(课内实践论文)光电效应与光伏效应的区别与联系

(课内实践论文)光电效应与光伏效应的区别与联系
(课内实践论文)光电效应与光伏效应的区别与联系

光电效应与光伏效应的区别与联系

[摘要] 介绍光电效应和光伏效应概念,以及光电效应在太阳能电池中的应用.

在光学学习过程中,光电效应与光伏效应是非常重要的两个概念,理解两者之间的联系与区别对光学的学习至关重要。1887年H·赫兹研究电火花的紫外光照射在火花隙缝的负电极上时,会有助于放电的现象,一年之后,德雷斯登的W·霍尔瓦克斯发现在光的影响下,物体会释放出负电。后来,就把光照射在金属表面时,金属中有电子逸出的现象,称为光电效应。所逸出的电子叫光电子。

对于光电效应的定义并不仅这一种,上述的表述只是其中之一.在《科学发现者物理原理与问题》表述为:电磁辐射照射到物体上并使其发射电子的现象叫做光电效应。然而,就在这本书的第743页却写道,太阳能电池板,就是利用光电效应把太阳能转化为电能的,而我们却知道,通常意义上的太阳能板,是没有电子逸出与收集的。

为什么会出现这样的情况呢?因为光电效应的定义是来自实验,而实验的本身,就有很多的局限性,比如,光的频率,实验物体的选定,电子是否逸出等等,并没有严谨的定义。不过目前,对光照射在金属表面时,金属中有电子逸出的现象,大家更习惯称之为外光电效应。

一般来说,对于光电效应,大家可以理解为两个过程。

(1)电子对光的吸收过程.在这过程中,大家有这样的共同理解:一是对于一定的金属材料做成的电极,有一个确定的临界频率,低于此频率,光电子不会逸出;二是逸出电子的末动能大小取决于物体的材料特性以及光子的频率,与光的强度无关;三是入射光频率高

10-s)。

于临界频率,立刻就可以观测到光电子(时间约为9

(2)电子获得光的能量之后的反应.电子逸出物体表面,而成为自由粒子,就是外光电效应,电子脱离原来原子核的束缚,成为在材料中的自由电子,就是内光电效应,这与电子在原子的各束缚能级间的跃迁是有区别的。所以,太阳能电池利用光电效应发电,是一种笼统的说法。

对于光伏效应,下面结合晶硅太阳能电池的结构,阐述它的内涵。

晶体硅太阳能电池制备时,先在晶硅内掺杂硼形成p型硅片,然后,在其一个表面重

p-结。

掺磷形成一层薄的n型硅,这样做的结果就是在硅片的内部形成了n

没有光照时,硅片中的自由电子从n型区向p型区扩散,形成扩散电流;n型区失去电子后呈现出正电荷特征,p型区由于得到电子呈现出负电荷特征,从而形成内建电场。内建电场的形成与不断壮大会阻碍电子的扩散运动,直至达到动态平衡状态为止。

当受到光照射时,束缚电子吸收光的能量,脱离原来原子核的束缚,成为光电子在硅片中运动,受n p -结内建电场的作用,p 型区中的光电子穿过n p -结,向n 区漂移,电荷的积累导致p 区电势高于n 区电势,从而,在背电极与前电极之间产生电压,即光生伏特。

通过以上叙述,我们可以知道,光生伏特效应是用适当的光照射非均匀半导体(n p -结等)时,由于内建电场的作用,半导体内部产生电动势的现象。由上述可知,光生伏特是内光电效应的一种特定表现形式。

组员签名:梁修东 李强

光电效应的应用

University 《近代物理实验》课程论文 光电效应的应用 学院: 专业: 学号: 学生姓名: 指导教师: 二〇一四年五月

光电效应的应用 1887年赫兹在做电磁波的发射与接收实验中,他发现当紫外光照射到接收电极的负极时,接收电极间更易于产生放电,即光生电。1900年普朗克在研究黑体辐射问题时,将能量不连续观点应用于光辐射,提出了“光量子”假说,从而给予了光电效应正确的理论解释。1905年爱因斯坦应用并发展了普朗克的量子理论,首次提出了“光量子”的概念,并成功地解释了光电效应的全部实验结果。密立根经过十年左右艰苦的实验研究,于1916年发表论文证实了爱因斯坦方程的正确性,并精确地测定了普朗克常数。 光电效应实验和光量子理论在物理学的发展史中具有重大而深远的意义。如今光电效应已经广泛地应用于现代科技及生产领域,利用光电效应制成的光电器件(如光电管、光电池、光电倍增管等)已广泛用于光电检测、光电控制、电视录像、信息采集和处理等多项现代技术中。 1.光控制电器 在工业制造上,大部分光电控制的设备都要用到光控制电器。它包括电磁继电器、光电管、放大电路和电源等部件。如下图所示,当有光照在光电管K上时,便产生了电流,经过放大器后,使电磁铁M磁化,从而把衔铁N吸住。而当K上没光照射时,光电管电路就没有了电流,这时M和N便会自动离开。在实际的应用中,为了使射出的光线是一束平行光,我们把光源装在平行光管内,这样的平行光管在工程上称为发射头。光电管(多数情况下是用光敏二极管)也装在一个光管内(管末端装有聚光透镜),这种管在工程上称为接受头。 利用光电管制成的光控制电器,可以用于自动控制,如自动计数、自动报警、自动跟踪等等。如记录生产线上的产品件数。我们把产品放在传送带上,跟着传送带一起运动。在传送带的两则分别装上发射头和接收头。发射头所发射的平行光正好射入接收头。这时从发射头发出的光线射入接收头时,电路中所产生的电流,经过放大器放大,使电磁铁M磁化,吸引衔铁N,这时计数器的齿轮被卡住,计数器不发生动作。每逢产品把光线挡住的时候,电路中的电流就会消失,电磁铁自动放开衔铁,使计数器的齿轮转过一齿。这样,计数就自 动地把产品的数目记录下来。]1[ 2.光电倍增管在电视图像中应用

