末端N-Ivdde保护的氨基酸的合成

末端N-Ivdde保护的氨基酸的合成
末端N-Ivdde保护的氨基酸的合成

氨基酸酯合成方法最新研究进展

万方数据

万方数据

万方数据

万方数据

万方数据

氨基酸酯合成方法最新研究进展 作者:尚岩, 王春颖, SHANG Yan, WANG Chun-ying 作者单位:哈尔滨理工大学,化学与环境工程学院,黑龙江,哈尔滨,150040 刊名: 哈尔滨理工大学学报 英文刊名:JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY 年,卷(期):2008,13(2) 被引用次数:6次 参考文献(31条) 1.BRUGGINK A;ROSO E C;DE V E Penicillin Acylase in the Industrial Production of β-Lactam Antibiotics 1998(02) 2.HOUNG Y;WU M L;CHEN S T Kinetic Resolution of Amino Acids Esters Catalyzed by Lipases 1996 3.DANIEL A;WELLINGTON F L Amino Acid Esters as Nutrient Supplements and Methods of Use 2005 4.王炳琴;黎植昌氨基酸酯的制备方法及应用 1995(04) 5.HOWARD Sachs;ERWIN B Benzyl Esters of Glutamic Acid 1953(18) 6.AKOPLA;HIGUCHI C Preparation and Isolation of Mineral Acid Salt of an Amino Acid Methyl Ester 1989 7.RAVINDRA P;PATEL,S P Synthesis of Benzyl Esters of a-Amino Acids 1965(10) 8.思洋;刘乐乐;张廓氨基酸甲乙酯的合成及纯化[期刊论文]-内蒙古医学院学报 2005(01) 9.Boedten;Wihelmus;Hubertus Prosess for Esterification of Amino Acids and Peptides 1998 10.ZHAO H;SANJAY V M Esterification of Amino Acids by Using Ionic Liquid as a Green Catalyst 2003 11.ROGER R Preparation of t-Butyl Esters of Free Amino Acids 1963(05) 12.AKINTOLA A;ABODERIN G R;JOSEPH S Fruton Benzhydryl Esters of Amino Acids in Peptide Synthesis 1965(23) 13.安广杰;王璋;许时婴蛋氨酸烷基酯的合成[期刊论文]-中国食品添加剂 2004(12) 14.RIVERO A S;HEREDIA A O Esterification of Amino Acids and Mono Acids Using Triphosgene[外文期刊] 2001(14) 15.RAMESH C;ANAND V A Mild and Convenient Procedure for the Esterification of Amine Acid[外文期刊] 1998(11) 16.ZANDER N;FRANK R Polystyrylsulfonyl Chloride Resin:an Efficient Solid-supported Condensation Reagent for the Solution Phase Synthesis of Esters[外文期刊] 2001(44) 17.SIEBER P An Improved Method for Anchoring of 9-fluorenylmethoxycarbonyl-Amino Acids to 4-Alkoxybenzyl Alcohol Resins[外文期刊] 1987(49) 18.Blankemeyer-Menge B;NIMTZ M;FRANK,R An Efficient Method for Anchoring Fmoc-anino Acids to Hydroxyl-Functionalised Solid Supports 1990(12) 19.NORBERT Z;JRGEN G;RONALD F Polystyrylsulfonyl-3-nitro-1H-1,2,4-triazolide-resin:a New Solid-supported Reagent for the Esterification of Amino Acids[外文期刊] 2003(35) 20.WEGMAN M A;ELZINGA J M;NEELEMANAND E R;SHELDON A Salt-free Esterification of α-amino Acids catalysed by Zeolite H-USY[外文期刊] 2001(03) 21.KISE H;SHIRATO H Synthesis of Aromatic Amino Acid Ethyl Esters by α-chymotrypsin in Solutions of High Ethanol Concentrations 1985(49)

氨基酸

氨基酸 氨基酸定义 氨基酸(amino acids):含有氨基和羧基的一类有机化合物的通称。生物功能大分子蛋白质的基本组成单位,是构成动物营养所需蛋白质的基本物质。是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上。 氨基酸的结构通式:构成蛋白质的氨基酸都是一类含有羧基并在与羧基相连的碳原子下连有氨基的有机化合物,目前自然界中尚未发现蛋白质中有氨基和羧基不连在同一个碳原子上的氨基酸。 氨基酸分类 天然的氨基酸现已经发现的有300多种,其中人体所需的氨基酸约有22种,分非必需氨基酸和必需氨基酸(人体无法自身合成)。另有酸性、碱性、中性、杂环分类,是根据其化学性质分类的。 1、必需氨基酸(essential amino acid):指人体(或其它脊椎动物)不能合成或合成速度远不适应机体的需要,必需由食物蛋白供给,这些氨基酸称为必需氨基酸。共有8种其作用分别是: ①赖氨酸(Lysine ):促进大脑发育,是肝及胆的组成成分,能促进脂肪代谢,调节松果腺、乳腺、黄体及卵巢,防止细胞退化; ②色氨酸(Tryptophane):促进胃液及胰液的产生; ③苯丙氨酸(Phenylalanine):参与消除肾及膀胱功能的损耗; ④蛋氨酸(又叫甲硫氨酸)(Methionine);参与组成血红蛋白、组织与血清,有促进脾脏、胰脏及淋巴的功能; ⑤苏氨酸(Threonine):有转变某些氨基酸达到平衡的功能; ⑥异亮氨酸(Isoleucine ):参与胸腺、脾脏及脑下腺的调节以及代谢;脑下腺属总司令部作用于甲状腺、性腺; ⑦亮氨酸(Leucine ):作用平衡异亮氨酸; ⑧缬氨酸(Viline):作用于黄体、乳腺及卵巢。 其理化特性大致有: 1)都是无色结晶。熔点约在230°C以上,大多没有确切的熔点,熔融时分解并放出CO2;都能溶于强酸和强碱溶液中,除胱氨酸、酪氨酸、二碘甲状腺素外,均溶于水;除脯氨酸和羟脯氨酸外,均难溶于乙醇和乙醚。 2)有碱性[二元氨基一元羧酸,例如赖氨酸(lysine)];酸性[一元氨基二元羧酸,例如谷氨酸(Glutamic acid)];中性[一元氨基一元羧酸,例如丙氨酸(Alanine)]

