2009年四川省高考理科数学试卷和答案
2009高考数学全国卷II(理)(word版含答案)
东
2009 普通高等学校招生全国统一考试 理科数学 第 II 卷(非选择题,共 90 分)
注意事项: 本卷共 2 页,10 小题,用黑色碳素笔将答案答在答题卡.答在试题卷上的答案无效. 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.把答案填在答题卡上. 13. ( x y y x )4 的展开式中 x3 y3 的系数为 .
2009 普通高等学校招生全国统一考试 理科数学(全国 II 卷)
本试卷分第 I 卷(选择题)和第Ⅱ 卷(非选择题)两部分.第 I 卷 1 至 2 页,第 II 卷 3 至 4 页.考试结束后,将本试卷和答题卡一并交回.满分 150 分,考试用时 120 分钟.
第Ⅰ 卷(选择题,共 60 分)
注意事项: 1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题 卡上填写清楚,请认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定 的位置贴好条形码. 2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号.答在试卷上的答案无效. 参考公式: 如果事件 A,B 互斥,那么 球的表面积公式
19.本小题满分 12 分 设数列{ an }的前 n 项和为 Sn ,已知 a1 =1, sn 1 =4 an +2 (Ⅰ )设 bn an 1 2 an ,证明数列{ bn }是等比数列; (Ⅱ )求数列{ an }的通项公式.
) D. b c a
C. b a c
8.若讲函数 y tan( x
图像重合,则 的最小值为( A.
π π π ) 的图像向右平移 个单位长度后,与函数 y tan( x ) 的 4 6 6
2009年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)
2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i2.(5分)设集合A={x||x|>3},B={x |<0},则A∩B=()A.φB.(3,4)C.(﹣2,1)D.(4,+∞)3.(5分)已知△ABC中,cotA=﹣,则cosA=()A .B .C .D .4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0B.x+y﹣2=0C.x+4y﹣5=0D.x﹣4y+3=05.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所形成角的余弦值为()A .B .C .D .6.(5分)已知向量=(2,1),=10,|+|=,则||=()A .B .C.5D.257.(5分)设a=log3π,b=log 2,c=log 3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a8.(5分)若将函数y=tan(ωx +)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx +)的图象重合,则ω的最小值为()A .B .C .D .9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A .B .C .D .10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种11.(5分)已知双曲线的右焦点为F,过F 且斜率为的直线交C于A、B 两点,若=4,则C的离心率为()A .B .C .D .12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F 转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i【考点】A5:复数的运算.【专题】11:计算题.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=,故选:A.【点评】本题考查复数的乘除运算,是一个基础题,在近几年的高考题目中,复数的简单的运算题目是一个必考的问题,通常出现在试卷的前几个题目中.2.(5分)设集合A={x||x|>3},B={x |<0},则A∩B=()A.φB.(3,4)C.(﹣2,1)D.(4,+∞)【考点】1E:交集及其运算.【分析】先化简集合A和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3或x<﹣3},B={x |<0}={x|1<x<4},∴A∩B=(3,4),故选:B.【点评】本题属于以不等式为依托,求集合的交集的基础题,也是高考常会考的题型.3.(5分)已知△ABC中,cotA=﹣,则cosA=()A .B .C .D .【考点】GG:同角三角函数间的基本关系.【专题】11:计算题.【分析】利用同角三角函数的基本关系cosA转化成正弦和余弦,求得sinA和cosA的关系式,进而与sin2A+cos2A=1联立方程求得cosA的值.【解答】解:∵cotA=∴A为钝角,cosA<0排除A和B,再由cotA==,和sin2A+cos2A=1求得cosA=,故选:D.【点评】本题考查同角三角函数基本关系的运用.主要是利用了同角三角函数中的平方关系和商数关系.4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0B.x+y﹣2=0C.x+4y﹣5=0D.x﹣4y+3=0【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选:B.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所形成角的余弦值为()A .B .C .D .【考点】LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5G:空间角.【分析】由BA1∥CD1,知∠A1BE是异面直线BE与CD1所形成角,由此能求出异面直线BE与CD1所形成角的余弦值.【解答】解:∵正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,∴BA1∥CD1,∴∠A1BE是异面直线BE与CD1所形成角,设AA1=2AB=2,则A1E=1,BE==,A1B==,∴cos∠A1BE===.∴异面直线BE与CD1所形成角的余弦值为.故选:C.【点评】本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.6.(5分)已知向量=(2,1),=10,|+|=,则||=()A .B .C.5D.25【考点】91:向量的概念与向量的模;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】根据所给的向量的数量积和模长,对|a+b|=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方程,解方程即可.【解答】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选:C.【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注意对于变量的应用.7.(5分)设a=log3π,b=log 2,c=log 3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【考点】4M:对数值大小的比较.【分析】利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.【解答】解:∵∵,故选A【点评】本题考查的是对数函数的单调性,这里需要注意的是当底不相同时可用1做为中介值.8.(5分)若将函数y=tan(ωx +)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx +)的图象重合,则ω的最小值为()A .B .C .D .【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx +)的图象重合,比较系数,求出ω=6k +(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx +),向右平移个单位可得:y=tan[ω(x ﹣)+]=tan(ωx +)∴﹣ω+kπ=∴ω=k +(k∈Z),又∵ω>0∴ωmin =.故选:D.【点评】本题是基础题,考查三角函数的图象的平移,待定系数法的应用,考查计算能力,是常考题.9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A .B .C .D .【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB ,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B 的坐标为,故选:D.【点评】本题主要考查了抛物线的简单性质.考查了对抛物线的基础知识的灵活运用.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种【考点】D5:组合及组合数公式.【专题】11:计算题.【分析】根据题意,分两步,①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2门的种数C42C42=36,②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,故选:C.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用直接法或间接法.11.(5分)已知双曲线的右焦点为F,过F 且斜率为的直线交C于A、B 两点,若=4,则C的离心率为()A .B .C .D .【考点】I3:直线的斜率;KA:双曲线的定义.【专题】11:计算题;16:压轴题.【分析】设双曲线的有准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB的斜率可知直线AB的倾斜角,进而推,由双曲线的第二定义|AM|﹣|BN|=|AD|,进而根据,求得离心率.【解答】解:设双曲线的右准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB 的斜率为,知直线AB的倾斜角为60°∴∠BAD=60°,由双曲线的第二定义有:=∴,∴故选:A.【点评】本题主要考查了双曲线的定义.解题的关键是利用了双曲线的第二定义,找到了已知条件与离心率之间的联系.12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【考点】LC:空间几何体的直观图.【专题】16:压轴题.【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B【点评】本题主要考查多面体的展开图的复原,属于基本知识基本能力的考查.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为6.【考点】DA:二项式定理.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1项,令x,y的指数都为1求出x3y3的系数【解答】解:,只需求展开式中的含xy项的系数.∵的展开式的通项为令得r=2∴展开式中x3y3的系数为C42=6故答案为6.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=9.【考点】83:等差数列的性质.【专题】11:计算题.【分析】根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为9【点评】本题主要考查了等差数列中等差中项的性质.属基础题.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C 的面积等于,则球O 的表面积等于8π.【考点】LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C的半径为r,.因为.由得R2=2故球O的表面积等于8π故答案为:8π,【点评】本题考查学生对空间想象能力,以及球的面积体积公式的利用,是基础题.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【考点】N8:圆內接多边形的性质与判定.【专题】14:证明题;16:压轴题.【分析】如图,菱形ABCD的对角线AC和BD相交于点O,菱形ABCD各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ=AB,得到M、N、P、Q四点在以O为圆心OM为半径的圆上.【解答】已知:如图,菱形ABCD的对角线AC和BD相交于点O.求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.证明:∵四边形ABCD是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q分别是边AB、BC、CD、DA的中点,∴OM=ON=OP=OQ=AB,∴M、N、P、Q四点在以O为圆心OM为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.【点评】本题考查了四点共圆的判定方法.也考查了菱形的性质以及直角三角形斜边上的中线等于斜边的一半.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【专题】11:计算题.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB=及B=π﹣(A +C)得cos (A﹣C)﹣cos(A+C)=,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)=,∴sinAsinC=.又由b2=ac及正弦定理得sin2B=sinAsinC,故,∴或(舍去),于是B=或B=.又由b2=ac知b≤a或b≤c所以B=.【点评】三角函数给值求值问题的关键就是分析已知角与未知角的关系,然后通过角的关系,选择恰当的公式,即:如果角与角相等,则使用同角三角函数关系;如果角与角之间的和或差是直角的整数倍,则使用诱导公式;如果角与角之间存在和差关系,则我们用和差角公式;如果角与角存在倍数关系,则使用倍角公式.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可,作AG⊥BD于G,连GC,∠AGC为二面角A﹣BD﹣C的平面角,在三角形AGC中求出GC即可.【解答】解:如图(I)连接BE,∵ABC﹣A1B1C1为直三棱柱,∴∠B1BC=90°,∵E为B1C的中点,∴BE=EC.又DE⊥平面BCC1,∴BD=DC(射影相等的两条斜线段相等)而DA⊥平面ABC,∴AB=AC(相等的斜线段的射影相等).(II)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可.作AG⊥BD于G,连GC,∵AB⊥AC,∴GC⊥BD,∠AGC为二面角A﹣BD﹣C的平面角,∠AGC=60°不妨设,则AG=2,GC=4在RT△ABD中,由AD•AB=BD•AG ,易得设点B1到面BDC的距离为h,B1C与平面BCD所成的角为α.利用,可求得h=,又可求得,∴α=30°.即B1C与平面BCD所成的角为30°.【点评】本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【考点】87:等比数列的性质;8H:数列递推式.【专题】15:综合题.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.由S n+1=4a n+2,①则当n≥2时,有S n=4a n﹣1+2,②①﹣②得a n+1=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),又b n=a n+1﹣2a n,所以b n=2b n﹣1(b n≠0),所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)【点评】本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.【考点】B3:分层抽样方法;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题;48:分析法.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10名工人,乙组有5名工人,从甲、乙两组中共抽取3名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2名,乙中抽取1名.(Ⅱ)因为由上问求得;在甲中抽取2名工人,故从甲组抽取的工人中恰有1名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,ξ01 2 3P故Eξ==.【点评】本题较常规,比08年的概率统计题要容易.在计算P(ξ=2)时,采用求反面的方法,用直接法也可,但较繁琐.考生应增强灵活变通的能力.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F 转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【考点】K4:椭圆的性质.【专题】15:综合题;16:压轴题.【分析】(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P ,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O到l 的距离为则,解得c=1又,∴(II)由(I )知椭圆的方程为设A(x1,y1)、B(x2,y2)由题意知l的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P ,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),点P 在椭圆上,即.整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、故2x1x2+3y1y2+3=0②将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得∴,x1+x2=,即当;当【点评】本题主要考查了椭圆的性质.处理解析几何题,学生主要是在“算”上的功夫不够.所谓“算”,主要讲的是算理和算法.算法是解决问题采用的计算的方法,而算理是采用这种算法的依据和原因,一个是表,一个是里,一个是现象,一个是本质.有时候算理和算法并不是截然区分的.例如:三角形的面积是用底乘高的一半还是用两边与夹角的正弦的一半,还是分割成几部分来算?在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间;(2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I )令g(x)=2x2+2x+a ,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)当时,h'(x)>0,∴h(x )在单调递增,故.【点评】本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的极值等有关知识,属于中档题.。
2009年高考四川数学(理科)试题及参考答案
