl、HNO3-HF-HClO4等体系。固体样品常用的消解方法有:电热消解法(电热板\石墨炉电热消解法)、微波消解法、水浴消解(王水)、碱熔法。电热板消解法属于经典消解法,但这种方法耗时长、样品容易受污染、挥发性元素损失量大。微波消解法操作简便、试剂用量减少、挥发性元素损失量小、不易受污染、减少有毒气体排放、热效率高,但微波消解仪价格相对昂贵,在分析中受限,因为样品称样量要控制在0.1g-1.0g,比较适合于AAS、AFS、ICP等仪器对重金属等微量元素的检测。王水水浴消解省时省力、效率高,可以做到一次消解分别测定多种元素,但不能完全破坏土壤的晶格,造成被硅酸盐包裹的部分金属元素无法释放出来,使测定结果偏低,仅适用于部分样品金属元素的消解。碱熔法属于高温加热消解,可以彻底破坏样品的晶格,使金属元素被释放出来,但操作过程繁琐,消解温度高,反应较为剧烈。虽然微波消解法的成本较高,方法受限,但仍受到广泛的利用,并开始成为了当下样品消解方法的主要应用手段。 2.干扰的消除 部分金属元素分析过程容易受到干扰,主要有物理干扰、化学干扰、电离干扰、光谱干扰等,这些干扰会影响检测结果,常常给检测工作带来困扰。但可以通过对样品进行前处理预先分离干扰物质;对待测溶液进行稀释来改变其物理性质(粘度、相对密度、表面张力等);采用标准加入法;对背景值进行校正;加基体改进剂、加助溶剂、加保护剂;调整仪器工作参数等手段来克服其它元素或因素的干扰。 3.分析方法 重金属分析方法的选择可以说是多种多样的。普遍使用的UV-Vis、AAS和AFS都有自己的优点,但自身也存在一定的局限性,比如:仪器灵敏度低,达不到实验要求,样品前处理繁琐复杂,干扰因素多,无法实现多组分或多元素同时分析,耗时长、费力,使得检测工作效率低,但其仪器操作简便,在运行和维护方面需要的成本相对低一些,因此仍受到部分消费者的喜爱。 近年来兴起的ICP主要应用于无机元素的定性及定量分析。相对UV-Vis、AAS和AFS传统方法,它灵敏度更高、检测限更低、线性范围更宽,可以实现多个元素或多组分同时分析,更加简单快速,样品消耗少,不需要复杂的前处理,并且分析过程不易受干扰,大大缩短检

相关文档
最新文档