农药化学的期末考试

农药:用于防治为害农作物及农副产品的病虫害、杂草及其它有害生物的化学药剂的统称。 急性毒性:药剂一次进入人体后短时间引起的中毒现象。 慢性毒性:药剂长时间作用于有机体后,引起药剂在体内的积蓄,或者造成有机体机能损害的积累而引起的中毒现象。 LD50:致死中量,或半致死量。 经口LD50:一次口服急性中毒死亡死亡半数的剂量。 经皮LD50:通过皮肤摄入极性中毒死亡半数的剂量。 农药残留:在农业生产中施用农药后一部分农药直接或间接残存于谷物、蔬菜、果品、畜产品、水产品以及土壤和水体中的现象。 农药代谢:农药的代谢是指作为农药进人生物体后,生物体利用自身的多种酶,对这些外源化合特产生化学作用,以达到排泄目的的过程,这类作用也称为生物转化。 初级代谢:一般将微生物从外界吸收各种营养物质,通过分解代谢和合成代谢生成维持生命活动的物质和能量的过程,称为初级代谢 农药选择性:是指仅对某种或某几种病、虫、草害有防治效果的农药。 杀虫剂的主要类型: 按作用方式可分类为: ①胃毒剂。②触杀剂。③熏蒸剂。④内吸杀虫剂。 按毒理作用可分为: ①神经毒剂。②呼吸毒剂。③物理性毒剂。④特异性杀虫剂。 制备反应:有机磷杀虫剂合成,吡虫啉合成

化学除草剂的发展过程:19世纪末:无机除草剂;1932年:有机除草剂二硝酚;1942年:第一个内吸性的有机除草剂2,4-D;1980s:磺酰脲类除草剂的发现,掀起了超高效除草剂研究的热潮。这是除草剂发展史上新的里程碑。 抑制植物氨基酸生物合成的除草剂。目前,主要有两类氨基酸的生物合成过程已经被开发为除草剂的作用靶标: (1)支链氨基酸的生物合成:缬氨酸、亮氨酸、异亮氨酸 (2)芳香氨基酸的生物合成:苯丙氨酸、色氨酸、酪氨酸 为什么杀虫剂马拉硫磷会具有高效低毒的特点? 杀虫剂马拉硫磷具有选择性, 马拉硫磷在昆虫体内转变为更 毒代谢产物, 温血动物体内的转变为无毒代谢产物

氨基酸的侧链保护基团.doc

氨基酸的侧链保护基团 氨基酸 侧链官能团 保护基 保护基结构式 保护基脱除条件 Asp/ Glu OH O OtBu O O 90%TFA ,30min OAll O O Pb(Ph 3P)4-AcOH-NMM ;Pb(Ph 3P)4-PhSiH 3 in DCM , 10-30min Asn/ Gln NH 2O Trt N H 90%TFA ,30-60min Cys SH Trt S 90%TFA ,30-60min Acm S N H O Hg(Ⅱ);Ag(Ⅰ); Tl(Ⅲ); Ph (SO )Ph-CH 3SiCl 3 tBu S HF (20℃);Hg(Ⅱ); Ph (SO )Ph-CH 3SiCl 3 StBu S S RSH ,Bu 3P Other reducing agents

Mmt 0.5-1%TFA in DCM-TES (95:5),30min ; 3%TFA ,5-10min Tmob MeO OMe OMe 5%TFA-3% TES in DCM His NH N τπ Trt N τ 50%TFA in DCM ,30min Lys/ Orn NH 2 Boc N H O 90%TFA ,30-60min Alloc O N H O Pb(Ph 3P)4(0.1eq )-PhSiH 3 (24eq )in DCM ,10min Mtt N H 1%TFA in DCM ,30min ; AcOH-TFE-DCM(1:2:7) Dde 2%水合肼 in DMF , 5-10min Ser/ OH tBu O 90%TFA ,30min

11氨基酸生物合成汇总

10氨基酸生物合成 第十章氨基酸生物合成 10.1氮素循环 10.2生物固氮的生物化学 10.2.1生物固氮的概念 10.2.2固氮生物的类型 10.2.3固氮酶复合物 10.2.4生物固氮所需的条件 10.2.5固氮过程的氢代谢 10.3硝酸还原作用 10.3.1硝酸还原酶 10.3.2亚硝酸还原酶 10.4氨的同化 10.4.1谷氨酸合成 10.4.2氨甲酰磷酸的合成 10.5氨基酸的生物合成 10.5.1氨基酸的合成与转氨基作用 10.5.2各族氨基酸的合成 10.5.3一碳基团代谢 10.5.4 SO2-4还原 第十章氨基酸生物合成 本章提要氮素是组成生物体的重要元素。自然界中的不同氮化物相互转化形成氮素循环。气态氮通过自生和共生微生物将N2还原成NH+4。植物根系吸收硝态氮(NO-3),通过硝酸还原酶和亚硝酸还原酶将NO-3还原成NH3,再经谷氨酰胺合成酶和谷氨酸合酶同化为谷氨酸,后者是各种形态无机氮同化为有机氮的主要形式。谷氨酸与来自碳代谢中间物的各种碳骨架(α-酮酸)之间转氨形成各种氨基酸。 10.1 氮素循环 氮素是生物的必需元素之一。在生命活动中起重要作用的化合物,如蛋白质、核酸、酶、某些激素和维生素、叶绿素和血红素等均含有氮元素。因此,在动、植物和微生物的