光电效应与康普顿效应比较

光电效应与康普顿效应的比较 周嘉夫 (天水师范学院物理与信息科学学院,甘肃天水741001) 摘要: 光电效应和康普顿效应是光的粒子性的两个重要证据,通过对两效应实验规律的比较及产生条件的分析,论述两效应之间存在的本质差异,进一步说明光电效应和康普效应虽然都是光子与原子的作用过程,但产生条件和现象却是根本不同的。 关键词:光电效应康普顿效应光子散射电子自由电子差异能量作用比较 The Comparison of Photoelectric Effect and Konpton Effect Zhou Jiafu ( School of Physics and Information Science, Tianshui Normal university, 741001) Abstract:Photoelectric effect and Compton effect is the particle nature of light are two important evidence. Effect of the two experiments and production of comparative law analysis of the conditions discussed between the two effects of differences in the photoelectric effect and further Compton Effect Although they are both the role of photon and atom, but phenomena arising from the conditions and it is step-by-step with the fundamental. Key words:Scattering, Electron, PhotoelectricEffect, Konpton Effec,Free Electron,Photon,Function,Energy,Comparison

光电效应例题汇总

右图中,锌板带正电,验电器也带正电。 光电效应中,金属板发射出来的电子叫光电子,光电子的定向移动可以形成光电流。 相关知识:电磁波按照频率依次增大(波长依次减小)的顺序排列: 无线电波→红外线→可见光→紫外线→x射线→γ射线 可见光又分为7中颜色:红、橙、黄、绿、蓝、靛、紫。 光的频率和颜色是对应关系,一个频率对应一种光的颜色。单色光就是单一频率的光。 光照强度:单位时间内照射到单位面积上的光的能量。(光线和接收面垂直时) 通俗讲,光照强度大就是光线密集的意思。房间里开一盏灯时没有开两盏灯光照强度大。 光电效应的规律:(右图为研究光电效应的电路图) 1.光电管中存在饱和电流。当光照强度、光的颜色一定时,光电流随着AK极之间的电压增大而增大,但是当电压增大到一定程度以后,光电流就不再增大了,光电流能达到的最大值叫饱和电流。 控制光的颜色,饱和电流与光照强度有关,光照越强则饱和电流越大。 2.光电管两端存在着遏止电压。当A、K极之间电压为零时,光电流并不为零。当在A、K极加反向电压时,即A极为负极板,K极为正极板时,光电子在两极之间减速运动。反向电压越大,光电流越小,当反向电压达到某一值时,光电流消失,能够使光电流消失的反向电压叫遏止电压,用U C表示。 遏止电压与光照强度无关,只与入射光的频率有关,频率越大则遏止电压越大。 右图中,甲乙丙三种光的频率大小关系? 甲、乙的光照强度大小关系? 乙、 3.金属能否发生光电效应取决于入射光的频率,与光照强度和光照时间无关。 当入射光的频率低于某一值时,无论光照多强,时间多长都不会发生光电效应。而这一值叫做截止频率,又叫极限频率,用νc表示。 4.如果入射光的频率超过了截止频率,无论光照强度多么弱,发生光电效应仅需10-9s。 爱因斯坦为了解释光电效应,提出了光子说: 1.在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光子,光子的能量E=hν。ν指光的频率。 2.金属中的自由电子吸收光子能量时,必须是一次只能吸收一个光子,而且不能累计吸收。 3.光子不能再分,自由电子吸收光子时要么是全部吸收,要么不吸收。 4.自由电子吸收光子仅需10-9s。

光电效应以与普朗克常数的测量

实验二十九 光电效应及普朗克常数的测量 光电效应是指一定频率的光照射在金属表面时会有电子从金属表面逸出的现象。光电效应实验对于认识光的本质及早期量子理论的发展,具有里程碑式的意义。普朗克常数是量子力学当中的一个基本常量,它首先由普朗克在研究黑体辐射问题时提出,其值约为 s J h ??=-3410626069.6,它可以用光电效应法简单而又较准确地求出。 1905年,爱因斯坦借鉴了普朗克在黑体辐射研究中提出的辐射能量不连续观点,并应用于光辐射,提出了“光量子”概念,建立了光电效应的爱因斯坦方程,从而成功地解释了光电效应的各项基本规律,使人们对光的本性认识有了一个飞跃。1916年密立根用实验验证了爱因斯坦的上述理论,并精确测量了普朗克常数,证实了爱因斯坦方程。因光电效应等方面的杰出贡献,爱因斯坦与密立根分别于1921年和1923年获得了诺贝尔奖。作为第一个在历史上实验测得普朗克常数的物理实验,光电效应的意义是不言而喻的。 一、实验目的 1. 了解光电效应的规律,加深对光的量子性的理解。 2. 测量普朗克常数h 。 二、实验仪器 仪器由汞灯及电源、滤色片、光阑、光电管、测试仪(含光电管电源和微电流放大 器)构成,仪器结构如图1所示,测试仪的调节面板如图2所示。 汞灯:可用谱线365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 、579.0nm 滤色片:5片,透射波长365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 光阑:3片,直径分别为2mm 、4mm 、8mm 光电管:阳极为镍圈,阴极为银-氧-钾(Ag-O-K ),光谱响应围320~700nm ,暗电流:I ≤2×10-13A (-2V≤U AK ≤0V ) 光电管电源:2档,-2~0V ,-2~+30V ,三位半数显,稳定度≤0.1% 图1 仪器结构示意图 1 2 3 4 5 6 7 8 9 1测试仪; 2光电管暗盒; 3光电管; 4光阑选择圈; 5滤色片选择圈; 6基座; 7汞灯暗盒; 8汞灯; 9汞灯电源