一、单项选择题(共70题,每题1分,每题的备选项中,只有1个最符合题意)1、甲单位拟新建一电教中心,经设计招标,由乙设计院承担该项目设计任务。
下列目标中,不属于乙设计院项目管理目标的是()。
A.项目投资目标B.设计进度目标C.施工质量目标D.设计成本目标2、某建设工程项目施工总承包管理模式,其中的二次装饰装修工程由建设单位发包给乙单位。
在施工中,乙单位应该直接接受()的工作指令。
A.建设单位B.设计单位C.施工总承包管理企业D.施工承包企业3、采用项目结构图对建设工程项目进行分解时,项目结构的分解应与整个建设工程实施的部署相结合,并与将采用的()结合。
A.组织结构B.工程流程C.职能结构D.合同结构4、建设工程施工管理中的组织结构图反映的是()。
A.一个项目管理班子中各组成部门之间的组织关系B.一个项目中各组成部分之间的组织关系C.一个项目管理班子中各组成部门之间的组织关系D.一个项目中各组成部分之间的逻辑关系5、根据《建设工程工程量清单计价规范》(GB50500-2008),投标人所填报的分部分项工程的综合单价中不包括()。
A.规费B.利润C.管理费D.直接工程费6、编制施工管理任务分工表,涉及到的事项有:①确定工作部门或个人的工作任务;②项目管理任务分解;③编制任务分工表。
正确的编制程序是()。
A.①②③B.②①③C.③②①D.②③①7、关于工作流程与工作流程图的说法,正确的是()A.业主方与项目各参与广播工作流程任务是一致的。
B.工作流程组织的任务就是编制组织结构图C.工作流程图可以用来描述工作流程组织D.工作流程图中用双向箭线表示工作间的逻辑关系8、根据《建筑安装工程费用项目组成》(建标【2003】206号),下列建筑安装工程费用项目中,不属于直接工程是()A.人工费B.材料费C.临时设施费D.施工机械使用费9、根据《建筑安装工程费用项目组成》(建标【2003】206号),施工现场垂直运输机械操作司机的工资属于建筑安装工程费用的()。
2009年全国统一高考数学试卷(理科)(全国卷ⅱ)及答案
2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i2.(5分)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)3.(5分)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=05.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.6.(5分)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.257.(5分)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a8.(5分)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F 为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种11.(5分)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C 的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•全国卷Ⅱ)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=,故选A2.(5分)(2009•全国卷Ⅱ)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)【分析】先化简集合A和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3或x<﹣3},B={x|<0}={x|1<x<4},∴A∩B=(3,4),故选B.3.(5分)(2009•黑龙江)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.【分析】利用同角三角函数的基本关系cosA转化成正弦和余弦,求得sinA和cosA 的关系式,进而与sin2A+cos2A=1联立方程求得cosA的值.【解答】解:∵cotA=∴A为钝角,cosA<0排除A和B,再由cotA==,和sin2A+cos2A=1求得cosA=,故选D.4.(5分)(2009•全国卷Ⅱ)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=0【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选B.5.(5分)(2009•黑龙江)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.【分析】求异面直线所成的角,一般有两种方法,一种是几何法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求.还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解.本题采用几何法较为简单:连接A1B,则有A1B∥CD1,则∠A1BE就是异面直线BE与CD1所成角,由余弦定理可知cos ∠A1BE的大小.【解答】解:如图连接A1B,则有A1B∥CD1,∠A1BE就是异面直线BE与CD1所成角,设AB=1,则A1E=AE=1,∴BE=,A1B=.由余弦定理可知:cos∠A1BE=.故选C.6.(5分)(2009•黑龙江)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.25【分析】根据所给的向量的数量积和模长,对|a+b|=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方程,解方程即可.【解答】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.7.(5分)(2009•全国卷Ⅱ)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【分析】利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.【解答】解:∵∵,故选A8.(5分)(2009•黑龙江)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx+)的图象重合,比较系数,求出ω=6k+(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan (ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.9.(5分)(2009•黑龙江)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN ⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B 的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为,故选D10.(5分)(2009•黑龙江)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种【分析】根据题意,分两步,①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2门的种数C42C42=36,②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,故只恰好有1门相同的选法有36﹣6﹣6=24种.11.(5分)(2009•全国卷Ⅱ)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.【分析】设双曲线的有准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD ⊥AM于D,由直线AB的斜率可知直线AB的倾斜角,进而推,由双曲线的第二定义|AM|﹣|BN|=|AD|,进而根据,求得离心率.【解答】解:设双曲线的右准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB的斜率为,知直线AB的倾斜角为60°∴∠BAD=60°,由双曲线的第二定义有:=∴,∴故选A.12.(5分)(2009•黑龙江)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•黑龙江)(x﹣y)4的展开式中x3y3的系数为6.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1项,令x,y 的指数都为1求出x3y3的系数【解答】解:,只需求展开式中的含xy项的系数.∵的展开式的通项为令得r=2∴展开式中x3y3的系数为C42=6故答案为6.14.(5分)(2009•全国卷Ⅱ)设等差数列{a n}的前n项和为S n,若a5=5a3,则=9.【分析】根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为915.(5分)(2009•黑龙江)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于8π.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C的半径为r,.因为.由得R2=2故球O的表面积等于8π故答案为:8π,16.(5分)(2009•全国卷Ⅱ)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【分析】如图,菱形ABCD的对角线AC和BD相交于点O,菱形ABCD各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ=AB,得到M、N、P、Q四点在以O为圆心OM为半径的圆上.【解答】已知:如图,菱形ABCD的对角线AC和BD相交于点O.求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.证明:∵四边形ABCD是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q分别是边AB、BC、CD、DA的中点,∴OM=ON=OP=OQ=AB,∴M、N、P、Q四点在以O为圆心OM为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)(2009•黑龙江)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB=及B=π﹣(A+C)得cos(A﹣C)﹣cos(A+C)=,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)=,∴sinAsinC=.又由b2=ac及正弦定理得sin2B=sinAsinC,故,∴或(舍去),于是B=或B=.又由b2=ac知b≤a或b≤c所以B=.18.(12分)(2009•黑龙江)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E 分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可,作AG⊥BD于G,连GC,∠AGC为二面角A﹣BD﹣C的平面角,在三角形AGC中求出GC即可.【解答】解:如图(I)连接BE,∵ABC﹣A1B1C1为直三棱柱,∴∠B1BC=90°,∵E为B1C的中点,∴BE=EC.又DE⊥平面BCC1,∴BD=DC(射影相等的两条斜线段相等)而DA⊥平面ABC,∴AB=AC(相等的斜线段的射影相等).(II)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可.作AG⊥BD于G,连GC,∵AB⊥AC,∴GC⊥BD,∠AGC为二面角A﹣BD﹣C的平面角,∠AGC=60°不妨设,则AG=2,GC=4在RT△ABD中,由AD•AB=BD•AG,易得设点B1到面BDC的距离为h,B1C与平面BCD所成的角为α.利用,可求得h=,又可求得,∴α=30°.即B1C与平面BCD所成的角为30°.19.(12分)(2009•全国卷Ⅱ)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.=4a n+2,①由S n+1则当n≥2时,有S n=4a n﹣1+2,②=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),①﹣②得a n+1又b n=a n+1﹣2a n,所以b n=2b n﹣1,所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)20.(12分)(2009•全国卷Ⅱ)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10名工人,乙组有5名工人,从甲、乙两组中共抽取3名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2名,乙中抽取1名.(Ⅱ)因为由上问求得;在甲中抽取2名工人,故从甲组抽取的工人中恰有1名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,23ξ01P故Eξ==.21.(12分)(2009•黑龙江)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F 转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【分析】(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P ,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O到l的距离为则,解得c=1又,∴(II)由(I)知椭圆的方程为设A(x1,y1)、B(x2,y2)由题意知l的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),点P在椭圆上,即.整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、故2x1x2+3y1y2+3=0②将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得∴,x1+x2=,即当;当22.(12分)(2009•全国卷Ⅱ)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间;(2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)(1)当时,h'(x)>0,∴h(x)在单调递增;(2)当x∈(0,+∞)时,h'(x)<0,h(x)在(0,+∞)单调递减.∴故.。
2009年高考全国卷1数学真题(理科数学)(附答案)
2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B •=•球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u AB 中的元素共有()(A )3个 (B )4个 (C )5个 (D )6个(2)已知1iZ+=2+i,则复数z=() (A )-1+3i (B)1-3i (C)3+i (D)3-i (3) 不等式11X X +-<1的解集为( )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于()(A (B )2 (C (D(5) 甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。
若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )(A )150种 (B )180种 (C )300种 (D)345种 (6)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -•-的最小值为 ( )(A )2- (B 2 (C )1- (D)1(7)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A )4 (B )4 (C )4 (D) 34(8)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么||ϕ的最小值为(A )6π (B )4π (C )3π (D) 2π(9) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为( )(A)1 (B)2 (C) -1 (D)-2(10)已知二面角l αβ--为60,动点P 、Q 分别在面α、β内,PQ 到α的距离为P 、Q 两点之间距离的最小值为( )(A) (B)2 (C) (11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )(A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数12.已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF =( )23第II 卷二、填空题:13. ()10x y -的展开式中,73x y 的系数与37x y 的系数之和等于 。
2009年四川省高考数学试卷(理科)及答案