生命活动中氮素起着极其重要的作用,整个生物界在生长发育的全部过程中都进行着氮素代谢。 自然界中的不同氮化物经常发生互相转化,形成一个氮素循环(nitrogen cycle)。生物界的氮代谢是自然界氮循环的主要因素。在自然界氮循环中,还包括工业固氮和大气固氮(如闪电)等把N2转变为氨和硝酸盐的过程。 在地球表面的大气组成中,尽管N2占大约80%,但N2是一稳定的不易发生反应的物质。在氮素循环中,第一步是将N2还原为氨,可由工业固氮和生物固氮完成,自然界中由固氮生物固氮酶完成的分子氮向氨的转化约占总固氮的2/3,由工业合成氨或其他途径合成的氨只有1/3左右。在土壤中含量丰富的硝化细菌进行着氧化氨形成 NO-3的过程,因此土壤中几乎所有氨都转化成了硝酸盐,这个过程称为硝化作用。 植物和微生物可吸收土壤中的NO-3,然后还原形成氨,再经同化作用把无机氮转化为有机氮,这些有机氮化合物又可随食物或饲料进入动物体内,转变为动物体的含氮化合物。各种动植物遗体及排泄物中的有机氮经微生物分解作用,形成无机氮。这样,在生物界,总有机氮和总无机氮形成了一个平衡。

氨基酸的保护

保护氨基酸:是指氨基酸的功能基团与其它基团反应而封闭了氨基酸功能基 团活性的氨基酸衍生物,都能叫保护氨基酸。包括a氨基和羧基,以及侧链功能基团。 氨基保护基的选择策略: 选择一个氨基保护基时,必须仔细考虑到所有的反应物,反应条件及所设计的反应过程中会涉及的底物中的官能团。 最好的是不保护. 若需要保护,选择最容易上和脱的保护基,当几个保护基需要同时被除去时,用相同的保护基来保护不同的官能团是非常有效。要选择性去除保护基时,就只能采用不同种类的保护基。 要对所有的反应官能团作出评估,确定哪些在所设定的反应条件下是不稳定并需要加以保护的,选择能和反应条件相匹配的氨基保护基。 还要从电子和立体的因素去考虑对保护的生成和去除速率的选择性 如果难以找到合适的保护基,要么适当调整反应路线使官能团不再需要保护或使原来在反应中会起反应的保护基成为稳定的;要么重新设计路线,看是否有可能应用前体官能团(如硝基等);或者设计出新的不需要保护基的合成路线。 Ⅰ氨基酸的保护基(保护羧基) (一)叔丁基tBu - (tert-butyl) ester 标准保护程序: 在N-保护的氨基酸的溶液中,加入DMAP(0.5当量)和叔丁醇(1.2当量)在干燥的DCM (DCM是一氧化二碳?),0℃在惰性气氛下,加入EDCI(1.1当量),并搅拌2小时。然后将混合物在室温下,搅拌直到TLC通过(通常是14小时),在真空下浓缩。将残余物再溶解在乙酸乙酯中,用水萃取两次,然后用饱和碳酸氢钠水溶液萃取两次。将有机溶液干燥(硫酸镁)并真空浓缩。如果必要将残留物通过快速色谱法(SiO)纯化。 脱保护: 将该化合物溶解在甲酸中在室温下搅拌直至反应完成(TLC通过)(通常是12小时)。然后将溶液浓缩,并重复加入甲苯浓缩数次。如有必要,可以将所得残余物通过快速色谱法(SiO)进行纯化。 (二)苄基Bn - (benzyl) ester 标准保护程序: 氨基酸在惰性气氛下搅拌用无水THF和O的苄基N,N'-diisopropylisourea(见文献进行合成)在室温下,直到完成通过TLC(通常为2天)。将混合物冷却至-20℃,并过滤。将滤液真空浓缩,并在必要时通过快速色谱法(SiO)纯化。 去除 氨基酸衍生物溶解在1:1的甲醇:叔丁醇和Pd(OH)2-C在氢气气氛下加入。将混合物搅拌,直到完全通过TLC(通常>3小时),然后过滤并浓缩。将所得残余物然后可以通过快