大学物理实验 光电效应测量普朗克常量

实验题目:光电效应测普朗克常量 实验目的: 了解光电效应的基本规律。并用光电效应方法测量普朗克常量和测定光电管的光电特性曲线。 实验原理: 当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分 则转换为物体中某些电子的能量,使电子逸出物体表面,这种现象称为光电 效应,逸出的电子称为光电子。 光电效应实验原理如图1所示。 1. 光电流与入射光强度的关系 光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后, 光电流达到饱和值和值I H ,饱和电流与光强成正比,而与入射光的频率无关。 当U= U A -U K 变成负值时,光电流迅速减小。实验指出,有一个遏止电位差U a 存在,当电位差达到这个值时,光电流为零。 2. 光电子的初动能与入射频率之间的关系 光电子从阴极逸出时,具有初动能,在减速电压下,光电子逆着电场力方向由K 极向A 极运动。当U=U a 时,光电子不再能达到A 极,光电流为零。所以电子的初动能等于它克服电场力作用的功。即 a eU mv 2 2 1 (1) 每一光子的能量为hv ,光电子吸收了光子的能量hν之后,一部分消耗于克服电子的逸出功A,另一部分转换为电子动能。由能量守恒定律可知:A mv hv 2 2 1 (2) 由此可见,光电子的初动能与入射光频率ν呈线性关系,而与入射光的强度无关。 3. 光电效应有光电存在 实验指出,当光的频率0v v 时,不论用多强的光照射到物质都不会产生光电效应,根据式(2), h A v 0,ν0称为红限。 由式(1)和(2)可得:A U e hv 0,当用不同频率(ν1,ν2,ν3,…,νn )的单色光分 别做光源时,就有:A U e hv 11,A U e hv 22,…………,A U e hv n n ,

光电效应及其应用论文

光电效应及其应用 摘要:本文介绍了光电效应的概念、实验规律以及一些在近代中的应用,并且简单明了的讲解了一些光电效应的基本原理。 关键词:内光电效应;外光电效应;波粒二象性;光电器件; 引言:光电效应是物理学中一个重要而神奇的现象。在高于某特定频率的电磁波照射下,某些物质内部的电子会被光子激发出来而形成电流,即光生电。光电现象由德国物理学家赫兹于1887年发现,而正确的解释为爱因斯坦所提出。科学家们在研究光电效应的过程中,物理学者对光子的量子性质有了更加深入的了解,这对波粒二象性概念的提出有重大影响。 1、光电效应的概念 光照射到某些物质上,有电子从物质表面发射出来的现象称之为光电效应(Photoelectric effect)。这一现象最早是1887年赫兹在实验研究麦克斯韦电磁理论时偶然发现的。之后霍尔瓦克斯、J·J·汤姆孙、勒纳德分别对这种现象进行了系统研究,命名为光电效应,并得出一些实验规律。 1905年,爱因斯坦在《关于光的产生和转化的一个启发性观点》一文中,用光量子理论对光电效应进行了全面的解释。1916年,美国科学家密立根通过精密的定量实验证明了爱因斯坦的理论解释,从而也证明了光量子理论,使其逐渐地被人们所接受。 2、内、外光电效应 光电效应分为:内光电效应和外光电效应。光电效应中多数金属中的光电子只能从靠近金属表面内的浅层(小于m )逸出,不能从金属内深层逸出的结论。光波能量进入金属表面后不到1μm的距离就基本被吸收完了。 外光电效应是被光激发产生的电子逸出物质表面,形成真空中的电子的现象。内光电效应是被光激发所产生的载流子(自由电子或空穴)仍在物质内部运动,使物质的电导率发生变化或产生光生伏特的现象。分为光电导效应和光生伏特效应。 外光电效应:当光照射某种物质时,若入射的光子能量足够大,它和物质中的电子相互作用,致使电子逸出物质表面,这就是外光电效应,逸出物质表面的电子叫做光电子。 利用光电子发射材料可以制成各种光电器件。光电倍增管(Photomultiplier Tube)是一种建立在外光电效应、二次电子效应和电子光学理论基础上的,把微弱入射光转换成光电子并获倍增的真空光电发射器件。 内光电效应:现代很多光电探测器都是基于内光电效应,其中光激载流子(电子和空穴)保留在材料内部。最重要的内光电效应是光电导,本征光电导体吸收一个光子,就会从价带激发到导带,产生一个自由电子,同时在价带产生一个

大学物理练习题 光电效应 康普顿效应

练习二十一光电效应康普顿效应 一、选择题 1. 已知一单色光照射在钠表面上,测得光电子的最大动能是1.2eV,而钠的红限波长是540nm,那么入射光的波长是 (A) 535nm。 (B) 500nm。 (C) 435nm。 (D) 355nm。 2. 光子能量为0.5MeV的X射线,入射到某种物质上而发生康普顿散射。若反冲电子的动能为0.1MeV,则散射光波长的改变量?λ与入射光波长λ0之比值为 (A) 0.20。 (B) 0.25。 (C) 0.30。 (D) 0.35。 3. 用频率为ν的单色光照射某种金属时,逸出光电子的最大动能为E k,若改用频率为2ν的单色光照射此种金属,则逸出光电子的最大动能为 (A)hν+E k。 (B) 2hν?E k。 (C)hν?E k。 (D)2E k。 4. 下面这此材料的逸出功为:铍,3.9eV;钯, 5.0eV;铯,1.9eV;钨,4.5eV。要制造能在可见光(频率范围为3.9×1014Hz-7.5×1014Hz)下工作的光电管,在这此材料中应选: (A)钨。 (B)钯。 (C)铯。 (D)铍。 5. 光电效应和康普顿效应都包含有电子与光子的相互作用过程。对此过程,在以下几种理解中,正确的是: (A) 光电效应是电子吸收光子的过程,而康普顿效应则是光子和电子的弹性碰撞过程。 (B) 两种效应都相当于电子与光子的弹性碰撞过程。 (C) 两种效应都属于电子吸收光子的过程。 (D) 两种效应都是电子与光子的碰撞,都服从动量守恒定律和能量守恒定律。 6. 一般认为光子有以下性质 (1) 不论在真空中或介质中的光速都是c; (2) 它的静止质量为零; (3) 它的动量为hν/c2; (4) 它的动能就是它的总能量; (5) 它有动量和能量,但没有质量。 以上结论正确的是 (A)(2)(4)。 (B)(3)(4)(5)。 (C)(2)(4)(5)。 (D)(1)(2)(3)。 7. 某种金属在光的照射下产生光电效应,要想使饱和光电流增大以及增大光电子的初动能,应分别增大照射光的