2009年四川省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合S={x||x|<5},T={x|x2+4x﹣21<0},则S∩T=()A.{x|﹣7<x<﹣5}B.{x|3<x<5}C.{x|﹣5<x<3}D.{x|﹣7<x<5}2.(5分)已知函数连续,则常数a的值是()A.2 B.3 C.4 D.53.(5分)复数的值是()A.﹣1 B.1 C.﹣i D.i4.(5分)已知函数f(x)=sin(x﹣)(x∈R),下面结论错误的是()A.函数f(x)的最小正周期为2πB.函数f(x)在区间[0,]上是增函数C.函数f(x)的图象关于直线x=0对称D.函数f(x)是奇函数5.(5分)如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB 则下列结论正确的是()A.PB⊥ADB.平面PAB⊥平面PBCC.直线BC∥平面PAED.直线PD与平面ABC所成的角为45°6.(5分)已知a,b,c,d为实数,且c>d.则“a>b”是“a﹣c>b﹣d”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.(5分)已知双曲线的左、右焦点分别是F1、F2,其一条渐近线方程为y=x,点在双曲线上、则•=()A.﹣12 B.﹣2 C.0 D.48.(5分)如图,在半径为3的球面上有A、B、C三点,∠ABC=90°,BA=BC,球心O到平面ABC的距离是,则B、C两点的球面距离是()A.B.πC.D.2π9.(5分)已知直线l1:4x﹣3y+6=0和直线l2:x=﹣1,抛物线y2=4x上一动点P 到直线l1和直线l2的距离之和的最小值是()A.B.2 C.D.310.(5分)某企业生产甲、乙两种产品.已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,那么该企业可获得最大利润是()A.12万元B.20万元C.25万元D.27万元11.(5分)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是()A.60 B.48 C.42 D.3612.(5分)已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则的值是()A.0 B.C.1 D.二、填空题(共4小题,每小题4分,满分16分)13.(4分)的展开式的常数项是(用数字作答)14.(4分)若⊙O1:x2+y2=5与⊙O2:(x﹣m)2+y2=20(m∈R)相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是.15.(4分)如图所示,已知正三棱柱ABC﹣A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是.16.(4分)设V是已知平面M上所有向量的集合,对于映射,记的象为.若映射f:V→V满足:对所有及任意实数λ,μ都有,则f称为平面M上的线性变换.现有下列命题:①设f是平面M上的线性变换,则②对设,则f是平面M上的线性变换;③若是平面M上的单位向量,对设,则f是平面M上的线性变换;④设f是平面M上的线性变换,,若共线,则也共线.其中真命题是(写出所有真命题的序号)三、解答题(共6小题,满分74分)17.(12分)在△ABC中,A、B为锐角,角A、B、C所对的边分别为a、b、c,且cos2A=,sinB=.(1)求A+B的值;(2)若a﹣b=﹣1,求a、b、c的值.18.(12分)为了让更多的人参与2010年在上海举办的“世博会”,上海某旅游公司面向国内外发行总量为2000万张的旅游优惠卡,其中向境外人士发行的是世博金卡(简称金卡),向境内人士发行的是世博银卡(简称银卡).现有一个由36名游客组成的旅游团到上海参观旅游,其中是境外游客,其余是境内游客.在境外游客中有持金卡,在境内游客中有持银卡.(Ⅰ)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;(Ⅱ)在该团的境内游客中随机采访3名游客,设其中持银卡人数为随机变量ξ,求ξ的分布列及数学期望Eξ.19.(12分)如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°(I)求证:EF⊥平面BCE;(Ⅱ)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE;(Ⅲ)求二面角F﹣BD﹣A的大小.20.(12分)已知椭圆的左、右焦点分别为F1、F2,离心率,右准线方程为x=2.(1)求椭圆的标准方程;(2)过点F1的直线l与该椭圆交于M、N两点,且,求直线l的方程.21.(12分)已知a>0且a≠1,函数f(x)=log a(1﹣a x).(1)求函数f(x)的定义域,并判断f(x)的单调性;(2)若n∈N*,求;(3)当a=e(e为自然对数的底数)时,设h(x)=(1﹣e f(x))(x2﹣m+1).若函数的极值存在,求实数m的取值范围以及函数h(x)的极值.22.(14分)设数列{a n}的前n项和为S n,对任意的正整数n,都有a n=5S n+1成立,记.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)记c n=b2n﹣b2n﹣1(n∈N*),设数列{c n}的前n项和为T n,求证:对任意正整数n都有;(Ⅲ)设数列{b n}的前n项和为R n.已知正实数λ满足:对任意正整数nR n≤λn 恒成立,求λ的最小值.2009年四川省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•四川)设集合S={x||x|<5},T={x|x2+4x﹣21<0},则S∩T=()A.{x|﹣7<x<﹣5}B.{x|3<x<5}C.{x|﹣5<x<3}D.{x|﹣7<x<5}【分析】由绝对值的意义解出集合S,再解出集合T,求交集即可.【解答】解:由S={x|﹣5<x<5},T={x|﹣7<x<3}故S∩T={x|﹣5<x<3},故选C2.(5分)(2009•四川)已知函数连续,则常数a的值是()A.2 B.3 C.4 D.5【分析】根据x=2的左右极限和x=2时的函数值,结合函数在一点处的连续性的定义求解.【解答】解:由题意得:==4,又∵f(2)=a+log22=a+1,由函数在一点处的连续性的定义知f(2)=,故a+1=4,解得a=3.故选B.3.(5分)(2009•四川)复数的值是()A.﹣1 B.1 C.﹣i D.i【分析】本题是一个复数的运算,包括除法和乘方,解题时要先计算分子上的乘方,再计算除法,注意虚数单位i的运算性质.【解答】解:∵====﹣1,∴原式=﹣1故选A.4.(5分)(2009•四川)已知函数f(x)=sin(x﹣)(x∈R),下面结论错误的是()A.函数f(x)的最小正周期为2πB.函数f(x)在区间[0,]上是增函数C.函数f(x)的图象关于直线x=0对称D.函数f(x)是奇函数【分析】先利用三角函数的诱导公式化简f(x),利用三角函数的周期公式判断出A对;利用余弦函数图象判断出B;利用三角函数的奇偶性判断出C,D.【解答】解:∵y=sin(x﹣)=﹣cosx,∴T=2π,A正确;y=cosx在[0,]上是减函数,y=﹣cosx在[0,]上是增函数,B正确;由图象知y=﹣cosx关于直线x=0对称,C正确.y=﹣cosx是偶函数,D错误.故选D5.(5分)(2009•四川)如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是()A.PB⊥ADB.平面PAB⊥平面PBCC.直线BC∥平面PAED.直线PD与平面ABC所成的角为45°【分析】利用题中条件,逐一分析答案,通过排除和筛选,得到正确答案.【解答】解:∵AD与PB在平面的射影AB不垂直,所以A不成立,又,平面PAB⊥平面PAE,所以平面PAB⊥平面PBC也不成立;BC∥AD∥平面PAD,∴直线BC∥平面PAE也不成立.在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故选D.6.(5分)(2009•四川)已知a,b,c,d为实数,且c>d.则“a>b”是“a﹣c>b ﹣d”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】由题意看命题“a>b”与命题“a﹣c>b﹣d”是否能互推,然后根据必要条件、充分条件和充要条件的定义进行判断.【解答】解:∵a﹣c>b﹣d,c>d两个同向不等式相加得a>b但c>d,a>b⇒a﹣c>b﹣d.例如a=2,b=1,c=﹣1,d=﹣3时,a﹣c<b﹣d.故选B.7.(5分)(2009•四川)已知双曲线的左、右焦点分别是F1、F2,其一条渐近线方程为y=x,点在双曲线上、则•=()A.﹣12 B.﹣2 C.0 D.4【分析】由双曲线的渐近线方程,不难给出a,b的关系,代入即可求出双曲线的标准方程,进而可以求出F1、F2,及P点坐标,求出向量坐标后代入向量内积公式即可求解.【解答】解:由渐近线方程为y=x知双曲线是等轴双曲线,∴双曲线方程是x2﹣y2=2,于是两焦点坐标分别是F1(﹣2,0)和F2(2,0),且或、不妨令,则,∴•=故选C8.(5分)(2009•四川)如图,在半径为3的球面上有A、B、C三点,∠ABC=90°,BA=BC,球心O到平面ABC的距离是,则B、C两点的球面距离是()A.B.πC.D.2π【分析】欲求B、C两点的球面距离,即要求出球心角∠BOC,将其置于三角形BOC中解决.【解答】解:∵AC是小圆的直径.所以过球心O作小圆的垂线,垂足O′是AC的中点.O′C=,AC=3,∴BC=3,即BC=OB=OC.∴,则B、C两点的球面距离=.故选B.9.(5分)(2009•四川)已知直线l1:4x﹣3y+6=0和直线l2:x=﹣1,抛物线y2=4x 上一动点P到直线l1和直线l2的距离之和的最小值是()A.B.2 C.D.3【分析】设出抛物线上一点P的坐标,然后利用点到直线的距离公式分别求出P 到直线l1和直线l2的距离d1和d2,求出d1+d2,利用二次函数求最值的方法即可求出距离之和的最小值.【解答】解:设抛物线上的一点P的坐标为(a2,2a),则P到直线l2:x=﹣1的距离d2=a2+1;P到直线l1:4x﹣3y+6=0的距离d1=则d1+d2=a2+1=当a=时,P到直线l1和直线l2的距离之和的最小值为2故选B10.(5分)(2009•四川)某企业生产甲、乙两种产品.已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,那么该企业可获得最大利润是()A.12万元B.20万元C.25万元D.27万元【分析】先设该企业生产甲产品为x吨,乙产品为y吨,列出约束条件,再根据约束条件画出可行域,设z=5x+3y,再利用z的几何意义求最值,只需求出直线z=5x+3y过可行域内的点时,从而得到z值即可.【解答】解:设该企业生产甲产品为x吨,乙产品为y吨,则该企业可获得利润为z=5x+3y,且联立解得由图可知,最优解为P(3,4),∴z的最大值为z=5×3+3×4=27(万元).故选D.11.(5分)(2009•四川)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是()A.60 B.48 C.42 D.36【分析】从3名女生中任取2人“捆”在一起,剩下一名女生记作B,两名男生分别记作甲、乙,则男生甲必须在A、B之间,最后再在排好的三个元素中选出四个位置插入乙.【解答】解:从3名女生中任取2人“捆”在一起记作A,(A共有C32A22=6种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;则男生甲必须在A、B之间(若甲在A、B两端.则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在两端的要求)此时共有6×2=12种排法(A左B右和A右B左)最后再在排好的三个元素中选出四个位置插入乙,∴共有12×4=48种不同排法.故选B.12.(5分)(2009•四川)已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则的值是()A.0 B.C.1 D.【分析】从xf(x+1)=(1+x)f(x)结构来看,要用递推的方法,先用赋值法求得,再由依此求解.【解答】解:若x≠0,则有,取,则有:∵f(x)是偶函数,则由此得于是,故选A.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2009•四川)的展开式的常数项是﹣20(用数字作答)【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0求得常数项.【解答】解:,令6﹣2r=0,得r=3故展开式的常数项为(﹣1)3C63=﹣20故答案为﹣2014.(4分)(2009•四川)若⊙O1:x2+y2=5与⊙O2:(x﹣m)2+y2=20(m∈R)相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是4.【分析】画出草图,O1A⊥AO2,有勾股定理可得m的值,再用等面积法,求线段AB的长度.【解答】解:由题O1(0,0)与O2:(m,0),O1A⊥AO2,,∴m=±5AB=故答案为:415.(4分)(2009•四川)如图所示,已知正三棱柱ABC﹣A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是90°.【分析】由题意设棱长为a,补正三棱柱ABC﹣A2B2C2,构造直角三角形A2BM,解直角三角形求出BM,利用勾股定理求出A2M,从而求解.【解答】解:设棱长为a,补正三棱柱ABC﹣A2B2C2(如图).平移AB1至A2B,连接A2M,∠MBA2即为AB1与BM所成的角,在△A2BM中,A2B=a,BM==a,A2M==a,∴A2B2+BM2=A2M2,∴∠MBA2=90°.故答案为90°.16.(4分)(2009•四川)设V是已知平面M上所有向量的集合,对于映射,记的象为.若映射f:V→V满足:对所有及任意实数λ,μ都有,则f称为平面M上的线性变换.现有下列命题:①设f是平面M上的线性变换,则②对设,则f是平面M上的线性变换;③若是平面M上的单位向量,对设,则f是平面M上的线性变换;④设f是平面M上的线性变换,,若共线,则也共线.其中真命题是①②④(写出所有真命题的序号)【分析】本题考查的知识点的演绎推理,由已知中,若映射f:V→V满足:对所有及任意实数λ,μ都有,则f称为平面M上的线性变换.我们根据其定义对题目中的四个结论进行判断,即可得到结论.【解答】解:令==,λ=μ=1,由题有f()=2f()⇒f()=,故①正确;由题f(λ+μ)=2(λ+μ),λf()+μf()=2λ+2μ)=2(λ+μ),即f(λ+μ)=λf()+μf(),故②正确;由题f(λ+μ)=λ+μ﹣,λf()+μf()=λ﹣+μ﹣,,即f(λ+μ≠λf()+μf(),故③不正确;由题=λ,f()=f(﹣λ)=f()﹣λf()⇒f()=λf(),即f(),f()也共线,故④正确;故答案为:①②④三、解答题(共6小题,满分74分)17.(12分)(2009•四川)在△ABC中,A、B为锐角,角A、B、C所对的边分别为a、b、c,且cos2A=,sinB=.(1)求A+B的值;(2)若a﹣b=﹣1,求a、b、c的值.【分析】(1)根据同角三角函数的基本关系可得cosB的值,再由余弦函数的二倍角公式可得sinA和cosA的值,最后根据两角和的余弦公式可得答案.(2)根据(1)可求出角C的值,进而得到角C的正弦值,再由正弦定理可求出abc的值.【解答】解:(1)∵A、B为锐角,sinB=,∴cosB==.又cos2A=1﹣2sin2A=,∴sinA=,cosA==.∴cos(A+B)=cosAcosB﹣sinAsinB=×﹣×=.∵0<A+B<π,∴A+B=.(2)由(1)知C=,∴sinC=.由正弦定理==得a=b=c,即a=b,c=b.∵a﹣b=﹣1,∴b﹣b=﹣1,∴b=1.∴a=,c=.18.(12分)(2009•四川)为了让更多的人参与2010年在上海举办的“世博会”,上海某旅游公司面向国内外发行总量为2000万张的旅游优惠卡,其中向境外人士发行的是世博金卡(简称金卡),向境内人士发行的是世博银卡(简称银卡).现有一个由36名游客组成的旅游团到上海参观旅游,其中是境外游客,其余是境内游客.在境外游客中有持金卡,在境内游客中有持银卡.(Ⅰ)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;(Ⅱ)在该团的境内游客中随机采访3名游客,设其中持银卡人数为随机变量ξ,求ξ的分布列及数学期望Eξ.【分析】(Ⅰ)由题意得,境外游客有27人,其中9人持金卡;境内游客有9人,其中6人持银卡.记出事件,表示出事件的概率,根据互斥事件的概率公式,得到结论.(Ⅱ)在该团的境内游客中随机采访3名游客,其中持银卡人数为随机变量ξ,则得到ξ的可能取值,做出变量在不同取值时对应的概率,写出分布列和期望.【解答】解:(Ⅰ)∵现有一个由36名游客组成的旅游团到上海参观旅游,其中是境外游客,其余是境内游客.∴由题意得,境外游客有27人,其中9人持金卡;境内游客有9人,其中6人持银卡.设事件B为“采访该团3人中,恰有1人持金卡且持银卡者少于2人”,事件A1为“采访该团3人中,1人持金卡,0人持银卡”,事件A2为“采访该团3人中,1人持金卡,1人持银卡”.P(B)=P(A1)+P(A2)==所以,在该团中随机采访3人,恰有1人持金卡且持银卡者少于2人的概率是.(Ⅱ)ξ的可能取值为0,1,2,3P(ξ=0)=;,P(ξ=1)=.P=(ξ=2)=,P(ξ=3)=,所以ξ的分布列为ζ0123P∴Eξ=.19.(12分)(2009•四川)如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°(I)求证:EF⊥平面BCE;(Ⅱ)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE;(Ⅲ)求二面角F﹣BD﹣A的大小.【分析】(1)欲证EF⊥平面BCE,根据线面垂直的判定定理可知只需证EF⊥BE,BC⊥EF,BC∩BE=B,根据条件很显然;(2)取BE的中点N,连接CN,MN,易证PM∥CN,根据线面平行的判定定理很快得证;(3)作FG⊥AB,交BA的延长线于G,作GH⊥BD于H,连接FH,易证∠FHG 为二面角F﹣BD﹣A的平面角,在Rt△FGH中求出此角即可.【解答】解:因为平面ABEF⊥平面ABCD,BC⊂平面ABCD,BC⊥AB,平面ABEF ∩平面ABCD=AB,所以BC⊥平面ABEF所以BC⊥EF因为△ABE为等腰直角三角形,AB=AE,所以∠AEB=45°,又因为∠AEF=45,所以∠FEB=90°,即EF⊥BE因为BC⊂平面ABCD,BE⊂平面BCE,BC∩BE=B所以EF⊥平面BCE(II)取BE的中点N,连接CN,MN,则MN==PC∴PMNC为平行四边形,所以PM∥CN∵CN在平面BCE内,PM不在平面BCE内,∴PM∥平面BCE.(III)由EA⊥AB,平面ABEF⊥平面ABCD,易知EA⊥平面ABCD、作FG⊥AB,交BA的延长线于G,则FG∥EA、从而FG⊥平面ABCD,作GH⊥BD于H,连接FH,则由三垂线定理知BD⊥FH、∴∠FHG为二面角F﹣BD﹣A的平面角、∵FA=FE,∠AEF=45°,∠AEF=90°,∠FAG=45°、设AB=1,则AE=1,AF=,则在Rt△BGH中,∠GBH=45°,BG=AB+AG=1+=,,在Rt△FGH中,,∴二面角F﹣BD﹣A的大小为20.(12分)(2009•四川)已知椭圆的左、右焦点分别为F1、F2,离心率,右准线方程为x=2.(1)求椭圆的标准方程;(2)过点F1的直线l与该椭圆交于M、N两点,且,求直线l的方程.【分析】(1)由已知得,解得,由此能得到所求椭圆的方程.(2)由题意知F1(﹣1,0)、F2(1,0),①若直线l的斜率不存在,则直线l的方程为x=﹣1,由得设、,,这与已知相矛盾.②若直线l的斜率存在,设直线直线l的斜率为k,则直线l的方程为y=k(x+1),设M(x1,y1)、N(x2,y2),联立,消元得(1+2k2)x2+4k2x+2k2﹣2=0.再由根与系数的关系进行求解.【解答】解:(1)由已知得,解得∴∴所求椭圆的方程为(2)由(1)得F1(﹣1,0)、F2(1,0)①若直线l的斜率不存在,则直线l的方程为x=﹣1,由得设、,∴,这与已知相矛盾.②若直线l的斜率存在,设直线直线l的斜率为k,则直线l的方程为y=k(x+1),设M(x1,y1)、N(x2,y2),联立,消元得(1+2k2)x2+4k2x+2k2﹣2=0∴,∴.又∵∴∴化简得40k4﹣23k2﹣17=0解得k2=1或k2=(舍去)∴k=±1∴所求直线l的方程为y=x+1或y=﹣x﹣121.(12分)(2009•四川)已知a>0且a≠1,函数f(x)=log a(1﹣a x).(1)求函数f(x)的定义域,并判断f(x)的单调性;(2)若n∈N*,求;(3)当a=e(e为自然对数的底数)时,设h(x)=(1﹣e f(x))(x2﹣m+1).若函数的极值存在,求实数m的取值范围以及函数h(x)的极值.【分析】(1)据对数函数的真数大于0,列出不等式求出定义域;求出导函数,利用导函数大于0函数得到递增;导函数小于0函数单调递减.(2)求出f(n)代入极限式,利用特殊函数的极限值求出极限.(3)求出导函数,令导函数为0,导函数是否有根进行分类讨论;导函数的根是否在定义域内再一次引起分类讨论,利用极值的定义求出极值.【解答】解:(1)由题意知,1﹣a x>0所以当0<a<1时,f(x)的定义域是(0,+∞),a>1时,f(x)的定义域是(﹣∞,0),f′(x)==当0<a<1时,x∈(0,+∞),因为a x﹣1<0,a x>0,故f'(x)<0,所以f(x)是减函数.当a>1时,x∈(﹣∞,0),因为a x﹣1<0,a x>0,故f'(x)<0,所以f(x)是减函数.(2)因为f(n)=log a(1﹣a n),所以a f(n)=1﹣a n,由函数定义域知1﹣a n>0,因为n是正整数,故0<a<1,所以=.(3)h(x)=e x(x2﹣m+1)(x<0),所以h'(x)=e x(x2+2x﹣m+1),令h'(x)=0,即x2+2x﹣m+1=0,由题意应有△≥0,即m≥0.①当m=0时,h'(x)=0有实根x=﹣1,在x=﹣1点左右两侧均有h'(x)>0,故h(x)无极值.②当0<m<1时,h'(x)=0有两个实根,.当x变化时,h'(x)的变化情况如下表:x(﹣∞,x1)x1(x1,x2)x2(x2,0)h′(x)+0 ﹣0 +h(x)递增极大值递减极小值递增∴h(x )的极大值为,h(x )的极小值为.③当m≥1时,h'(x)=0在定义域内有一个实根.同上可得h(x )的极大值为.综上所述,m∈(0,+∞)时,函数h(x)有极值.当0<m<1时,h(x )的极大值为,h(x )的极小值为.当m≥1时,h(x )的极大值为.22.(14分)(2009•四川)设数列{a n}的前n项和为S n,对任意的正整数n,都有a n=5S n+1成立,记.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)记c n=b2n﹣b2n﹣1(n∈N*),设数列{c n}的前n项和为T n,求证:对任意正整数n都有;(Ⅲ)设数列{b n}的前n项和为R n.已知正实数λ满足:对任意正整数nR n≤λn 恒成立,求λ的最小值.﹣a n=5a n+1,即,所以,(Ⅰ)由题设条件能导出a n【分析】+1∴.(Ⅱ)由,知=,当n=1时,;当n≥2时,.(Ⅲ)由知R n=b1+b2+…+b2k+1==>4n﹣1.由此入手能推导出正实数λ的最小值为4.【解答】解:(Ⅰ)当n=1时,a1=5a1+1,∴又∵a n=5S n+1,a n+1=5S n+1+1﹣a n=5a n+1,即∴a n+1∴数列a n成等比数列,其首项,公比是∴∴(Ⅱ)由(Ⅰ)知∴=又,∴当n=1时,当n≥2时,=,故所证结论成立(Ⅲ)由(Ⅰ)知一方面,已知R n≤λn恒成立,取n为大于1的奇数时,设n=2k+1(k∈N+)则R n=b1+b2+…+b2k+1==>4n﹣1∴λn≥R n>4n﹣1,即(λ﹣4)n>﹣1对一切大于1的奇数n恒成立∴λ≥4否则,(λ﹣4)n>﹣1只对满足的正奇数n成立,矛盾.另一方面,当λ=4时,对一切的正整数n都有R n≤4n事实上,对任意的正整数k,有==∴当n为偶数时,设n=2m(m∈N+)则R n=(b1+b2)+(b3+b4)+…+(b2n﹣1+b2n)<8m=4n当n为奇数时,设n=2m﹣1(m∈N+)则R n=(b1+b2)+(b3+b4)+…+(b2n﹣3+b2n﹣2)+b2n﹣1<8(m﹣1)+4=8m﹣4=4n∴对一切的正整数n,都有R n≤4n综上所述,正实数λ的最小值为4。