蛋白质的生物合成

第十五章蛋白质的生物合成 一:填空题 1.蛋白质的生物合成是以________________作为模板,________________作为运输氨基酸的工具, ________________作为合成的场所。 2.细胞内多肽链合成的方向是从________________端到________________端,而阅读mRNA的方向是从________________端到________________端。 3.核糖体上能够结合tRNA的部位有________________部位、________________部位和 ________________部位。 4.ORF是指________________,已发现最小的ORF只编码________________个氨基酸。 5.蛋白质的生物合成通常以________________作为起始密码子,有时也以________________作为起始密码子,以________________、________________和________________作为终止密码子。 6.SD序列是指原核细胞mRNA的5′-端富含________________碱基的序列,它可以和16SrRNA的3′-端的________________序列互补配对,而帮助起始密码子的识别。 7.含硒半胱氨酸的密码子是________________。 8.原核生物蛋白质合成的起始因子(IF)有________________种,延伸因子(EF)有________________种,终止释放因子(RF)有________________种;而真核生物细胞质蛋白质合成的延伸因子通常有 ________________种,真菌有________________种,终止释放因子有________________种。 9.密码子的第2个核苷酸如果是嘧啶核苷酸,那么该密码子所决定氨基酸通常是________________。 10.原核生物蛋白质合成中第一个被参入的氨基酸是________________。 11.真核生物细胞质蛋白质合成对起始密码子的识别主要通过________________机制进行。 12.无细胞翻译系统翻译出来的多肽链通常比在完整的细胞中翻译的产物要长,这是因为 ________________。 13.蛋白质的半寿期通常与________________端的氨基酸性质有关。 14.tmRNA是指________________。 15.同工受体tRNA是指________________。 16.疯牛病的致病因子是一种________________。 17.已发现体内大多数蛋白质正确的构象的形成需要________________的帮助,某些蛋白质的折叠还需要________________和________________酶的催化。 18.SRP是指________________,它是一种由________________和________________组成的超分子体系,它的功能是________________。 19.蛋白质定位于溶酶体的信号是________________。 20.分子伴侣通常具有________________酶的活性。 答案:1. 2 3 4

生物化学考题_蛋白质生物合成

蛋白质生物合成 一级要求单选题 1 真核生物在蛋白质生物合成中的启始tRNA 是 A 亮氨酸Trna B 丙氨酸tRNA C 赖氨酸tRNA D 甲酰蛋氨酸tRNA E 蛋氨酸tRNA E 2 原核生物蛋白质生物合成中肽链延长所需的能量来源于 A ATP B GTP C GDP D UTP E CTP B 3 哺乳动物核蛋白体大亚基的沉降常数是 A 40S B 70S C 30S D 80S E 60S E 4 下列关于氨基酸密码的叙述哪一项是正确的 A 由DNA 链中相邻的三个核苷酸组成 B 由tRNA 链中相邻的三个核苷酸组成 C 由mRNA 链中相邻的三个核苷酸组成 D 由rRNA 链中相邻的三个核苷酸组成 E 由多肽链中相邻的三个氨基酸组成 C 5 mRNA 作为蛋白质合成的模板,根本上是由于 A 含有核糖核苷酸 B 代谢快 C 含量少 D 由DNA 转录而来 E 含有密码子 E 6 蛋白质生物合成过程特点是 A 蛋白质水解的逆反应 B 肽键合成的化学反应 C 遗传信息的逆向传递 D 在核蛋白体上以mRNA 为模板的多肽链合成过程 E 氨基酸的自发反应 D 7 关于mRNA,错误的叙述是 A 一个mRNA 分子只能指导一种多肽链生成 B mRNA 通过转录生成 C mRNA 与核蛋白体结合才能起作用 D mRNA 极易降解 E 一个tRNA 分子只能指导一分于多肽链生成 E 8 反密码子是指 A DNA 中的遗传信息 B tRNA 中的某些部分 C mRNA 中除密码子以外的其他部分 D rRNA 中的某些部分 E 密码子的相应氨基酸 B 9 密码GGC 的对应反密码子是 A GCC B CCG C CCC

氨基酸

氨基酸 氨基酸(amino acid):含有氨基和羧基的一类有机化合物的通称。生物功能大分子蛋白质的基本组成单位,是构成动物营养所需蛋白质的基本物质。是含有一个碱性氨基和一个酸性羧基的有机化合物。氨基连在α-碳上的为α-氨基酸。天然氨基酸均为α-氨基酸。 氨基酸的结构通式 α-氨基酸的结构通式: (R是可变基团) 构成蛋白质的氨基酸都是一类含有羧基并在与羧基相连的碳原子下连有氨基的 有机化合物,目前自然界中尚未发现蛋白质中有氨基和羧基不连在同一个碳原子上的氨基酸。 氨基酸的分类 天然的氨基酸现已经发现的有300多种,其中人体所需的氨基酸约有22种,分非必需氨基酸和必需氨基酸(人体无法自身合成)。另有酸性、碱性、中性、杂环分类,是根据其化学性质分类的。 1、必需氨基酸 (essential amino acid):指人体(或其它脊椎动物)不能合成或合成速度远不适应机体的需要,必需由食物蛋白供给,这些氨基酸称为必需氨基酸。共有10种其作用分别是: ①赖氨酸(Lysine ):促进大脑发育,是肝及胆的组成成分,能促进脂肪代谢,调节松果腺、乳腺、黄体及卵巢,防止细胞退化; ②色氨酸(Tryptophan):促进胃液及胰液的产生; ③苯丙氨酸(Phenylalanine):参与消除肾及膀胱功能的损耗; ④蛋氨酸(又叫甲硫氨酸)(Methionine);参与组成血红蛋白、组织与血清,有促进脾脏、胰脏及淋巴的功能; ⑤苏氨酸(Threonine):有转变某些氨基酸达到平衡的功能; ⑥异亮氨酸(Isoleucine ):参与胸腺、脾脏及脑下腺的调节以及代谢;脑下腺属总司令部作用于甲状腺、性腺; ⑦亮氨酸(Leucine ):作用平衡异亮氨酸; ⑧缬氨酸(Valine):作用于黄体、乳腺及卵巢。