光电效应以及普朗克常数的测量

实验二十九 光电效应及普朗克常数的测量 光电效应是指一定频率的光照射在金属表面时会有电子从金属表面逸出的现象。光电效应实验对于认识光的本质及早期量子理论的发展,具有里程碑式的意义。普朗克常数是量子力学当中的一个基本常量,它首先由普朗克在研究黑体辐射问题时提出,其值约为s J h ??=-3410626069.6,它可以用光电效应法简单而又较准确地求出。 1905年,爱因斯坦借鉴了普朗克在黑体辐射研究中提出的辐射能量不连续观点,并应用于光辐射,提出了“光量子”概念,建立了光电效应的爱因斯坦方程,从而成功地解释了光电效应的各项基本规律,使人们对光的本性认识有了一个飞跃。1916年密立根用实验验证了爱因斯坦的上述理论,并精确测量了普朗克常数,证实了爱因斯坦方程。因光电效应等方面的杰出贡献,爱因斯坦与密立根分别于1921年和1923年获得了诺贝尔奖。作为第一个在历史上实验测得普朗克常数的物理实验,光电效应的意义是不言而喻的。 一、实验目的 1. 了解光电效应的规律,加深对光的量子性的理解。 2. 测量普朗克常数h 。 二、实验仪器 仪器由汞灯及电源、滤色片、光阑、光电管、测试仪(含光电管电源和微电流放大 器)构成,仪器结构如图1所示,测试仪的调节面板如图2所示。 汞灯:可用谱线365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 、579.0nm 滤色片:5片,透射波长365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 光阑:3片,直径分别为2mm 、4mm 、8mm 光电管:阳极为镍圈,阴极为银-氧-钾(Ag-O-K ),光谱响应范围320~700nm ,暗电流:I ≤2×10-13A (-2V≤U AK ≤0V ) 图1 仪器结构示意图 1 2 3 4 5 6 7 8 9 1测试仪; 2光电管暗盒; 3光电管; 4光阑选择圈; 5滤色片选择圈; 6基座; 7汞灯暗盒; 8汞灯; 9汞灯电源

光电效应测普朗克常量

实验题目:光电效应法测普郎克常数 实验目的:了解光电效应的基本规律,并用光电效应方法测量普朗克常量和测定光电管的光电特性曲线 实验仪器:光电管、滤波片、水银灯、相关电学仪器 实验原理:当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分则转换为物体中某 些电子的能量,使电子逸出物体表面,这种现象称为光电效应,逸出的电子称为光电子。在光电效应中,光显示出它的粒子性质,所以这种现象对认识光的本性,具有极其重要的意义。 光电效应实验原理如图8.2.1-1所示。其中S 为真空光电管,K 为阴极,A 为阳极。当无光照射 阴极时,由于阳极与阴极是断路,所以检流计G 中无电流流过,当用一波长比较短的单色光照射到阴极K 上时,形成光电流,光电流随加速电位差U 变化的伏安特性曲线如图8.2.1-2所示 1、光电流与入射光强度的关系 光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值 和值I H ,饱和电流与光强成正比,而与入射光的频率无关。当U= U A -U K 变成负值时,光电流迅速减小。实验指出,有一个遏止电位差U a 存在,当电位差达到这个值时,光电流为零。 2、光电子的初动能与入射频率之间的关系 光电子从阴极逸出时,具有初动能,在减速电压下,光电子逆着电场力方向由K 极向A 极 运动。当U=U a 时,光电子不再能达到A 极,光电流为零。所以电子的初动能等于它克服电 场力作用的功。即 a eU mv =2 2 1 根据爱因斯坦关于光的本性的假设,光是一粒一粒运动着的粒子流,这些光粒子称为光子。 每一光子的能量为hv =ε,其中h 为普朗克常量,ν为光波的频率。所以不同频率的光波对应光子的能量不同。光电子吸收了光子的能量h ν之后,一部分消耗于克服电子的逸出功A ,另一部分转换为电子动能。由能量守恒定律可知 A mv hv += 2 2 1 (2) 式(2)称为爱因斯坦光电效应方程。

光电效应的发现和研究

赫兹发现新奇效应 ——光电效应的发现和研究 光是微粒还是波,这是一个从牛顿时代就有争议的问题。光的直进性、反射和折射可以用微粒说解释;光的干涉、衍射等现象以及光速与媒质的关系却令人信服地表明光的波动性。到了20世纪初,对光的研究深入到光的发生、光与物质相互作用等领域,光电效应的发现和研究,使人们对光的本性又有了新的认识:光既是波,又是微粒,也就是说,光具有波粒二象性。 光电效应是指在光的作用下从物体表面释放电子的现象,确切地 说,这个现象应该叫做光电发射效应。1887年,赫兹在进行电磁波实验时,注意到电极之间的放电,会受光辐射的影响。这种影响他事前毫无考虑。当时,他用的是两套放电电极,一套产生电振荡,发出电磁波,