2009年高考试题(全国新课标)数学(理科)试卷及答案
(新课标)2009年高考理科数学试题一、选择题(1)已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则N A C B =I ( )(A) }{1,5,7 (B) }{3,5,7 (C) }{1,3,9 (D) }{1,2,3 (2) 复数32322323i ii i+--=-+( ) (A )0 (B )2 (C )-2i (D)2(3)对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断。
(A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关(4)双曲线24x -212y =1的焦点到渐近线的距离为( )(A)(B )2 (C(D )1 (5)有四个关于三角函数的命题:1p :∃x ∈R, 2sin 2x +2cos 2x =122p : ∃x 、y ∈R, sin(x-y)=sinx-siny 3p : ∀x ∈[]0,π4p : sinx=cosy ⇒x+y=2π其中假命题的是( )(A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,4p(6)设x,y 满足241,22x y x y z x y x y +≥⎧⎪-≥-=+⎨⎪-≤⎩则( )(A )有最小值2,最大值3 (B )有最小值2,无最大值 (C )有最大值3,无最小值 (D )既无最小值,也无最大值(7)等比数列{}n a 的前n 项和为n s ,且41a ,22a ,3a 成等差数列。
若1a =1,则4s =( ) (A )7 (B )8 (3)15 (4)16(8) 如图,正方体1111ABCD A B C D -的棱线长为1,线段11B D 上有两个动点E ,F ,且2EF =,则下列结论中错误的是( ) (A )AC BE ⊥ (B )//EF ABCD 平面(C )三棱锥A BEF -的体积为定值 (D )异面直线,AE BF 所成的角为定值(9)已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且P A P B P B P C P C P A ∙=∙=∙,则点O ,N ,P 依次是ABC ∆的( )(A )重心 外心 垂心 (B )重心 外心 内心 (C )外心 重心 垂心 (D )外心 重心 内心(10)如果执行右边的程序框图,输入2,0.5x h =-=,那么输出的各个数的和等于( ) (A )3 (B ) 3.5 (C ) 4 (D )4.5(11)一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为( )(A )(B )(C )(D )(12)用min{a,b,c}表示a,b,c 三个数中的最小值,设f (x )=min{2x, x+2,10-x} (x ≥ 0), 则f (x )的最大值为(A )4 (B )5 (C )6 (D )7 二、填空题(13)设已知抛物线C 的顶点在坐标原点,焦点为F(1,0),直线l 与抛物线C 相交于A ,B 两点。
09年全国高考理科数学试题及答案
2009年全国高考理科数学试题及答案2009年普通高等学校招生全国统一考试数学第Ⅰ卷本试卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A,B互斥,那么球的表面积公式S?4πR 其中R表示球的半径2P(A?B)?P(A)?P(B) 如果事件A,B相互独立,那么球的体积公式V?43πR 3P(AB)?P(A)P(B) 一、选择题:其中R表示球的半径21. 设集合S?x|x?5,T?x|x?4x?21?0,则S????T? A.?x|?7?x??5?B.?x|3?x?5? C.?x|?5?x?3?D.?x|?7?x?5? ?a?log2x(当x?2时)?2.已知函数f(x)??x2?4在点x?2处连续,则常数a的值是(当x?2时)??x?2A.2B.3C.4D.5(1?2i)23.复数的值是3?4iA.-1B.1C.-iD.i 4.已知函数f(x)?sin(x??2)(x?R),下面结论错误的是.. A.函数f(x)的最小正周期为2? B.函数f(x)在区间?0,???上是增函数??2?1 C.函数f(x)的图像关于直线x?0对称D.函数f(x)是奇函数 5.如图,已知六棱锥P?ABCDEF的底面是正六边形,PA?平面ABC,PA?2AB,则下列结论正确的是 A. PB?AD B. 平面PAB?平面PBC C. 直线BC∥平面PAE D. 直线PD与平面ABC所称的角为45 6.已知a,b,c,d为实数,且c?d。
则“a?b”是“a?c?b?d”的 A. 充分而不必要条件 B. 必要而不充分条件C.充要条件 D. 既不充分也不必要条件?x2y2?2?1(b?0)的左右焦点分别为F1,F2,其一条渐近线方程为y?x,7. 已知双曲线2b点P(3,y0)在该双曲线上,则PF1?PF2= A. -12 B. -2C. 0D. 4 8. 如图,在半径为3的球面上有A,B,C三点,?ABC?90,BA?BC,?球心O到平面ABC的距离是32,则B、C两点的球面距离是2A.?4? B.?C.? 3329. 已知直线l1:4x?3y?6?0和直线l2:x??1,抛物线y?4x 上一动点P到直线l1和直线l2的距离之和的最小值是 C. 1137D. 51610. 某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨。
2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)及答案(分析解答)
2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i2.(5分)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)3.(5分)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=05.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.6.(5分)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.257.(5分)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a8.(5分)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F 为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种11.(5分)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C 的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•全国卷Ⅱ)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=,故选A2.(5分)(2009•全国卷Ⅱ)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)【分析】先化简集合A和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3或x<﹣3},B={x|<0}={x|1<x<4},∴A∩B=(3,4),故选B.3.(5分)(2009•黑龙江)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.【分析】利用同角三角函数的基本关系cosA转化成正弦和余弦,求得sinA和cosA 的关系式,进而与sin2A+cos2A=1联立方程求得cosA的值.【解答】解:∵cotA=∴A为钝角,cosA<0排除A和B,再由cotA==,和sin2A+cos2A=1求得cosA=,故选D.4.(5分)(2009•全国卷Ⅱ)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=0【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选B.5.(5分)(2009•黑龙江)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.【分析】求异面直线所成的角,一般有两种方法,一种是几何法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求.还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解.本题采用几何法较为简单:连接A1B,则有A1B∥CD1,则∠A1BE就是异面直线BE与CD1所成角,由余弦定理可知cos ∠A1BE的大小.【解答】解:如图连接A1B,则有A1B∥CD1,∠A1BE就是异面直线BE与CD1所成角,设AB=1,则A1E=AE=1,∴BE=,A1B=.由余弦定理可知:cos∠A1BE=.故选C.6.(5分)(2009•黑龙江)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.25【分析】根据所给的向量的数量积和模长,对|a+b|=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方程,解方程即可.【解答】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.7.(5分)(2009•全国卷Ⅱ)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【分析】利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.【解答】解:∵∵,故选A8.(5分)(2009•黑龙江)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx+)的图象重合,比较系数,求出ω=6k+(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan (ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.9.(5分)(2009•黑龙江)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN ⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B 的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为,故选D10.(5分)(2009•黑龙江)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种【分析】根据题意,分两步,①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2门的种数C42C42=36,②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,故只恰好有1门相同的选法有36﹣6﹣6=24种.11.(5分)(2009•全国卷Ⅱ)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.【分析】设双曲线的有准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD ⊥AM于D,由直线AB的斜率可知直线AB的倾斜角,进而推,由双曲线的第二定义|AM|﹣|BN|=|AD|,进而根据,求得离心率.【解答】解:设双曲线的右准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB的斜率为,知直线AB的倾斜角为60°∴∠BAD=60°,由双曲线的第二定义有:=∴,∴故选A.12.(5分)(2009•黑龙江)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•黑龙江)(x﹣y)4的展开式中x3y3的系数为6.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1项,令x,y 的指数都为1求出x3y3的系数【解答】解:,只需求展开式中的含xy项的系数.∵的展开式的通项为令得r=2∴展开式中x3y3的系数为C42=6故答案为6.14.(5分)(2009•全国卷Ⅱ)设等差数列{a n}的前n项和为S n,若a5=5a3,则=9.【分析】根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为915.(5分)(2009•黑龙江)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于8π.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C的半径为r,.因为.由得R2=2故球O的表面积等于8π故答案为:8π,16.(5分)(2009•全国卷Ⅱ)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【分析】如图,菱形ABCD的对角线AC和BD相交于点O,菱形ABCD各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ=AB,得到M、N、P、Q四点在以O为圆心OM为半径的圆上.【解答】已知:如图,菱形ABCD的对角线AC和BD相交于点O.求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.证明:∵四边形ABCD是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q分别是边AB、BC、CD、DA的中点,∴OM=ON=OP=OQ=AB,∴M、N、P、Q四点在以O为圆心OM为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)(2009•黑龙江)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB=及B=π﹣(A+C)得cos(A﹣C)﹣cos(A+C)=,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)=,∴sinAsinC=.又由b2=ac及正弦定理得sin2B=sinAsinC,故,∴或(舍去),于是B=或B=.又由b2=ac知b≤a或b≤c所以B=.18.(12分)(2009•黑龙江)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E 分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可,作AG⊥BD于G,连GC,∠AGC为二面角A﹣BD﹣C的平面角,在三角形AGC中求出GC即可.【解答】解:如图(I)连接BE,∵ABC﹣A1B1C1为直三棱柱,∴∠B1BC=90°,∵E为B1C的中点,∴BE=EC.又DE⊥平面BCC1,∴BD=DC(射影相等的两条斜线段相等)而DA⊥平面ABC,∴AB=AC(相等的斜线段的射影相等).(II)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可.作AG⊥BD于G,连GC,∵AB⊥AC,∴GC⊥BD,∠AGC为二面角A﹣BD﹣C的平面角,∠AGC=60°不妨设,则AG=2,GC=4在RT△ABD中,由AD•AB=BD•AG,易得设点B1到面BDC的距离为h,B1C与平面BCD所成的角为α.利用,可求得h=,又可求得,∴α=30°.即B1C与平面BCD所成的角为30°.19.(12分)(2009•全国卷Ⅱ)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.由S n=4a n+2,①+1则当n≥2时,有S n=4a n﹣1+2,②①﹣②得a n=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),+1又b n=a n+1﹣2a n,所以b n=2b n﹣1,所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)20.(12分)(2009•全国卷Ⅱ)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10名工人,乙组有5名工人,从甲、乙两组中共抽取3名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2名,乙中抽取1名.(Ⅱ)因为由上问求得;在甲中抽取2名工人,故从甲组抽取的工人中恰有1名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,故Eξ==.21.(12分)(2009•黑龙江)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【分析】(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O到l的距离为则,解得c=1又,∴(II)由(I)知椭圆的方程为设A(x1,y1)、B(x2,y2)由题意知l的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),点P在椭圆上,即.整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、故2x1x2+3y1y2+3=0②将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得∴,x1+x2=,即当;当22.(12分)(2009•全国卷Ⅱ)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间;(2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)(1)当时,h'(x)>0,∴h(x)在单调递增;(2)当x∈(0,+∞)时,h'(x)<0,h(x)在(0,+∞)单调递减.∴故.。