氨基酸保护

Carboxylic acid protection - [Bn ester] [Pfp ester] [Me ester] [Allyl ester] [tButyl ester] [PMB ester] [MEM ester] Amine protection (carbamates) - [Fmoc] [Boc] [Cbz] [Troc] Side Chain protections- [Boc] t Bu - (tert-butyl) ester Standard Protection Procedure To a solution of the N-protected amino acid, DMAP (0.5 eq), and tBuOH (1.2 eq) in dry DCM at 0° under an inert atmosphere, is added EDCI (1.1. eq) and stirred for 2 h. The mixture is then stirred at room temperature until complete by TLC (usually 14 h) and concentrated in vacuo. The residue is redissolved in ethyl acetate and extracted twice with water, then twice with aqueous saturated sodium bicarbonate. The organic solution is dried (magnesium sulfate) and concentrated in vacuo. The residue is purified by flash chromatography (SiO2) if necessary. Removal

氨基酸的生物合成整理版

氨基酸的生物合成[整理版] 第九章氨基酸的生物合成 第一节氮循环 氮是组成生物体的重要元素。自然界中的不同氮化物相互转化形成氮循环。生物界的氮代谢是自然界氮循环的主要因素。 第一步:固氮作用,将氮气还原为氨。可工业固氮和生物固氮完成,自然界中由固氮生物固氮酶完成的分子氮向氨的转化约占总固氮的三分之二,由工业合成氨或其他途径合成的氨只有三分之一。 第二步:硝化作用,将氨转化为硝酸盐。在土壤中含量丰富的硝化细菌进行着氧化氨形成硝酸盐的过程,因此土壤中几乎所有氨都转化成了硝酸盐。 第三步:成氨作用,将硝态氮转化为氨态氮。植物体所需要的氮除了来自生物固氮外,绝大部分还是来自土壤中的氮,它们通过根系进入植物细胞。然而硝态氮并不能直接被植物体利用来合成各种氨基酸和其他有机氮化物,必须先转变成为氨态氮。 第四步:同化作用,氨经谷氨酰胺合成酶和谷氨酸合成酶同化为谷氨酸。这些有机氮化合物可随食物或饲料进入动物体内,转变为动物体的含氮化合物。 第五步:分解作用,各种动植物遗体及排泄物中的有机氮经微生物分解作用,形成无机氮。 这样,在生物界,总有机氮和总无机氮形成了一个平衡。 第二节固氮作用 1、大气固氮:闪电和紫外辐射固定氮约占总固氮量的15%。 2、工业固氮:氮气中的氮氮三键十分稳定,1910年提出的作用条件在工业氮肥生产中一直沿用至今。500?高温和30MPa条件下,用铁做催化剂使氢气还

原氮气成氨。约占总固氮量的25%。 3、生物固氮:是微生物、藻类和与高等植物共生的微生物通过自身的固氮酶复合物把分子变成氨的过程。自然界通过生物固氮的量可达每年100亿公斤。约占地球上的固氮量的60%。 固氮生物的类型有自生固氮微生物和共生固氮微生物。前者如鱼腥藻、念球藻,利用光能还原氮气,好气性固氮菌利用化学能固氮;后者如与豆科植物共生固氮的根瘤菌,其专一性强,不同的菌株只能感染一定的植物,形成共生的根瘤。在根瘤中植物为固氮菌提供碳源,而细菌利用植物提供的能源固氮,为植物提供氮源,形成一个很好的互利共生体系。 生物固氮所需条件:一是有充分的ATP供应,二是需要很强的还原剂,三是需要厌氧环境。 第三节氨基酸的生物合成 1、丙氨酸族包括丙氨酸、缬氨酸、亮氨酸。它们共同碳架来源是糖酵解生成的丙酮酸。 2、丝氨酸族包括丝氨酸、甘氨酸、半胱氨酸。 3、谷氨酸族包括谷氨酸、谷氨酰胺、脯氨酸、精氨酸。它们的碳架都是来自三羧酸循环的中间产物ɑ,酮戊二酸。 4、天冬氨酸族包括天冬氨酸、天冬酰胺、赖氨酸、苏氨酸、异亮氨酸和蛋氨酸。它们的碳架都三羧酸循环的中间产物草酰乙酸或延胡索酸。 5、组氨酸和芳香氨基酸族包括组氨酸、酪氨酸、色氨酸和苯丙氨酸。 第四节个别氨基酸的代谢 由于每一个氨基酸的碳链部分的结构不同,因此除上述一般代谢途径外, 尚有其特殊的代谢途径,一般讲,非必需氨基酸较简单,而必需氨基酸较复杂。现分四类加以讨论:一碳单位、含硫氨基酸、支链氨基酸、芳香族氨基酸。 一、碳单位的代谢