如图40-l中的A;另一套当做接收电极,如图1中的B,接收电极的放电间隙可随意调节,它的最大放电间隙即可表示信号的强度。为了便于观察放电火花,赫兹用暗箱把接收电极的回路蒙起来。有一次赫兹发觉接收回路蒙住后,最大火花长度明显变小了。他没有放过这一偶然现象,潜心地研究起来,想找到出现这一现象的原因。于是他陆续挪开暗箱的各个部分,直到证明这个效应是由于箱体有一部分挡住了原回路和次回路之间的通道。然后,他用各种材料挡在通道上试验,发现导体和非导体作用相同,证明不是由于静电或电图1 赫兹的光电效应实验 磁的屏蔽作用。 接着,他用各种透明和不透明的材料进行试验,发现能透光的玻璃仍然起隔离作用,看来光的因素应该排除;岩盐、冰糖、明矾放在通道中,有程度不同的隔离作用,基本上是透明的,最好的是水晶和透明石膏,几乎完全不影响放电。几厘米厚的水晶都不起隔离作用。可见,是紫外光在起作用。他再用紫外光照射负电极。效果最为显著,说明负电极更易于放电。赫兹是一位工作非常谨慎的物理学家,他不轻率对现象作解释,只是如实在论文《紫外光对放电的影响》中作了记载,这篇论文在1887年发表于《物理学年报》上。赫兹发现光电效应有一定的偶然性,但并不是唾手可得的成果,而是经过极其细致的观察和分析才得到的。引人深思的是,这个对光的粒子性有重要意义的效应,恰恰是在证实它的对立面——电磁波的实验中发现的。这不正好说明物质世界的波粒二象性吗? 赫兹的论文发表后,立即引起人们注意,因为似乎这个现象可以导致光直接变成电。许多物理学家纷纷投人光电效应的研究之中。

(完整版)光电效应练习题(含答案)

光电效应规律和光电效应方程 一、选择题 1.下列关于光电效应实验结论的说法正确的是() A.对于某种金属,无论光强多强,只要光的频率小于极限频率就不能产生光电效应 B.对于某种金属,无论光的频率多低,只要光照时间足够长就能产生光电效应 C.对于某种金属,超过极限频率的入射光强度越大,所产生的光电子的最大初动能就越大 D.对于某种金属,发生光电效应所产生的光电子,最大初动能与入射光的频率成正比 【解析】选A. 发生光电效应的条件是入射光的频率大于金属的极限频率,与入射光的强度、光照时间无关,所以光的频率小于极限频率就不能产生光电效应,故A正确,B错误.根据光电效应方程E k=hν-W0,可知入射光的频率大于极限频率时,频率越高,光电子的最大初动能越大,与入射光强度无关,故C错误.根据光电效应方程E k=hν-W0,可知光电子的最大初动能与入射光的频率是一次函数关系,故D错误. 2.在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是() A.增大入射光的强度,光电流增大 B.减小入射光的强度,光电效应现象消失 C.改用频率小于ν的光照射,一定不发生光电效应 D.改用频率大于ν的光照射,光电子的最大初动能变大 【解析】选AD.增大入射光强度,单位时间内照射到单位面积的光电子数增加,则光电流将增大,故选项A正确;光电效应是否发生取决于照射光的频率,而与照射强度无关,故选项B错误;用频率为ν的光照射光电管阴极,发生光电效应,用频率较小的光照射时,若光的频率仍大于极限频率,则仍会发生光电效应,选项C错误;根据hν-W0= 2 1 mv2可知,增加照射光频率,光电子的最大初动能也增大,故选项D正确. 3.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针就张开了一个角度,如图所示,这时() A.锌板带正电,指针带负电B.锌板带正电,指针带正电C.锌板带负电,指针带正电D.锌板带负电,指针带负电 【解析】选B.弧光灯照射锌板发生光电效应,锌板上有电子逸出,锌板带正电,验电器指针也带正电,故B正确 4.关于光电效应有如下几种叙述,其中叙述正确的是() A.金属的逸出功与入射光的频率成正比 s

大物实验报告光电效应测量普朗克常量和金属逸出功

大连理工大学 大学物理实验报告 院(系)材料学院专业材料物理班级0705 姓名童凌炜学号200767025 实验台号 实验时间2009 年04 月24 日,第九周,星期五第5-6 节 实验名称光电效应测量普朗克常量和金属逸出功 教师评语 实验目的与要求: 1.通过测量不同频率光照下光电效应的截止电压来计算普朗克常量 2.获得阴极材料的红限频率和逸出功 主要仪器设备: 1.光电效应实验仪(GGQ-50 高压汞灯,GDh-I型光电管电流测量仪) 2.滤光片组(通光中心波长分别为365.0nm, 404.7nm, 435.8nm, 546.1nm, 577.0nm) 3.圆孔光阑Φ=5mm, Φ’=10mm 4.微电流仪 实验原理和内容: 1.理想光电效应 光电效应实验装置如右上图所示,阴极K收到频率为v的单 色光照射时,将有光电子由K逸出到达阳极A,形成回路 电流I,可以由检流计G所检测到。通过V来监控KA两 端的电压变化,结合G所得到的电流值,可以得到U与光电 流I之间的关系,如右下图所示。 根据爱因斯坦的解释,单色光光子的能量为E=hv,金属中的电 子吸收了光子而获得了能量,其中除去与晶格的相互作用和克

服金属表面的束缚(金属的逸出功A )外, 剩余的便是逸出光电子的动能, 显然仅仅损失了逸出功的光电子具有最大动能: A hv mv M -=2 2 1。 实验中所加的光电管电压U 起到协助光电流I 形成的作用, 当不加电压U 时, 到达阳极的光电子很少, 光电流十分微弱; 当加上正向电压时, 便有更多的光电子到达阳极, 使得I 增大, 而所有的光电子都被吸引到阳极形成电流时, I 到达最大值, 此时再增大U 也不会改变I , 成为饱 和光电流I M , 饱和光电流在光频率一定时, 与光照强度成正比。 如果在光电管两极加反向电压便可以组织光电子到达阳极形成光电流, 当反向电压增大到光电流等于零时, 可知光电子的动能在电场的反向作用下消耗殆尽, 有以下关系式:a M eU mv =2 2 1 , 其中U a 成为截止电压。 结合以上最大动能的表达式可知, e A v e h U a -=, 如左图做出其对应的图像, 可知直线的斜率为 e h k =, 截距为e A U =0。 图中斜线与x 轴的交点对应的频率v0 称为阴极材料的红限频率, 照射光小于这个频率时, 无法产生光电效应(入射光光子能量小于电子的逸出功)。 显然, 通过测量多组v 和Ua , 便可以通过计算函数表达式而得到A 、h 、v0。 2. 实验中相关影响因素的修正 1, 暗电流修正 暗电流指没有光照时, 由于金属表面的隧道效应、 光电管漏电、 热噪声等原因造成的由K 向A 逸出电子形成的电流。 由于暗电流对截止电压的影响不大, 实验中可以使用无光照测量电流的方法测出暗电流值, 在后期处理中将其剔除。 2, 阳极电流修正 由于KA 两级距离很近, 光照时阳极的材料同样可以发生一定程度的光电效应而发射光电子, 当光电管加的是反向电压时, 就会使阳极光电子到达阴极形成阳极电流。 在U-I 曲线上阳极电流的影响就是使在负向电压区的阴极电流出现负值下沉, 由于阳极光电子数目有限且相比阴 极较少, 故阳极电流很快达到饱和, 可见实验中截止电压对应的实际情况是总体电流趋于反向稳定时的电压值。