2009年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)(1)
2009 年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1.(5 分) A .﹣2+4i=( )B .﹣2﹣4iC .2+4iD .2﹣4i2.(5 分)设集合 A={x ||x |>3},B={x | A .φB .(3,4)3.(5 分)已知△ABC 中,cotA=﹣ ,则 cosA=( ) <0},则 A ∩B=( )C .(﹣2,1)D .(4,+∞)D .A .B .在点(1,1)处的切线方程为( ) B .x +y ﹣2=0C .x +4y ﹣5=0D .x ﹣4y +3=0C .4.(5 分)函数 A .x ﹣y ﹣2=05.(5 分)已知正四棱柱 ABCD ﹣A B C D 中,AA =2AB ,E 为 AA 中点,则异面 1 1 1 1 1 1 直线 BE 与 CD 所形成角的余弦值为( ) 1 A .B .C .D .6.(5 分)已知向量 =(2,1), =10,| + |= ,则| |=( )D .25A .B .C .57.(5 分)设 a=log π,b=log ,c=log 3,则( ) C .b >a >c3 2A .a >b >cB .a >c >bD .b >c >a8.(5 分)若将函数 y=tan (ωx + )(ω>0)的图象向右平移个单位长度 后,与函数 y=tan (ωx + )的图象重合,则 ω 的最小值为( )A .B .C .D .9.(5 分)已知直线 y=k (x +2)(k >0)与抛物线 C :y 2=8x 相交于 A 、B 两点, F 为 C 的焦点,若|FA |=2|FB |,则 k=( ) A .B .C .D .10.(5 分)甲、乙两人从 4 门课程中各选修 2 门,则甲、乙所选的课程中恰有1 门相同的选法有()A.6 种B.12 种C.24 种D.30 种11.(5 分)已知双曲线的右焦点为F,过F 且斜率为的直线交C 于A、B 两点,若=4 ,则C 的离心率为()A.B.C.D.12.(5 分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5 分)(x ﹣y )4 的展开式中x3y3 的系数为.14.(5 分)设等差数列{a }的前n 项和为S ,若a =5a ,则=.n n 5 315.(5 分)设OA 是球O 的半径,M 是OA 的中点,过M 且与OA 成45°角的平面截球O 的表面得到圆C.若圆C 的面积等于,则球O 的表面积等于.16.(5 分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10 分)设△ABC 的内角A、B、C 的对边长分别为a、b、c,cos(A﹣C)+cosB= ,b2=ac,求B.18.(12 分)如图,直三棱柱ABC﹣A B C 中,AB⊥AC,D、E 分别为AA 、B C1 1 1 1 1的中点,DE⊥平面BCC .1(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C 为60°,求B C 与平面BCD 所成的角的大小.119.(12 分)设数列{a }的前n 项和为S ,已知a =1,S =4a +2(n∈N*).n n 1 n+1 n(1)设b =a ﹣2a ,证明数列{b }是等比数列;n n+1 n n(2)求数列{a }的通项公式.n20.(12 分)某车间甲组有10 名工人,其中有4 名女工人;乙组有5 名工人,其中有3 名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3 名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1 名女工人的概率;(Ⅲ)记ξ表示抽取的3 名工人中男工人数,求ξ的分布列及数学期望.21.(12 分)已知椭圆的离心率为,过右焦点F 的直线l 与C 相交于A、B 两点,当l 的斜率为1 时,坐标原点O 到l 的距离为,(Ⅰ)求a,b 的值;成立?若(Ⅱ)C 上是否存在点P,使得当l 绕F 转到某一位置时,有存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.22.(12 分)设函数f(x)=x2+aln(1+x)有两个极值点x 、x ,且x <x ,1 2 1 2 (Ⅰ)求a 的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x )>.22009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5 分)A.﹣2+4i =()B.﹣2﹣4i C.2+4i D.2﹣4i【考点】A5:复数的运算.【专题】11:计算题.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=故选:A.,【点评】本题考查复数的乘除运算,是一个基础题,在近几年的高考题目中,复数的简单的运算题目是一个必考的问题,通常出现在试卷的前几个题目中.2.(5 分)设集合A={x||x|>3},B={x| A.φB.(3,4)<0},则A∩B=()C.(﹣2,1)D.(4,+∞)【考点】1E:交集及其运算.【分析】先化简集合A 和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3 或x<﹣3},B={x| <0}={x|1<x<4},∴A∩B=(3,4),故选:B.【点评】本题属于以不等式为依托,求集合的交集的基础题,也是高考常会考的题型.3.(5 分)已知△ABC 中,cotA=﹣,则cosA=()A.B.C.D.【考点】GG:同角三角函数间的基本关系.【专题】11:计算题.【分析】利用同角三角函数的基本关系cosA 转化成正弦和余弦,求得sinA 和cosA 的关系式,进而与sin2A+cos2A=1 联立方程求得cosA 的值.【解答】解:∵cotA=∴A 为钝角,cosA<0 排除A 和B,再由cotA=故选:D.= ,和sin2A+cos2A=1 求得cosA= ,【点评】本题考查同角三角函数基本关系的运用.主要是利用了同角三角函数中的平方关系和商数关系.4.(5 分)函数A.x﹣y﹣2=0在点(1,1)处的切线方程为()B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=0【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1 处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选:B.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5 分)已知正四棱柱ABCD﹣A B C D 中,AA =2AB,E 为AA 中点,则异面1 1 1 1 1 1直线BE 与CD 所形成角的余弦值为()1A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5G:空间角.【分析】由BA ∥CD ,知∠A BE 是异面直线BE 与CD 所形成角,由此能求出异1 1 1 1面直线BE 与CD 所形成角的余弦值.1【解答】解:∵正四棱柱ABCD﹣A B C D 中,AA =2AB,E 为AA 中点,1 1 1 1 1 1∴BA ∥CD ,∴∠A BE 是异面直线BE 与CD 所形成角,1 1 1 1设AA =2AB=2,1则A E=1,BE= = ,1= ,A B=1∴cos∠A BE=1== .∴异面直线BE 与CD 所形成角的余弦值为.1故选:C.【点评】本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真 审题,注意空间思维能力的培养.6.(5 分)已知向量 =(2,1), A .B .=10,| + |= C .5,则| |=( )D .25【考点】91:向量的概念与向量的模;9O :平面向量数量积的性质及其运算.【专题】5A :平面向量及应用.【分析】根据所给的向量的数量积和模长,对|a +b |=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方 程,解方程即可. 【解答】解:∵| + |= ∴( + )2= 2+ 2+2 ,| |= =50,得| |=5 故选:C .【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模 的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注 意对于变量的应用.7.(5 分)设 a=log π,b=log ,c=log 3,则( ) C .b >a >c3 2A .a >b >cB .a >c >bD .b >c >a【考点】4M:对数值大小的比较.【分析】利用对数函数y=log x 的单调性进行求解.当a>1 时函数为增函数当0a<a<1 时函数为减函数,如果底a 不相同时可利用1 做为中介值.【解答】解:∵∵,故选A【点评】本题考查的是对数函数的单调性,这里需要注意的是当底不相同时可用1 做为中介值.8.(5 分)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx+)的图象重合,比较系数,求出ω=6k+(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣]=tan(ωx+ω+kπ=)+ )∴﹣∴ω=k+(k∈Z),又∵ω>0∴ωmin= .故选:D.【点评】本题是基础题,考查三角函数的图象的平移,待定系数法的应用,考查计算能力,是常考题.9.(5 分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x 相交于A、B 两点,F 为C 的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】根据直线方程可知直线恒过定点,如图过A、B 分别作AM⊥l 于M,BN ⊥l 于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B 为AP 的中点、连接OB ,进而可知,进而推断出|OB|=|BF|,进而求得点B 的横坐标,则点B 的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x 的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B 分别作AM⊥l 于M,BN⊥l 于N,由|FA|=2|FB|,则|AM|=2|BN|,点B 为AP 的中点、连接OB,则,∴|OB|=|BF|,点B 的横坐标为1,故点B 的坐标为,故选:D.【点评】本题主要考查了抛物线的简单性质.考查了对抛物线的基础知识的灵活运用.10.(5 分)甲、乙两人从4 门课程中各选修2 门,则甲、乙所选的课程中恰有1 门相同的选法有()A.6 种B.12 种C.24 种D.30 种【考点】D5:组合及组合数公式.【专题】11:计算题.【分析】根据题意,分两步,①先求所有两人各选修2 门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2 门的种数C 2C 2=36,4 4②两人所选两门都相同的有为C 2=6 种,都不同的种数为C 2=6,4 4故选:C.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用直接法或间接法.11.(5 分)已知双曲线的右焦点为F,过F 且斜率为的直线交C 于A、B 两点,若=4 ,则C 的离心率为()A .B .C .D .【考点】I3:直线的斜率;KA :双曲线的定义.【专题】11:计算题;16:压轴题.【分析】设双曲线的有准线为 l ,过 A 、B 分别作 AM ⊥l 于 M ,BN ⊥l 于 N ,BD ⊥ AM 于 D ,由直线 AB 的斜率可知直线 AB 的倾斜角,进而推,由双曲线的第二定义|AM |﹣|BN |=|AD |,进而根据【解答】解:设双曲线的右准线为 l , ,求得离心率. 过 A 、B 分别作 AM ⊥l 于 M ,BN ⊥l 于 N ,BD ⊥AM 于 D ,由直线 AB 的斜率为, 知直线 AB 的倾斜角为 60°∴∠BAD=60°,由双曲线的第二定义有: =∴,∴故选:A .【点评】本题主要考查了双曲线的定义.解题的关键是利用了双曲线的第二定义,找到了已知条件与离心率之间的联系.12.(5 分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【考点】LC:空间几何体的直观图.【专题】16:压轴题.【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B【点评】本题主要考查多面体的展开图的复原,属于基本知识基本能力的考查.二、填空题(共4小题,每小题5分,满分20分)13.(5 分)(x ﹣y )4 的展开式中x3y3 的系数为6.【考点】DA:二项式定理.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1 项,令x,y 的指数都为1 求出x3y3 的系数【解答】解:只需求, 展开式中的含 xy 项的系数. 的展开式的通项为 得 r=2∵令 ∴展开式中 x 3y 3 的系数为 C 2=6 4故答案为 6.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工 具.14.(5 分)设等差数列{a }的前 n 项和为 S ,若 a =5a ,则 = 9 .n n 5 3 【考点】83:等差数列的性质.【专题】11:计算题.【分析】根据等差数列的等差中项的性质可知 S =9a ,S =5a ,根据 a =5a ,进 9 5 5 3 5 3 而可得则 的值.【解答】解:∵{a }为等差数列,n S =a +a +…+a =9a ,S =a +a +…+a =5a ,9 1 2 9 5 5 1 2 5 3 ∴故答案为 9【点评】本题主要考查了等差数列中等差中项的性质.属基础题.15.(5 分)设 OA 是球 O 的半径,M 是 OA 的中点,过 M 且与 OA 成 45°角的 平面截球 O 的表面得到圆 C .若圆 C 的面积等于8π . ,则球 O 的表面积等于【考点】LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C 的半径为r,.因为由.得R2=2故球O 的表面积等于8π故答案为:8π,【点评】本题考查学生对空间想象能力,以及球的面积体积公式的利用,是基础题.16.(5 分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【考点】N8:圆內接多边形的性质与判定.【专题】14:证明题;16:压轴题.【分析】如图,菱形ABCD 的对角线AC 和BD 相交于点O,菱形ABCD 各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA ,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ= AB ,得到M、N、P、Q 四点在以O 为圆心OM 为半径的圆上.【解答】已知:如图,菱形ABCD 的对角线AC 和BD 相交于点O.求证:菱形ABCD 各边中点M、N、P、Q 在以O 为圆心的同一个圆上.证明:∵四边形ABCD 是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q 分别是边AB、BC、CD、DA 的中点,∴OM=ON=OP=OQ= AB,∴M、N、P、Q 四点在以O 为圆心OM 为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.【点评】本题考查了四点共圆的判定方法.也考查了菱形的性质以及直角三角形斜边上的中线等于斜边的一半.三、解答题(共6小题,满分70分)17.(10 分)设△ABC 的内角A、B、C 的对边长分别为a、b、c,cos(A﹣C)+cosB= ,b2=ac,求B.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【专题】11:计算题.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB= (负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB= 及B=π﹣(A+C)得cos(A﹣C)﹣cos(A+C)= ,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)= ,∴sinAsinC= .又由b2=ac 及正弦定理得sin2B=sinAsinC,故∴,或(舍去),于是B= 或B= .又由b2=ac知b≤a 或b≤c所以B= .【点评】三角函数给值求值问题的关键就是分析已知角与未知角的关系,然后通过角的关系,选择恰当的公式,即:如果角与角相等,则使用同角三角函数关系;如果角与角之间的和或差是直角的整数倍,则使用诱导公式;如果角与角之间存在和差关系,则我们用和差角公式;如果角与角存在倍数关系,则使用倍角公式.18.(12 分)如图,直三棱柱ABC﹣A B C 中,AB⊥AC,D、E 分别为AA 、B C1 1 1 1 1的中点,DE⊥平面BCC .1(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C 为60°,求B C 与平面BCD 所成的角的大小.1【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B C 与平面BCD 所成的线面角,只需求点B 到面BDC 的距离即可,作AG1 1⊥BD 于G,连GC,∠AGC 为二面角A﹣BD﹣C 的平面角,在三角形AGC 中求出GC 即可.【解答】解:如图(I )连接 BE ,∵ABC ﹣A B C 为直三棱柱,1 1 1 ∴∠B BC=90°, 1∵E 为 B C 的中点,∴BE=EC .1 又 DE ⊥平面 BCC , 1∴BD=DC (射影相等的两条斜线段相等)而 DA ⊥平面 ABC ,∴AB=AC (相等的斜线段的射影相等).(II )求 B C 与平面 BCD 所成的线面角,1 只需求点 B 到面 BDC 的距离即可.1 作 AG ⊥BD 于 G ,连 GC ,∵AB ⊥AC ,∴GC ⊥BD ,∠AGC 为二面角 A ﹣BD ﹣C 的平面角,∠AGC=60°不妨设 ,则 AG=2,GC=4在 RT △ABD 中,由 AD•AB=BD•AG ,易得设点 B 到面 BDC 的距离为 h ,B C 与平面 BCD 所成的角为 α.1 1 利用可求得 h= 即 B C 与平面 BCD 所成的角为 30°. , ,又可求得 ,∴α=30°.1 【点评】本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运 算能力和推理论证能力,属于基础题.19.