生物化学-氨基酸的合成

甘氨酸的合成方法 应化1001班李清水 0121014450109 甘氨酸是一种重要的氨基酸,它是重要的有机化工产品,世界年产量 6X103kg左右·主要用作制药的原料,如氨基酸制剂,L一多巴,谷胧甘肤,催产素,马尿酸的原料;亦用作合成其它氨基酸的原料,如苯丙氨酸,苏氨酸的原料,用作食品添加剂,如糖精去苦剂,味精增鲜剂等,农药工业中亦可用作除 草剂草甘麟,增甜剂增甘麟的原料. 甘氨酸的工业化生产主要有两种方法,一种是Strecke法,其工艺较成熟,成本低,收率高(70%左右).但该法以KCN为原料,反应中有HCN逸出,因而对 设备和三废处理要求高,另一种是我国工业化生产采用的氯乙酸胺化法.该法对设备和三废处理要求低,但收率低伟。%一6。%),反应周期长(60一70h),从 而使生产成本上升,此两种方法各有利弊. 本合成工艺以提高收率,缩短反应周期,采用合理的工艺流程,以减少三 废为目的,对氯乙酸胺化法进行了较大的改进.我们采用的方法是氯乙酸先制成氯乙酸按,然后在高浓度的催化剂乌洛托品存在下,控制反应液pH值,滴加氯乙酸按和氨水,使反应迅速且较完全地进行.此法提高收率达%%(以氯乙酸计),缩短周期仅需5h,副产物NH4CI回收,溶剂循环使用,从而基本上无三废(见 反应式和工艺流程图). 合成方法: 将0.471kg氯乙酸(纯度>98%)在缓慢搅拌下溶于0.42L氨水(浓度>25%)中,溶解放热可用水冷却.此氯乙酸按溶液酸度应为pH6.5一7.5,备用. 在ZL三颈瓶中,将0.175kg乌洛托品(纯度>99%)溶于0.125L水中,成糊状,中间装搅拌器,两边装滴液漏斗,开动搅拌并升温至内温60℃左右,保持 内温65一70℃.同时滴加氯乙酸按溶液和氨水(浓度>25%)0.38L,反应立即开

醚氨基及氨基酸的各种保护基及去保护方法大全

醚、氨基及氨基酸的各种保护基及去保护方法大全 (整理有详细操作) [Acetate] [Benzoatel] [Pivaloate] [Levulinate] [Back to Carb. Synthesis] Ac - (acetate) ester Standard Protection Procedure To a solution of the glycoside in dry pyridine (25 eq) under an inert atmosphere at room temperature, acetic anhydride (10 eq) is added and stirred until complete by TLC (usually 16 h). The reaction mixture is then poured into ice/water and extracted three times with chloroform. The combined organic layers are extracted with 3% HCl, saturated aqueous sodium bicarbonate, and water. The organic layer is then dried and concentrated in vacuo. The resulting residue is purified by flash chromatography (SiO2) if necessary. Removal

The glycoside is dissolved in methanol and a solution of sodium methoxide in methanol (0.1 eq per -OAc) is added drop wise at 0°. The solution is warmed to room temperature and stirred under an inert atmosphere until complete by TLC (usually within a few hours). Amberlite cationic exchange resin is then added with vigorous stirring until the pH of the mixture is neutral. The mixture is then filtered and concentrated. The resulting residue is purified by flash chromatography (SiO2) if necessary. OR The Glycoside is dissolved in methanol and hydrazine hydrate (15 eq per -OAc) is added in two portions over 1.5 hours. The solution is stirred at room temperature under an inert atmosphere until complete by TLC (usually 6 hours). The solution is then neutralized with glacial acetic acid. The mixture is filtered through celite and concentrated. The resulting residue is purified by flash chromatography (SiO2) if necessary. References J. Org. Chem., 1996, 61, 6442-6445. "Synthetic Methods for Carbohydrates" Lemieux, Ch 6, pg. 90-115. J. Chem. Soc., Perkin Trans. 1, 1996, 985-993.

氨基酸的制备

氨基酸的制备方法 几乎所有的氨基酸分离纯化工艺均利用了氨基酸在不同的pH值时电荷量不同这一特性。氨基酸的分离纯化方法主要有:沉淀法、离子交换法、萃取法、吸附法、膜分离法及结晶法等。 1、沉淀法 沉淀法是最古老的分离、纯化方法,目前仍广泛应用在工业上和实验室中。它是利用某种沉淀剂使所需要提取的物质在溶液中的溶解度降低而形成沉淀的过程。该方法具有简单、方便、经济和浓缩倍数高的优点。氨基酸工业中常用沉淀法有等电点沉淀法,特殊试剂沉淀法和有机溶剂沉淀法。 1.1利用氨基酸的溶解度分离或等电点沉淀法 在生产中常利用各种氨基酸在水和乙醇等溶剂中溶解度的差异,将氨基酸彼此分离。如胱氨酸和酪氨酸在水中极难溶解,而其它氨基酸则比较易溶;酪氨酸在热水中溶解度大,而胱氨酸则无大差别。根据此性质,即可把它们分离出来,并且互相分开。另外,可以利用氨基酸的两性解离有等电点的性质。由于氨基酸在等电点时溶解度最小,最容易析出沉淀,所以利用溶解度法分离氨基酸时,也常结合等电点沉淀法。 1.2特殊试剂沉淀法 某些氨基酸可以与一些有机或无机化合物结合,形成结晶性衍生物沉淀,利用这种性质向混合氨基酸溶液中加入特定的沉淀剂,使目标氨基酸与沉淀剂沉淀下来,达到与其它氨基酸分离的目的。较为成熟的工艺有:揩氨酸与苯甲醛在碱性和低温条件下,可缩合成溶解度很小的苯亚甲基精氨酸,分离这种沉淀,用盐酸水解除去苯甲醛,即可得精氨酸盐酸盐;亮氨酸与邻一二甲苯一4一磺酸反应,生成亮氨酸的磺酸盐,后者与氨水反应得到亮氨酸;组氨酸与氯化汞作用生成组氨酸汞盐的沉淀,再经处理就可得到组氨酸。 特殊试剂沉淀法虽然操作简单、选择性强,但是由于沉淀剂回收困难,废液排放污染严重,残留沉淀剂的毒性等原因已逐渐被它方法取代。 2、离子交换法 离子交换法是利用不溶性高分子化合物(即离子交换树脂)对不同氨基酸吸附能力的差异对氨基酸混合物进行分组或实现单一成分的分离。离子交换树脂是一种具有离子交换能力的高分子化合物。它不溶于水、酸和碱,也不溶于普通有机溶剂,化学性质稳定。离子交换树脂作为固定相,本身具有正离子或负离子基团,和这些离子相结合的不同离子是可电离的交换基团(或称功能基团)。在离子交换过程中,溶液中的离子自溶液中扩散到交换树脂的表面,然后穿过表面,又扩散到交换树脂颗粒内,这些离子与交换树脂中的离子互相交换,交换出来的离