(整理)光电效应法测量普朗克常量

实验简介 1905年,年仅26岁的爱因斯坦(A.Einstein)提出光量子假说,发表了在物理学发展史上具有里程碑意义的光电效应理论,10年后被具有非凡才能的物理学家密里根(Robert Millikan)用光辉的实验证实了。两位物理大师之间微妙的默契配合推动了物理学的发展,他们都因光电效应等方面的杰出贡献分别于1921年和1923年获得诺贝尔物理学奖。 光电效应实验及其光量子理论的解释在量子理论的确立与发展上,在解释光的波粒二象性等方面都具有划时代的深远意义。利用光电效应制成的光电器件在科学技术中得到广泛的应用,并且至今还在不断开辟新的应用领域,具有广阔的应用前景。 本实验的目的是了解光电效应基本规律,并用光电效应方法测量普朗克常量和测定光电管的光电特性曲线。 实验原理 当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分则转换为物体中某些电子的能量,使电子逸出物体表面,这种现象称为光电效应,逸出的电子称为光电子。在光电效应中,光显示出它的粒子性质,所以这种现象对认识光的本性,具有极其重要的意义。 光电效应实验原理如图8.2.1-1所示。其中S为真空光电管,K为阴极,A 为阳极。当无光照射阴极时,由于阳极与阴极是断路,所以检流计G中无电流流过,当用一波长比较短的单色光照射到阴极K上时,形成光电流,光电流随加速电位差U变化的伏安特性曲线如图8.2.1-2所示。

?光电流与入射光强度的关系 光电流随加速电位差U的增加而增加,加速电位差增加到一定量值后,光电 流达到饱和值,饱和电流与光强成正比,而与入射光的频率无关。当 变成负值时,光电流迅速减小。实验指出,有一个遏止电位差存在,当电位差达到这个值时,光电流为零。 ?光电子的初动能与入射光频率之间的关系 光电子从阴极逸出时,具有初动能,在减速电压下,光电子在逆着电场力方 向由K极向A极运动。当时,光电子不再能达到A极,光电流为零。所以电子的初动能等于它克服电场力所作的功。即 (1) 根据爱因斯坦关于光的本性的假设,光是一粒一粒运动着的粒子流,这些光 粒子称为光子。每一光子的能量为,其中为普朗克常量,为光波的频 率。所以不同频率的光波对应光子的能量不同。光电子吸收了光子的能量之后,一部分消耗于克服电子的逸出功A,另一部分转换为电子动能。由能量守恒定律可知

光电子技术(论文)

本文由gdl_herb贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 光电子技术及产业发展 摘要: 光电子器件和部件广泛应用于长距离大容量光纤通信,光存储,光显示,光互联, 光信息处理,激光加工,激光医疗和军事武器装备,预期还会在未来的光计算中发挥重要作用.本文将介绍国内外光电子技术及光电子产业的发展. 关键词:世界光电子技术和产业的发展 ;我国的光电子技术和产业引文: 如果说微电子技术推动了以计算机,因特网,光纤通信等为代表的信息技术的高速发展,改变了人们的生活方式,使得知识经济初见端倪,那么随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用.美国商务部指出: "90 年代, 全世界的光子产业以比微电子产业高得多的速度发展, 谁在光电子产业方面取得主动权, 谁就将在 21 世纪的尖端科技较量中夺魁" .日本《呼声》月刊也有类似的评论: "21 世纪具有代表意义的主导产业,第一是光电子产业,第二是信息通信产业,第三是健康和福利产业……" ,可以断言,光电子技术将继微电子技术之后再次推动人类科学技术的革命. 1 世界光电子技术和产业的发展光纤通信技术的发展速度远远超过当初人们的预料, 光纤已经成为通信网的重要传输媒介,现在世界上大约有 60%的通信业务经光纤传输,到 20 世纪末将达到 85%,但从目前光纤通信的整体水平来看, 仍处于初级阶段, 光纤通信的巨大潜力还没有完全开发出来. 目前, 各种新技术层出不穷,密集波分复用技术(DWDM,在同一根光纤内传输多路不同波长的光信号,以提高单根光纤的传输能力) ,掺铒光纤放大器技术(EDFA,可将光信号直接放大, 具有输出功率高,噪声小,增益带宽等优点)已取得突破性进展并得到广泛的应用.现在 DWDM 系统和光传输设备中,光电技术的比例将从过去比重不到 10%达到 90%.一种全新的,无需进行任何光电变换的光波通信——"全光通信" ,由于波分复用技术和掺铒光纤放大器技术的进展,也日趋成熟,将在横跨太平洋和大西洋的通信系统上首次使用,给全球的通信业带来蓬勃生机. 为此提供支撑的就是半导体光电子器件和部件. 光电子器件和技术已形成一个快速增长的,巨大的光电子产业,对国民经济的发展起着越来越大的作用.美国光电子产业振兴协会估计,到 2003 年,光电子产业的总产值将达 2000 亿美元. Internet 应用的飞速增长对电信骨干网带宽提出越来越高的需求,为满足需求的增长, 人们可以铺设更多的光纤,或靠提高单路光的信息运载量(现在主干网可以分别工作在 2.5Gbps 和 10Gbps, 并已有 40Gbps 的演示性设备) 但更主要的方法却是靠发展波分复用技 . 术,增加光纤内通光的路数(光波分复用的实验记录已经达到 2.64Tbps) .波分复用技术的普遍运用为光电子器件和部件提供了广阔的,快速增长的市场.无限战略公司的报告指出: "信号传输用 1.31μm 和 1.55μm 激光器市场 1999 年达到 13 亿美元,比去年增加 23%; 1.48μm 信号放大用激光器 1999 年市场份额达到 1.6 亿美元,比去年增加33%;980nm 信号放大用激光器销售额达 2.9 亿美元, 比去年增长 121%. 整个激光器市场的份额 1999 年达 18 亿美元, 预期 2003 年将达到 30 亿美元" 美国通信工业研究公司 . (CIR) 的研究预测, 北美市场光电子部件的市场规模将由目前的 28 亿美元增长到2003 年的 61 亿美元,约每年增长 18.5%. 密集波分复用设备销售额也将从 1998 年的 22 亿美元增加到 2004 年的 94 亿美元.报告称虽然 10 年内全光通信还不会全面商业化,但是全光交换将在几年内成为市场主 流,报告也指出尽管光学部件市场被大公司所占据,但仍有创新性公司进入的可能. 2 我国的光电子技术和产业近 10 年来我国光电子技术研究在国家 "863" 计划和有关部门的支持下有了突飞猛进的进展,在很多领域同国外先进国家只有两三年的距离,个别领域还处于世界领先地位. 国内光电子有关产业基地在光电子器件,部件和子系统(如激光器,探测器,光收发模块,EDFA,无源光器件)等已经占领了国内较大的市场份额,初步具备同国外大公司竞争的能力,在毫无市场保护的情况下,靠自己的力量争得了一席之地,市场营销逐年有较大