(12 分)设数列{a }的前 n 项和为 S ,已知 a =1,S =4a +2(n ∈N *).n n 1 n +1 n (1)设 b =a ﹣2a ,证明数列{b }是等比数列;n n +1 n n(2)求数列{a }的通项公式.n【考点】87:等比数列的性质;8H:数列递推式.【专题】15:综合题.【分析】(1)由题设条件知b =a ﹣2a =3.由S =4a +2 和S =4a n﹣1+2 相减得1 2 1 n+1 n na =4a ﹣4a ,即a ﹣2a =2(a ﹣2a ),所以b =2b ,由此可知{b }n+1 n n﹣1 n+1 n n n﹣1 n n﹣1 n是以b =3 为首项、以2 为公比的等比数列.1(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a }的通项公式.n【解答】解:(1)由a =1,及S =4a +2,1 n+1 n得a +a =4a +2,a =3a +2=5,所以b =a ﹣2a =3.1 2 1 2 1 1 2 1由S =4a +2,①n+1 n则当n≥2 时,有S =4a n﹣1+2,②n①﹣②得a =4a ﹣4a ,所以a ﹣2a =2(a ﹣2a n﹣1),n+1 n n﹣1 n+1 n n又b =a ﹣2a ,所以b =2b (b ≠0),所以{b }是以b =3 为首项、以2 为n n+1 n n n﹣1 n n 1公比的等比数列.(6 分)(2)由(I)可得b =a ﹣2a =3•2n﹣1,等式两边同时除以2n+1,得n n+1 n.所以数列是首项为,公差为的等差数列.所以,即a =(3n﹣1)•2n﹣2(n∈N*).(13 分)n【点评】本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.20.(12 分)某车间甲组有10 名工人,其中有4 名女工人;乙组有5 名工人,其中有3 名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3 名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1 名女工人的概率;(Ⅲ)记ξ表示抽取的3 名工人中男工人数,求ξ的分布列及数学期望.【考点】B3:分层抽样方法;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题;48:分析法.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2 人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10 名工人,乙组有5 名工人,从甲、乙两组中共抽取3 名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2 名,乙中抽取1 名.(Ⅱ)因为由上问求得;在甲中抽取2 名工人,故从甲组抽取的工人中恰有1 名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,ξ0 1 2 3P故Eξ== .【点评】本题较常规,比08 年的概率统计题要容易.在计算P(ξ=2)时,采用求反面的方法,用直接法也可,但较繁琐.考生应增强灵活变通的能力.21.(12 分)已知椭圆的离心率为,过右焦点F 的直线l 与C 相交于A、B 两点,当l 的斜率为1 时,坐标原点O 到l 的距离为,(Ⅰ)求a,b 的值;成立?若(Ⅱ)C 上是否存在点P,使得当l 绕F 转到某一位置时,有存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.【考点】K4:椭圆的性质.【专题】15:综合题;16:压轴题.【分析】(I)设F(c,0),则直线l 的方程为x﹣y﹣c=0,由坐标原点O 到l 的距离求得c,进而根据离心率求得a 和b.(II)由(I)可得椭圆的方程,设A(x ,y )、B(x ,y ),l:x=my+1 代入1 12 2椭圆的方程中整理得方程△>0.由韦达定理可求得y +y 和y y 的表达式,1 2 1 2假设存在点P,使成立,则其充要条件为:点P 的坐标为(x +x ,1 2y +y ),代入椭圆方程;把A,B 两点代入椭圆方程,最后联立方程求得c,1 2进而求得P 点坐标,求出m 的值得出直线l 的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O 到l 的距离为则又,解得c=1 ,∴(II)由(I)知椭圆的方程为设A(x ,y )、B(x ,y )1 12 2由题意知l 的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P,使成立,则其充要条件为:点P 的坐标为(x +x ,y +y ),1 2 1 2点P 在椭圆上,即.整理得2x 2+3y 2+2x 2+3y 2+4x x +6y y =6.1 12 2 1 2 1 2又A、B 在椭圆上,即2x 2+3y 2=6,2x 2+3y 2=6、1 12 2故2x x +3y y +3=0②1 2 1 2将x x =(my +1)(my +1)=m2y y +m(y +y )+1 及①代入②解得1 2 1 2 1 2 1 2∴,x +x = ,即1 2当当;【点评】本题主要考查了椭圆的性质.处理解析几何题,学生主要是在“算”上的功夫不够.所谓“算”,主要讲的是算理和算法.算法是解决问题采用的计算的方法,而算理是采用这种算法的依据和原因,一个是表,一个是里,一个是现象,一个是本质.有时候算理和算法并不是截然区分的.例如:三角形的面积是用底乘高的一半还是用两边与夹角的正弦的一半,还是分割成几部分来算?在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点.22.(12 分)设函数f(x)=x2+aln(1+x)有两个极值点x 、x ,且x <x ,1 2 1 2 (Ⅰ)求a 的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x )>.2【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x 、x 是方程g(x)=0 的两个均大于﹣1 的不相等的实根,建立不1 2等关系解之即可,在函数的定义域内解不等式fˊ(x)>0 和fˊ(x)<0,求出单调区间;(2)x 是方程g(x)=0 的根,将a 用x 表示,消去a 得到关于x 的函数,研2 2 2究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x 、x 是方程g(x)=0 的两个均大于﹣1 的不相等的实根,1 2其充要条件为,得(1)当x∈(﹣1,x )时,f'(x)>0,∴f(x)在(﹣1,x )内为增函数;1 1(2)当x∈(x ,x )时,f'(x)<0,∴f(x)在(x ,x )内为减函数;1 2 1 2(3)当x∈(x ,+∞)时,f'(x)>0,∴f(x)在(x ,+∞)内为增函数;2 2(II)由(I)g(0)=a>0,∴,a=﹣(2x2 +2x )2 2∴f(x )=x 2+aln(1+x )=x 2﹣(2x2 +2x )ln(1+x )2 2 2 2 2 2 2设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)当故时,h'(x)>0,∴h(x)在单调递增,.【点评】本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的极值等有关知识,属于中档题.。
(284)2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)
2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个2.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A .B.2C .D .5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种6.(5分)设、、是单位向量,且,则•的最小值为()A.﹣2B .﹣2C.﹣1D.1﹣7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A .B .C .D .8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A .B .C .D .9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1B.2C.﹣1D.﹣210.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1B.2C .D.411.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2)D.f(x+3)是奇函数12.(5分)已知椭圆C :+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=()A .B.2C .D.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8=.15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于.16.(5分)若,则函数y=tan2xtan3x的最大值为.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.20.(12分)在数列{a n}中,a1=1,a n+1=(1+)a n +.(1)设b n =,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.22.(12分)设函数f(x)=x3+3bx2+3cx有两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个【考点】1H:交、并、补集的混合运算.【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴∁U(A∩B)={3,5,8}故选A.也可用摩根律:∁U(A∩B)=(∁U A)∪(∁U B)故选:A.【点评】本题考查集合的基本运算,较简单.2.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i【考点】A1:虚数单位i、复数.【分析】化简复数直接求解,利用共轭复数可求z.【解答】解:,∴z=1﹣3i故选:B.【点评】求复数,需要对复数化简,本题也可以用待定系数方法求解.3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}【考点】7E:其他不等式的解法.【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1.∴x<0.∴不等式的解集为{x|x<0}.故选:D.【点评】本题主要考查解绝对值不等式,属基本题.解绝对值不等式的关键是去绝对值,去绝对值的方法主要有:利用绝对值的意义、讨论和平方.4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A .B.2C .D .【考点】KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b的关系,从而推断出a和c的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选:C.【点评】本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题.5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种【考点】D1:分类加法计数原理;D2:分步乘法计数原理.【专题】5O:排列组合.【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C51•C31•C62=225种选法;(2)乙组中选出一名女生有C52•C61•C21=120种选法.故共有345种选法.故选:D.【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,后分步!6.(5分)设、、是单位向量,且,则•的最小值为()A.﹣2B .﹣2C.﹣1D.1﹣【考点】9O:平面向量数量积的性质及其运算.【专题】16:压轴题.【分析】由题意可得=,故要求的式子即﹣()•+=1﹣cos=1﹣cos,再由余弦函数的值域求出它的最小值.【解答】解:∵、、是单位向量,,∴,=.∴•=﹣()•+=0﹣()•+1=1﹣cos=1﹣cos ≥.故选:D.【点评】考查向量的运算法则;交换律、分配律但注意不满足结合律.7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A .B .C .D .【考点】LO:空间中直线与直线之间的位置关系.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选:D.【点评】本题主要考查异面直线的夹角与余弦定理.8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A .B .C .D .【考点】HB:余弦函数的对称性.【专题】11:计算题.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选:A.【点评】本题主要考查余弦函数的对称性.属基础题.9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1B.2C.﹣1D.﹣2【考点】6H:利用导数研究曲线上某点切线方程.【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a),又∵∴x0+a=1∴y0=0,x0=﹣1∴a=2.故选:B.【点评】本题考查导数的几何意义,常利用它求曲线的切线10.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1B.2C .D.4【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;16:压轴题.【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,,又∵当且仅当AP=0,即点A与点P重合时取最小值.故选:C.【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.11.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2)D.f(x+3)是奇函数【考点】3I:奇函数、偶函数.【专题】16:压轴题.【分析】首先由奇函数性质求f(x)的周期,然后利用此周期推导选择项.【解答】解:∵f(x+1)与f(x﹣1)都是奇函数,∴函数f(x)关于点(1,0)及点(﹣1,0)对称,∴f(x)+f(2﹣x)=0,f(x)+f(﹣2﹣x)=0,故有f(2﹣x)=f(﹣2﹣x),函数f(x)是周期T=[2﹣(﹣2)]=4的周期函数.∴f(﹣x﹣1+4)=﹣f(x﹣1+4),f(﹣x+3)=﹣f(x+3),f(x+3)是奇函数.故选:D.【点评】本题主要考查奇函数性质的灵活运用,并考查函数周期的求法.12.(5分)已知椭圆C :+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=()A .B.2C .D.3【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.【解答】解:过点B作BM⊥x轴于M,并设右准线l与x轴的交点为N,易知FN=1.由题意,故FM=,故B 点的横坐标为,纵坐标为±即BM=,故AN=1,∴.故选:A.【点评】本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【考点】DA:二项式定理.【专题】11:计算题.【分析】首先要了解二项式定理:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,各项的通项公式为:T r+1=C n r a n﹣r b r.然后根据题目已知求解即可.【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.【点评】此题主要考查二项式定理的应用问题,对于公式:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,属于重点考点,同学们需要理解记忆.14.(5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8=27.【考点】83:等差数列的性质;85:等差数列的前n项和.【分析】由s9解得a5即可.【解答】解:∵∴a5=9∴a2+a5+a8=3a5=27故答案是27【点评】本题考查前n项和公式和等差数列的性质.15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于20π.【考点】LR:球内接多面体.【专题】11:计算题;16:压轴题.【分析】通过正弦定理求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.【解答】解:在△ABC中AB=AC=2,∠BAC=120°,可得由正弦定理,可得△ABC外接圆半径r=2,设此圆圆心为O',球心为O,在RT△OBO'中,易得球半径,故此球的表面积为4πR2=20π故答案为:20π【点评】本题是基础题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径,这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.16.(5分)若,则函数y=tan2xtan3x的最大值为﹣8.【考点】3H:函数的最值及其几何意义;GS:二倍角的三角函数.【专题】11:计算题;16:压轴题.【分析】见到二倍角2x 就想到用二倍角公式,之后转化成关于tanx的函数,将tanx看破成整体,最后转化成函数的最值问题解决.【解答】解:令tanx=t,∵,∴故填:﹣8.【点评】本题主要考查二倍角的正切,二次函数的方法求最大值等,最值问题是中学数学的重要内容之一,它分布在各块知识点,各个知识水平层面.以最值为载体,可以考查中学数学的所有知识点.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.【考点】HR:余弦定理.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案.【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2.又由已知a2﹣c2=2b∴4b=b2.解得b=4或b=0(舍);法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.又a2﹣c2=2b,b≠0.所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC 由正弦定理得,故b=4ccosA②由①,②解得b=4.【点评】本题主要考查正弦定理和余弦定理的应用.