氨基酸合成

氨基酸,核苷酸及相关分子的生物合成 PART 1. 氨基酸及相关生物分子的合成 氨代谢概述 氮气通过固氮作用变成氨 20种氨基酸的生物合成 其他由氨基酸衍生的生物分子的合成 氮循环 氮可通过固氮酶复合物来固定 ?固氮作用:在固氮生物中将氮气转化为氨 ?Cyanobacteria (蓝绿藻, photosynthetic) ?rhizobia (根瘤菌, symbiont 共生生物) ?硝化作用:进入土壤的氨被氧化成为硝酸盐而获得能量的过程。 ?反硝化作用:细菌通过在厌氧条件下将硝酸盐转化为氮气来实现固定的氮和大气中的氮的平衡的过程。 ?固氮复合酶的关键成分是二固氮酶还原酶和二固氮酶。固氮是通过一个具有高度还原状态的二固氮酶催化及摄 取8个电子而实现的,其中6个电子用于还原氮气,2个电子用于产生1分子的氢气。且要求还原酶水解ATP 用于还原二固氮酶。固氮过程中ATP起着催化作用而不是发挥热动力学效应。 氨通过谷氨酸和谷氨酰胺渗入到生物分子中 谷氨酸通过转氨作用为其他大多数氨基酸提供氨基,谷氨酰胺中的酰胺氮也是大多数生物合成中氨基的来源。?将氨根离子吸收进谷氨酸的最重要的两个途径: ?首先是谷氨酸和氨离子在谷氨酰胺合成酶(glutamine synthetase)催化下合成谷氨酰胺的反应。 ?在细菌和植物中,由谷氨酰胺经谷氨酸合酶(glutamate synthase)催化反应得到。 谷氨酰胺合成酶是氨代谢中一个主要的调控点 ?这种酶含有12个相同亚基,并且可以通过别构作用(allosterically)和共价修饰(covalent)进行修饰。 ?谷氨酰胺合成酶的别构调节 ?这酶受至少八种别构因子的累积性抑制,多数是谷氨酰胺代谢反应的产物。 ?谷氨酰胺合成酶的共价修饰 ?细菌中谷氨酰胺合成酶的Tyr残基能可逆的被腺苷酰化,这种共价修饰提高了别构抑制剂的敏感度。 ?腺苷酰化酶对变构抑制剂更敏感。 ?谷氨酰胺合成酶的AMP基团的添加和去除是被腺苷酰基转移酶(adenylyltransferase,AT)催化的。 ?腺苷酰转移酶的活性可通过结合到一种称为P II 的调节蛋白质上而进行调节。 ?共价修饰的机制: ?P II 是一种调节蛋白,它的活性是被P II 的一个Tyr残基的尿苷酰化共价修饰所调节的。腺苷酰转移酶复合物(AT)与尿苷酰化的P II 结合可引起谷氨酰胺合成酶去腺苷化,激活谷氨酰胺合成酶活性,而AT与脱尿苷酰化的P II结合则可以引起谷氨酰胺合成酶的腺苷酰化,抑制谷氨酰胺合成酶活性。 ? P II 的尿苷酰化和脱尿苷酰化都是由尿苷酰转移酶(uridylyltransferase)催化的 。 氨基酸的合成 ?几种反应在氨基酸和核苷酸的生物合成中担当重要角色,值得注意:?含有辅因子吡哆醛磷酸的酶催化的转氨反应和重排反应 ?利用四氢叶酸或S-腺苷甲硫氨酸为辅因子的一碳单位转移反应 ?谷氨酰胺中的酰胺氮的转氨基作用: 转移谷氨酰胺的氨基的反应是由谷氨酰胺转酰胺酶催化的。 这种酶有两个结构域,其中一个结合谷氨酰胺,另一个结合作为氨基受体的第二个底物。