光电效应习题(有答案)..

黑体辐射和能量子的理解 一、基础知识 1、能量子 (1)普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的整数倍.即能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值£叫做能量子. ⑵能量子的大小:£= h v ,其中v是电磁波的频率,h称为 普朗克常量.h = 6.63 x 10 -34 J ? S. 2、光子说: (1)定义:爱因斯坦提出的大胆假设。内容是:空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子.光子的能量为£= h V,其中h是普朗克常量,其值为6.63 x 10-34 J ? S. 二、练习 1、下列可以被电场加速的是( B ) A. 光子 B .光电子C. X射线 D.无线电波 2、关于光的本性,下列说法中不正确的是( B ) A. 光电效应反映光的粒子性

B. 光子的能量由光的强度所决定 C. 光子的能量与光的频率成正比 D. 光在空间传播时,是不连续的,是一份一份的,每一份 叫做一个光子 对光电效应实验的理解 一、基础知识(用光电管研究光电效应的规律) 1、常见电路(如图所示) 2、两条线索 (1) 通过频率分析:光子频率高-光子能量大-产生光电子的 最大初动能大. (2) 通过光的强度分析:入射光强度大-光子数目多-产生的

光电子多-光电流大. 3、遏止电压与截止频率

(1)遏止电压:使光电流减小到零的反向电压. ⑵截止频率:能使某种金属发生光电效应的最小频率叫做该种 金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率. ⑶逸出功:电子从金属中逸出所需做功的最小值,叫做该金属 的逸出功. 二、练习 1、如图所示,当开关S断开时,用光子能量为2.5的一束 光照射阴极 P,发现电流表读数不为零. 合上开关,调节滑动变 阻器,发现当电压表读数小于0.60 V时,电流表读数仍 不为零;当电压表读数大于或等于0.60 V时,电流表读数为零. (1)求此时光电子的最大初动能的大小; (2)求该阴极材料的逸出功. 答案(1)0.6 (2)1.9 解析设用光子能量为2.5的光照射时,光电子的最大初动 能为,阴极材料逸出功为W 当反向电压达到U0= 0.60 V以后,具有最大初动能的光电 子达不到阳极,因此0 = 由光电效应方程知=h V -W 由以上二式得=0.6 , W J= 1.9 .

光电子技术论文

硅光电池——我们日常生活中的太阳 能电池 光电池也称为光伏电池。它既可以作为电源,又可以作为光电检测器件。作为电源使用的光电池,主要是直接把太阳的辐射能转换为电能,称为太阳能电池。 常见的光电池有硅光电池、硒光电池、硫化镉光电池、砷化镓光电池,还有硫化铊电池等。其中硅光电池、因其价格便宜、光电转换效率高、光谱响应宽(很适合红外探测)、寿命长、稳定性好、频率特性好、能奈高能辐射、、等优秀的特点,备受人们关注。所以,在此本人着重介绍硅光电池。 一、硅光电池的分类: 1)单晶体硅光电池 单晶体硅光电池用P型(或n型)硅衬底,通过磷(或硼)扩散形成Pn结而制作成的,生产技术成熟,是光伏市场上的主导产品。单晶硅光电池面积有限,目前比较大的为Φ10至20cm的圆片,年产能力46MW/a。目前主要课题是继续扩大产业规模,开发带状硅光电池技术,提高材料利用率。国际公认最高效率在AM1.5条件下为24%,空间用高质量的效率在AM0条件约为13.5-18%,地面用大量生产的在AM1条件下多在11-18%之间。