属基础题.18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB ,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C 点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D ﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB ,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴.在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2解得x=1,从而∴M为侧棱SC的中点M.(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz ,则.设M(0,a,b)(a>0,b>0),则,,由题得,即解之个方程组得a=1,b=1即M(0,1,1)所以M是侧棱SC的中点.(I )证法三:设,则又故,即,解得λ=1,所以M是侧棱SC的中点.(Ⅱ)由(Ⅰ)得,又,,设分别是平面SAM、MAB的法向量,则且,即且分别令得z1=1,y1=1,y2=0,z2=2,即,∴二面角S﹣AM﹣B 的大小.【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题.【分析】(1)由题意知前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互独立,根据相互独立事件的概率公式得到结果.(2)由题意知ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3,由于各局相互独立,得到变量的分布列,求出期望.【解答】解:记A i表示事件:第i局甲获胜,(i=3、4、5)B i表示第j局乙获胜,j=3、4(1)记B表示事件:甲获得这次比赛的胜利,∵前2局中,甲、乙各胜1局,∴甲要获得这次比赛的胜利需在后面的比赛中先胜两局,∴B=A3A4+B3A4A5+A3B4A5由于各局比赛结果相互独立,∴P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648(2)ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3由于各局相互独立,得到ξ的分布列P(ξ=2)=P(A3A4+B3B4)=0.52P(ξ=3)=1﹣P(ξ=2)=1﹣0.52=0.48∴Eξ=2×0.52+3×0.48=2.48.【点评】认真审题是前提,部分考生由于考虑了前两局的概率而导致失分,这是很可惜的,主要原因在于没读懂题.另外,还要注意表述,这也是考生较薄弱的环节.20.(12分)在数列{a n}中,a1=1,a n+1=(1+)a n +.(1)设b n =,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;15:综合题.【分析】(1)由已知得=+,即b n+1=b n +,由此能够推导出所求的通项公式.(2)由题设知a n=2n ﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,由错位相减法能求出T n=4﹣.从而导出数列{a n}的前n项和S n.【解答】解:(1)由已知得b1=a1=1,且=+,即b n+1=b n +,从而b2=b1+,b3=b2+,b n=b n﹣1+(n≥2).于是b n=b1+++…+=2﹣(n≥2).又b1=1,故所求的通项公式为b n=2﹣.(2)由(1)知a n=2n ﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,①T n =+++…++,②①﹣②得,T n=1++++…+﹣=﹣=2﹣﹣,∴T n=4﹣.∴S n=n(n+1)+﹣4.【点评】本题考查数列的通项公式和前n项和的求法,解题时要注意错位相减法的合理运用.21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【考点】IR:两点间的距离公式;JF:圆方程的综合应用;K8:抛物线的性质.【专题】15:综合题;16:压轴题.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,消去y2,整理得x2﹣7x+16﹣r2=0(1)抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根∴即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.则直线AC、BD的方程分别为y ﹣=•(x﹣x1),y +=(x﹣x1),解得点P 的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t ,即时取最大值.经检验此时满足题意.故所求的点P 的坐标为.【点评】本题主要考查抛物线和圆的综合问题.圆锥曲线是高考必考题,要强化复习.22.(12分)设函数f(x)=x3+3bx2+3cx有两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.【考点】6D:利用导数研究函数的极值;7B:二元一次不等式(组)与平面区域;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题.【分析】(1)根据极值的意义可知,极值点x1、x2是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域即可;(2)先用消元法消去参数b,利用参数c表示出f(x2)的值域,再利用参数c的范围求出f(x2)的范围即可.【解答】解:(Ⅰ)f'(x)=3x2+6bx+3c,(2分)依题意知,方程f'(x)=0有两个根x1、x2,且x1∈[﹣1,0],x2∈[1,2]等价于f'(﹣1)≥0,f'(0)≤0,f'(1)≤0,f'(2)≥0.由此得b,c 满足的约束条件为(4分)满足这些条件的点(b,c)的区域为图中阴影部分.(6分)(Ⅱ)由题设知f'(x2)=3x22+6bx2+3c=0,则,故.(8分)由于x2∈[1,2],而由(Ⅰ)知c≤0,故.又由(Ⅰ)知﹣2≤c≤0,(10分)所以.【点评】本题主要考查了利用导数研究函数的极值,以及二元一次不等式(组)与平面区域和不等式的证明,属于基础题.。
2009年全国统一高考数学试卷(理科)(全国卷二)及答案
2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i2.(5分)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)3.(5分)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=05.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.6.(5分)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.257.(5分)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a8.(5分)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F 为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种11.(5分)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C 的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•全国卷Ⅱ)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=,故选A2.(5分)(2009•全国卷Ⅱ)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)【分析】先化简集合A和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3或x<﹣3},B={x|<0}={x|1<x<4},∴A∩B=(3,4),故选B.3.(5分)(2009•黑龙江)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.【分析】利用同角三角函数的基本关系cosA转化成正弦和余弦,求得sinA和cosA 的关系式,进而与sin2A+cos2A=1联立方程求得cosA的值.【解答】解:∵cotA=∴A为钝角,cosA<0排除A和B,再由cotA==,和sin2A+cos2A=1求得cosA=,故选D.4.(5分)(2009•全国卷Ⅱ)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=0【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选B.5.(5分)(2009•黑龙江)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.【分析】求异面直线所成的角,一般有两种方法,一种是几何法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求.还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解.本题采用几何法较为简单:连接A1B,则有A1B∥CD1,则∠A1BE就是异面直线BE与CD1所成角,由余弦定理可知cos ∠A1BE的大小.【解答】解:如图连接A1B,则有A1B∥CD1,∠A1BE就是异面直线BE与CD1所成角,设AB=1,则A1E=AE=1,∴BE=,A1B=.由余弦定理可知:cos∠A1BE=.故选C.6.(5分)(2009•黑龙江)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.25【分析】根据所给的向量的数量积和模长,对|a+b|=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方程,解方程即可.【解答】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.7.(5分)(2009•全国卷Ⅱ)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【分析】利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.【解答】解:∵∵,故选A8.(5分)(2009•黑龙江)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx+)的图象重合,比较系数,求出ω=6k+(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan (ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.9.(5分)(2009•黑龙江)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN ⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B 的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为,故选D10.(5分)(2009•黑龙江)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种【分析】根据题意,分两步,①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2门的种数C42C42=36,②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,故只恰好有1门相同的选法有36﹣6﹣6=24种.11.(5分)(2009•全国卷Ⅱ)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.【分析】设双曲线的有准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD ⊥AM于D,由直线AB的斜率可知直线AB的倾斜角,进而推,由双曲线的第二定义|AM|﹣|BN|=|AD|,进而根据,求得离心率.【解答】解:设双曲线的右准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB的斜率为,知直线AB的倾斜角为60°∴∠BAD=60°,由双曲线的第二定义有:=∴,∴故选A.12.(5分)(2009•黑龙江)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•黑龙江)(x﹣y)4的展开式中x3y3的系数为6.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1项,令x,y 的指数都为1求出x3y3的系数【解答】解:,只需求展开式中的含xy项的系数.∵的展开式的通项为令得r=2∴展开式中x3y3的系数为C42=6故答案为6.14.(5分)(2009•全国卷Ⅱ)设等差数列{a n}的前n项和为S n,若a5=5a3,则=9.【分析】根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为915.(5分)(2009•黑龙江)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于8π.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C的半径为r,.因为.由得R2=2故球O的表面积等于8π故答案为:8π,16.(5分)(2009•全国卷Ⅱ)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【分析】如图,菱形ABCD的对角线AC和BD相交于点O,菱形ABCD各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ=AB,得到M、N、P、Q四点在以O为圆心OM为半径的圆上.【解答】已知:如图,菱形ABCD的对角线AC和BD相交于点O.求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.证明:∵四边形ABCD是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q分别是边AB、BC、CD、DA的中点,∴OM=ON=OP=OQ=AB,∴M、N、P、Q四点在以O为圆心OM为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)(2009•黑龙江)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB=及B=π﹣(A+C)得cos(A﹣C)﹣cos(A+C)=,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)=,∴sinAsinC=.又由b2=ac及正弦定理得sin2B=sinAsinC,故,∴或(舍去),于是B=或B=.又由b2=ac知b≤a或b≤c所以B=.18.(12分)(2009•黑龙江)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E 分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可,作AG⊥BD于G,连GC,∠AGC为二面角A﹣BD﹣C的平面角,在三角形AGC中求出GC即可.【解答】解:如图(I)连接BE,∵ABC﹣A1B1C1为直三棱柱,∴∠B1BC=90°,∵E为B1C的中点,∴BE=EC.又DE⊥平面BCC1,∴BD=DC(射影相等的两条斜线段相等)而DA⊥平面ABC,∴AB=AC(相等的斜线段的射影相等).(II)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可.作AG⊥BD于G,连GC,∵AB⊥AC,∴GC⊥BD,∠AGC为二面角A﹣BD﹣C的平面角,∠AGC=60°不妨设,则AG=2,GC=4在RT△ABD中,由AD•AB=BD•AG,易得设点B1到面BDC的距离为h,B1C与平面BCD所成的角为α.利用,可求得h=,又可求得,∴α=30°.即B1C与平面BCD所成的角为30°.19.(12分)(2009•全国卷Ⅱ)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.由S n=4a n+2,①+1则当n≥2时,有S n=4a n﹣1+2,②①﹣②得a n=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),+1又b n=a n+1﹣2a n,所以b n=2b n﹣1,所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)20.(12分)(2009•全国卷Ⅱ)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10名工人,乙组有5名工人,从甲、乙两组中共抽取3名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2名,乙中抽取1名.(Ⅱ)因为由上问求得;在甲中抽取2名工人,故从甲组抽取的工人中恰有1名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,故Eξ==.21.(12分)(2009•黑龙江)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【分析】(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O到l的距离为则,解得c=1又,∴(II)由(I)知椭圆的方程为设A(x1,y1)、B(x2,y2)由题意知l的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),点P在椭圆上,即.整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、故2x1x2+3y1y2+3=0②将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得∴,x1+x2=,即当;当22.(12分)(2009•全国卷Ⅱ)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间;(2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)(1)当时,h'(x)>0,∴h(x)在单调递增;(2)当x∈(0,+∞)时,h'(x)<0,h(x)在(0,+∞)单调递减.∴故.。
普通高等学校招生全国高三数学统一考试四川卷(理)全解全析