氨基保护方法

氨基保护方法 胺类化合物对氧化和取代等反应都很敏感,为了使分子其它部位进行反应时氨基保持不变,通常需要用易于脱去的基团对氨基进行保护。例如,在肽和蛋白质的合成中常用氨基甲酸酯法保护氨基,而在生物碱及核苷酸的合成中用酰胺法保护含氮碱基。化学家们在肽的合成领域内,对已知保护基的相对优劣进行了比较并在继续寻找更有效的新保护基。除了肽的合成外,这些保护基在其它方面也有很多重要应用。 下面介绍保护氨基的一些主要方法和基团。 1 形成酰胺法 将胺变成取代酰胺是一个简便而应用非常广泛的氨基保护法。单酰基往往足以保护一级胺的氨基,使其在氧化、烷基化等反应中保持不变,但更完全的保护则是与二元酸形成的环状双酰化衍生物。常用的简单酰胺类化合物其稳定性大小顺序为甲酰基<乙酰基< 苯甲酰基。 酰胺易于从胺和酰氯或酸酐制备,并且比较稳定,传统上是通过在强酸性或碱性溶液中加热来实现保护基的脱除。由于若干基质,包括肽类、核苷酸和氨基糖,对这类脱除条件不稳定,故又研究出了一些其他脱除方法,其中有甲酰衍生物的还原法,甲酰基以及对羟苯基丙酰基衍生物的氧化法,苯酰基和对羟苯基丙酰基衍生物的电解法,卤代酰基、乙酰代乙酰基以及邻硝基、氨基、偶氮基或苄基衍生物等“辅助脱除法”,等等。 为了保护氨基,已经制备了很多N2酰基衍生物,上述的简单酰胺最常用,卤代乙酰基衍生物也常用。这些化合物对于温和的酸水解反应的活性随取代程度的增加而增加:乙酰基< 氯代乙酰基< 二氯乙酰基< 三氯乙酰基< 三氟乙酰基。此外,在核苷酸合成的磷酸化反应中,胞嘧啶、腺嘌呤和鸟嘌呤中的氨基是分别由对甲氧苯酰基、苯酰基和异丁酰或甲基丁酰基予以保护的,这些保护基是通过氨解脱除的。另外,伯胺能以酰胺的形式加以保护,这就防止了活化的N2乙酰氨基酸经过内酯中间体发生外消旋化。 111 甲酰衍生物 胺类化合物很容易进行甲酰化反应,常常仅用胺和98 %的甲酸制备。甲酸乙酸酐也是一个有用的甲酰化试剂。对于某些容易发生消旋化的氨基酸可用甲酸和N ,N′2双环己基碳二亚胺(DCC) 在0 ℃时进行甲酰化反应,也可用酯类进行氨解。 甲酰胺类是相当稳定的化合物,因此广泛应用于肽的合成。甲酰基的脱除也有很多方法,氧化或还原法脱酰反应均可被采用。N2甲酰衍生物用15 %过氧化氢水溶液处理,可以顺利地进行氧化脱解。用氢化钠在二甲氧基乙烷中回流可以代替用酸或碱水解去除酰基。 112 乙酰基及其衍生物 胺类化合物的乙酰化或取代乙酰衍生物是用酰氯、酸酐进行酰化或在二环己基碳二亚胺(DCC) 或焦亚磷酸四乙基酯存在下,直接与酸综合加以制备,有时也可用酯或硫酯氨解的方法;制备乙酰胺另一好的方法是用胺和乙烯酮〔15〕或异丙烯乙酸酯反应。如果用双烯酮〔17〕反应,则得到的是乙酰乙酰基衍生物。 用乙酰基保护氨基比用其他保护基要多。由于它比甲酰基更稳定,因此,在进行亲电取代、硝化、卤代等反应时常选择乙酰基来保护芳香胺。乙酰胺丙二酸酯也可用于合成α2氨基酸,但在脱乙酰基时所需的酸或碱性条件,可使分子内其他

氨基的保护及脱保护

经典化学合成反应标准操作氨基的保护及脱保护策略 编者:彭宪 药明康德新药开发有限公司化学合成部

目录 1.氨基的保护及脱保护概要 (2) 2.烷氧羰基类 2-1. 苄氧羰基(Cbz) (4) 2-2. 叔丁氧羰基(Boc)……………………………………………… 16 2-3. 笏甲氧羰基(Fmoc) (28) 2-4. 烯丙氧羰基(Alloc)………………………………………… 34 2-5. 三甲基硅乙氧羰基(Teoc)…………………………………… 36 2-6. 甲(或乙)氧羰基…………………………………………… 40 3.酰基类 3-1. 邻苯二甲酰基(Pht)…………………………………………… 43 3-2. 对甲苯磺酰基(Tos)………………………………………… 49 3-3. 三氟乙酰基(Tfa)………………………………………… 53 4.烷基类

4-1. 三苯甲基(Trt)……………………………………………… 57 4-2. 2,4-二甲氧基苄基(Dmb)…………………………………… 63 4-3. 对甲氧基苄基(PMB) (65) 4-4. 苄基(Bn) (70)

1.氨基的保护及脱保护概要 选择一个氨基保护基时,必须仔细考虑到所有的反应物,反应条件及所设计的反应过程中会涉及的所有官能团。首先,要对所有的反应官能团作出评估,确定哪些在所设定的反应条件下是不稳定并需要加以保护的,并在充分考虑保护基的性质的基础上,选择能和反应条件相匹配的氨基保护基。其次,当几个保护基需要同时被除去时,用相同的保护基来保护不同的官能团是非常有效(如苄基可保护羟基为醚,保护羧酸为酯,保护氨基为氨基甲酸酯)。要选择性去除保护基时,就只能采用不同种类的保护基(如一个Cbz保护的氨基可氢解除去,但对另一个Boc保护的氨基则是稳定的)。此外,还要从电子和立体的因素去考虑对保护的生成和去除速率的影响(如羧酸叔醇酯远比伯醇酯难以生成或除去)。最后,如果难以找到合适的保护基,要么适当调整反应路线使官能团不再需要保护或使原来在反应中会起反应的保护基成为稳定的;要么重新设计路线,看是否有可能应用前体官能团(如硝基,亚胺等);或者设计出新的不需要保护基的合成路线。 在合成反应中,伯胺、仲氨、咪唑、吡咯、吲哚和其他芳香氮杂环中的氨基往往是需要进行保护的。已经使用过的氨基保护基很多,但归纳起来,可以分为烷氧羰基、酰基和烷基三大类。烷氧羰基使用最多,因为N-烷氧羰基保护的氨基酸在接肽时不易发生消旋化。伯胺、仲氨、咪唑、吡咯、吲哚和其他芳香氮氢都可以选择合适的保护基进行保护。下表列举了几种代表性的常用的氨基保护基。

相关文档
最新文档