2)多晶体硅光电池 p-Si(多晶硅,包括微晶)光电池没有光致衰退效应,材料质量有所下降时也不会导致光电池受影响,是国际上正掀起的前沿性研究热点。在单晶硅衬底上用液相外延制备的p-Si光电池转换效率为15.3%,经减薄衬底,加强陷光等加工,可提高到23.7%,用CVD法制备的转换效率约为12.6-17.3%。采用廉价衬底的p-Si薄膜生长方法有PECVD和热丝法,或对a-Si:H材料膜进行后退火,达到低温固相晶化,可分别制出效率9.8%和9.2%的无退化电池。微晶硅薄膜生长与a-Si 工艺相容,光电性能和稳定性很高,研究受到很大重视,但效率仅为7.7%。大面积低温p-Si膜与-Si组成叠层电池结构,是提高a-S光电池稳定性和转换效率的重要途径,可更充分利用太阳光谱,理论计算表明其效率可在28%以上,将使硅基薄膜光电池性能产生突破性进展。 3)非晶体硅光电池 a-Si(非晶硅)光电池一般采用高频辉光放电方法使硅烷气体分解沉积而成的。由于分解沉积温度低,可在玻璃、不锈钢板、陶瓷板、柔性塑料片上沉积约1μm厚的薄膜,易于大面积化(0.5m×1.0m),成本较低,多采用p in结构。为提高效率和改善稳定性,有时还制成三层p in 等多层叠层式结构,或是插入一些过渡层。其商品化产量连续增长,年产能力45MW/a,10MW生产线已投入生产,全球市场用量每月在1

光电效应与康普顿效应的区别

一、选题的依据、意义和理论或实际应用方面的价值 光电效应和康普顿效应是光学课程最主要的内容之一,在大学本科层次的光学教学中的光学教学中,我们对光的反射、折射现象和成像规律已比较熟悉。但对光的波动性、干涉和衍射现象,还是比较生疏的,理论解释也比较困难,光与物质相互作用的光电效应和康普顿效应更抽象,因此,不易讲解,我们在理解过程中存在一些概念的错误和混淆。光的本质是电磁波,它具有波动的性质。近代物理又证明,光除了具有波动性之外还具有另一方面的性质,即粒子性。光具有粒子性,最好的例证就是著名的“光电效应”和“康普顿效应”。光电效应与康普顿效应研究的都是光子与电子之间的相互作用,都是光具有粒子性的体现,但两者存在重要的不同。光电效应是指电子在光的作用下从金属表面发射出来的现象. 我们把逸出来的电子称为光电子. 而康普顿效应是指在X 射线的散射现象中, 发现散射谱线中除了波长和原射线相同的成分以外, 还有一些波长较长的成分, 两者差值的大小随散射角的大小而改变, 其间有确定关系的这种波长改变的散射. 上述两种效应都牵涉到光子和个别电子的相互作用,用简单的波动理论是是很难解释这些微观世界的相互作用, 这必须用量子概念来解释. 还可以从光的粒子性出发, 谈谈对光电效应和康普顿效应的不同。所以科学家将光信号(或电能)转变成电信号(或电能)的器件叫光电器件。现已有光敏管、光敏电阻、光敏二极管、光敏三极管、光敏组件、色敏器件、光敏可控硅器件、光耦合器、光电池等光电器件。这些器件已被广泛应用于生产、生活、军事等领域。 二、本课题在国内外的研究现状 光电效应是当光照在金属中时,金属里的表面有电子逸出的现象。而康普顿效应是让光波射入石墨,石墨中的价电子对光进行散射,然而散射光比入射光波长略大,这是由于光子和电子碰撞时将一部分能量转移给电子。这样,光的能量减小,波长便增加。而且如果将光子当做实物粒子的话,计算结果与实验结果符合。这便证明了光子也具有动量。即证明了光的粒子性。两个实验都证明了光的粒子性,下面谈谈光电效应与康普顿效应的区别。 1、观察到的条件不同; 2、对光量子能量的吸收程度不同; 3、能量与动量守恒方式不同; 光不仅具有波动性, 也具有粒子性. 同时我们也可以发现, 质量守恒定律,动量守恒定律、能的转化和守恒定律同样适用于微观物质间的相互作用。 三、课题研究的内容及拟采取的方法 1,光电效应 (1)概念 (2)光电效应的实验规律 2,康普顿效应 (1)概念 (2)康普顿效应实验规律 3,光的波动性不能解释光电效应和康普顿效应 4,用光子理论可以完美的解释光电效应和康普顿效应的本质 (1)观察到的条件不同; (2)对光量子能量的吸收程度不同; (3)能量与动量守恒方式不同; 5,光电效应和康普顿效应的联系与区别 6,光电效应和康普顿效应中的能量守恒与动量守恒 7,发生光电效应与康普顿效应的概率 方法:实验,查书,找资料

光电子技术习题

1. 一氦氖激光器,发射波长为6.3287 10-?m 的激光束,辐射量为5mW ,光束的发散角为 310-?,求此激光束的光通量及发光强度。又此激光器输出光束的截面(即放电毛细管 的截面)直径为1mm ,求其亮度。 解:波长的光的视见函数值为=)(λV ,W lm K m /683=则其激光束的光通量为: e m v V K Φ??=Φ)(λ=683??238.05310-?=lm 1弧度 = 1单位弧长/1单位半径, 1立体角=以该弧长为直径的圆面积/1单位半径的值的平方,则光束的发散角为3 10-?时的立体角为 24 απ = Ω= 23)100.1(4 -??π =610-? 发光强度为: cd I v v 610035.1?=Ω Φ= 亮度为: 2cos r I A I L v v v πθ=?= =212/10m cd ? 2.已知氦氖激光器输出的激光束束腰半径为0.5mm ,波长为,在离束腰100mm 处放置一个倒置的伽利略望远系统对激光束进行准直与扩束,伽利略望远系统的目镜焦距 mm f e 10-=',物镜焦距mm f o 100=' ,试求经伽利略望远系统变换后激光束束腰大小、位 置、激光束的发散角和准直倍率。 解:已知束腰半径010.5w mm =,632.8nm λ=,束腰到目镜的距离为1100z mm = ∴可以求得目镜前主平面上的截面半径 2 10.50.502w w mm === 波阵曲面的曲率半径: 22 0122116 1 3.140.5(1())100(+())=-15488.857mm 100632.810 w R z z πλ-?=+=-?-??1 Q '' 11111R R f -= ∴将115488.857mm R =-,'10f mm =-带入得'1R : ''111111115488.85710 R R f =+=+--

相关文档
最新文档