2009年普通高等学校招生全国统一考试(四川卷)数 学(理工农医科) 全解全析本试卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A B ,互斥,那么球的表面积公式 24πS R = ()()()P A B P A P B +=+其中R 表示球的半径如果事件A B ,相互独立,那么 球的体积公式 34π3V R = ()()()P A B P A P B =其中R 表示球的半径一、选择题:1.设集合{}{}2|5,|4210,S x x T x x x =<=+-<则ST =( C )A.{}|75x x -<<- B.{}|35x x << C.{}|53x x -<< D.{}|75x x -<< 【解1】:(特值淘汰法)∵欲求S T ,则选项均为S T 和的子集,将4,6-代入验证知不成立,从而淘汰A,B,C, 故选 ( C )【解2】:(直接法)∵{}{}()(){}{}5-55,73073S x x x x T x x x x =<=<<=+-<=-<< ∴{}{}{}-5573-53ST S x x x x x ==<<-<<=<<,故选 ( C )【分析】考查绝对值不等式、二次不等式的解法,以及集合的交集运算。
2.已知函数22log (2)()24(22a x x f x x x x x +≥⎧⎪==⎨-<⎪-⎩当时在点处当时)连续,则常数a 的值是( B )A.2 B.3 C.4 D.5【解】:(直接法)∵()22224lim ()lim lim 242x x x x f x x x ---→→→-==+=- ()2222lim ()lim log log 21x x f x a x a a ++→→=+=+=+,又函数()2f x x =在点处连续, ∴41a =+,∴3a =,故选 ( B )【分析】考察分段函数的连续性,重视函数在特值点的连续性定义及左右极限的运算。
2009年全国统一高考数学试卷(理科)(全国卷一)及答案
2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个 B.4个 C.5个 D.6个2.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0} 4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2 C.D.5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种6.(5分)设、、是单位向量,且,则•的最小值为()A.﹣2 B.﹣2 C.﹣1 D.1﹣7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1 B.2 C.﹣1 D.﹣210.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1 B.2 C.D.411.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2) D.f(x+3)是奇函数12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2 C.D.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8=.15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于.16.(5分)若,则函数y=tan2xtan3x的最大值为.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.20.(12分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.22.(12分)设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个 B.4个 C.5个 D.6个【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴∁U(A∩B)={3,5,8}故选A.也可用摩根律:∁U(A∩B)=(∁U A)∪(∁U B)故选A2.(5分)(2009•全国卷Ⅰ)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i【分析】化简复数直接求解,利用共轭复数可求z.【解答】解:,∴故选B3.(5分)(2009•全国卷Ⅰ)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1.∴x<0.∴不等式的解集为{x|x<0}.故选D4.(5分)(2009•全国卷Ⅰ)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2 C.D.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b 的关系,从而推断出a和c的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选择C.5.(5分)(2009•全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C51•C31•C62=225种选法;(2)乙组中选出一名女生有C52•C61•C21=120种选法.故共有345种选法.故选D6.(5分)(2009•全国卷Ⅰ)设、、是单位向量,且,则•的最小值为()A.﹣2 B.﹣2 C.﹣1 D.1﹣【分析】由题意可得=,故要求的式子即﹣()•+=1﹣cos=1﹣cos,再由余弦函数的值域求出它的最小值.【解答】解:∵、、是单位向量,,∴,=.∴•=﹣()•+=0﹣()•+1=1﹣cos=1﹣cos≥.故选项为D7.(5分)(2009•全国卷Ⅰ)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选D.8.(5分)(2009•全国卷Ⅰ)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选A9.(5分)(2009•全国卷Ⅰ)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1 B.2 C.﹣1 D.﹣2【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a),又∵∴x0+a=1∴y0=0,x0=﹣1∴a=2.故选项为B10.(5分)(2009•全国卷Ⅰ)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1 B.2 C.D.4【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,,∴AC=PD=2又∵当且仅当AP=0,即点A与点P重合时取最小值.故答案选C.11.(5分)(2009•全国卷Ⅰ)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2) D.f(x+3)是奇函数【分析】首先由奇函数性质求f(x)的周期,然后利用此周期推导选择项.【解答】解:∵f(x+1)与f(x﹣1)都是奇函数,∴函数f(x)关于点(1,0)及点(﹣1,0)对称,∴f(x)+f(2﹣x)=0,f(x)+f(﹣2﹣x)=0,故有f(2﹣x)=f(﹣2﹣x),函数f(x)是周期T=[2﹣(﹣2)]=4的周期函数.∴f(﹣x﹣1+4)=﹣f(x﹣1+4),f(﹣x+3)=﹣f(x+3),f(x+3)是奇函数.故选D12.(5分)(2009•全国卷Ⅰ)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=()A.B.2 C.D.3【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.【解答】解:过点B作BM⊥x轴于M,并设右准线l与x轴的交点为N,易知FN=1.由题意,故FM=,故B点的横坐标为,纵坐标为±即BM=,故AN=1,∴.故选A二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•全国卷Ⅰ)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【分析】首先要了解二项式定理:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,各项的通项公式为:T r=C n r a n﹣r b r.然后根据题目已知求解即可.+1【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.14.(5分)(2009•全国卷Ⅰ)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8=27.【分析】由s9解得a5即可.【解答】解:∵∴a5=9∴a2+a5+a8=3a5=27故答案是2715.(5分)(2009•全国卷Ⅰ)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于20π.【分析】通过正弦定理求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.【解答】解:在△ABC中AB=AC=2,∠BAC=120°,可得由正弦定理,可得△ABC外接圆半径r=2,设此圆圆心为O',球心为O,在RT△OBO'中,易得球半径,故此球的表面积为4πR2=20π故答案为:20π16.(5分)(2009•全国卷Ⅰ)若,则函数y=tan2xtan3x的最大值为﹣8.【分析】见到二倍角2x 就想到用二倍角公式,之后转化成关于tanx的函数,将tanx看破成整体,最后转化成函数的最值问题解决.【解答】解:令tanx=t,∵,∴故填:﹣8.三、解答题(共6小题,满分70分)17.(10分)(2009•全国卷Ⅰ)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案.【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2.又由已知a2﹣c2=2b∴4b=b2.解得b=4或b=0(舍);法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.又a2﹣c2=2b,b≠0.所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC由正弦定理得,故b=4ccosA②由①,②解得b=4.18.(12分)(2009•全国卷Ⅰ)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴.在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2解得x=1,从而∴M为侧棱SC的中点M.(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,则.设M(0,a,b)(a>0,b>0),则,,由题得,即解之个方程组得a=1,b=1即M(0,1,1)所以M是侧棱SC的中点.(I)证法三:设,则又故,即,解得λ=1,所以M是侧棱SC的中点.(Ⅱ)由(Ⅰ)得,又,,设分别是平面SAM、MAB的法向量,则且,即且分别令得z1=1,y1=1,y2=0,z2=2,即,∴二面角S﹣AM﹣B的大小.19.(12分)(2009•全国卷Ⅰ)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.【分析】(1)由题意知前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互独立,根据相互独立事件的概率公式得到结果.(2)由题意知ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3,由于各局相互独立,得到变量的分布列,求出期望.【解答】解:记A i表示事件:第i局甲获胜,(i=3、4、5)B i表示第j局乙获胜,j=3、4(1)记B表示事件:甲获得这次比赛的胜利,∵前2局中,甲、乙各胜1局,∴甲要获得这次比赛的胜利需在后面的比赛中先胜两局,∴B=A3A4+B3A4A5+A3B4A5由于各局比赛结果相互独立,∴P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648(2)ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3由于各局相互独立,得到ξ的分布列P(ξ=2)=P(A3A4+B3B4)=0.52P(ξ=3)=1﹣P(ξ=2)=1﹣0.52=0.48∴Eξ=2×0.52+3×0.48=2.48.20.(12分)(2009•全国卷Ⅰ)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.【分析】(1)由已知得=+,即b n=b n+,由此能够推导出所求的通+1项公式.(2)由题设知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,由错位相减法能求出T n=4﹣.从而导出数列{a n}的前n项和S n.【解答】解:(1)由已知得b1=a1=1,且=+,即b n=b n+,从而b2=b1+,+1b3=b2+,b n=b n﹣1+(n≥2).于是b n=b1+++…+=2﹣(n≥2).又b1=1,故所求的通项公式为b n=2﹣.(2)由(1)知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,①T n=+++…++,②①﹣②得,T n=1++++…+﹣=﹣=2﹣﹣,∴T n=4﹣.∴S n=n(n+1)+﹣4.21.(12分)(2009•全国卷Ⅰ)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,消去y2,整理得x2﹣7x+16﹣r2=0(1)抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根∴即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.则直线AC、BD的方程分别为y﹣=•(x﹣x1),y+=(x﹣x1),解得点P的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P的坐标为.22.(12分)(2009•全国卷Ⅰ)设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.【分析】(1)根据极值的意义可知,极值点x1、x2是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域即可;(2)先用消元法消去参数b,利用参数c表示出f(x2)的值域,再利用参数c 的范围求出f(x2)的范围即可.【解答】解:(Ⅰ)f'(x)=3x2+6bx+3c,(2分)依题意知,方程f'(x)=0有两个根x1、x2,且x1∈[﹣1,0],x2∈[1,2]等价于f'(﹣1)≥0,f'(0)≤0,f'(1)≤0,f'(2)≥0.由此得b,c满足的约束条件为(4分)满足这些条件的点(b,c)的区域为图中阴影部分.(6分)(Ⅱ)由题设知f'(x2)=3x22+6bx2+3c=0,则,故.(8分)由于x2∈[1,2],而由(Ⅰ)知c≤0,故.又由(Ⅰ)知﹣2≤c≤0,(10分)所以.。
2009年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)
3.(5 分)已知△ABC 中,cotA=﹣ ,则 cosA=(
A.
B.
C.
) D.
一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1.(5 分) =( )
【考点】GG:同角三角函数间的基本关系. 菁优网版权 所有
【专题】11:计算题.
A.﹣2+4i
B.﹣2﹣4i
C.2+4i
则 k=( )
13.(5 分)(x ﹣y )4 的展开式中 x3y3 的系数为
.
A.
B.
C.
D.
14.(5 分)设等差数列{an}的前 n 项和为 Sn,若 a5=5a3,则 =
.
10.(5 分)甲、乙两人从 4 门课程中各选修 2 门,则甲、乙所选的课程中恰有 1 门相同的选法有 15.(5 分)设 OA 是球 O 的半径,M 是 OA 的中点,过 M 且与 OA 成 45°角的平面截球 O 的表面得
D.2﹣4i
【分析】利用同角三角函数的基本关系 cosA 转化成正弦和余弦,求得 sinA 和 cosA 的关系式,进而 与 sin2A+cos2A=1 联立方程求得 cosA 的值.
【考点】A5:复数的运算. 菁优网版权所有
【专题】11:计算题. 【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,
关系.
目是一个必考的问题,通常出现在试卷的前几个题目中.
4.(5 分)函数
在点(1,1)处的切线方程为( )
2.(5 分)设集合 A={x||x|>3},B={x| <0},则 A∩B=( )
A.x﹣y﹣2=0 B.x+y﹣2=0
2009年普通高等学校招生全国统一考试(四川卷)
2009年普通高等学校招生全国统一考试(四川卷)理科综合测试试题第Ⅰ卷本卷共21小题,每小题6分,共126分。
可能用到的相对原子质量:H 1 C 12 O 16 Mg 24 Al 27 S 32 K 39 Mn 55二、三、选择题(本题包括13小题。
每小题只有一个....选项符合题意)1.下列关于哺乳动物体内三大营养物质代谢的叙述,不正确...的是.w.w.k.s.5.u.c.o.mA. 用15N标记的苯丙氨酸饲喂小鼠后,在其体内检测不到15N标记的酪氨酸B. 当体内脂肪的分解速度加快时,意味着糖类的供应不足C. 肝细胞中内质网的功能出现障碍,脂蛋白的合成受阻D. 肝糖元和肌糖元去路的差异,与所在细胞功能密切相关答案:A.解析:本题考察了三大营养物质代谢的相关问题。
A选项中15N标记的苯丙氨酸饲喂小鼠后,通过氨基酸的代谢,在其体内仍可能检测到15N标记的酪氨酸,A错误;B中当糖类的供应不足时,只有加快脂肪的分解速度来提供生物体生长代谢所需的能量,B正确;C中内质网是脂质的合成和蛋白质加工的场所;D中肌糖元不能转化是因为肌细胞代谢旺盛,当肌糖原转化成葡萄糖后直接被细胞代谢利用,不能进入到血液中成为血糖。
2.下列关于几种微生物的营养代谢和生长繁殖的描述,正确的是B.C.根瘤菌通过生物固氮,制造了含氮养料和含碳有机物E.接种到培养基上的青霉菌,进入对数期能大量积累有毒素F.G.培养液中溶氧量的变化,会影响酵母菌的生长繁殖和代谢途径H.I.J.用32P标记的噬菌体感染细菌,在新形成的噬菌体中都能检测到32P2. 答案:C.解析:本题考察了几种微生物的营养代谢和生长繁殖的问题。
A中根瘤菌通过生物固氮不能制造含碳有机物;B中接种到培养基上的青霉菌,进入稳定期能大量积累有毒素;C中酵母菌是兼性厌氧型生物,故溶氧量的变化,会影响酵母菌的生长繁殖和代谢途径,C正确;D中用32P标记的噬菌体感染细菌,在新形成的噬菌体中只有两个噬菌体能检测到32PCO浓度升高引起的温室效应,可能改变土壤水分状况和矿质元素含量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年普通高等学校招生全国统一考试(四川卷)数 学(理工农医科)第Ⅰ卷本试卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A B ,互斥,那么球的表面积公式 24πS R =()()()P A B P A P B +=+其中R 表示球的半径如果事件A B ,相互独立,那么球的体积公式34π3V R =()()()P A B P A P B =其中R 表示球的半径一、选择题: 设集合{}{}2|5,|4210,S x x T x x x =<=+-<则S T =A.{}|75x x -<<- B.{}|35x x <<C.{}|53x x -<< D.{}|75x x -<<2.已知函数22log (2)()24(22a x x f x x x x x +≥⎧⎪==⎨-<⎪-⎩当时在点处当时)连续,则常数a 的值是A.2 B.3 C.4 D.53.复数2(12)34i i +-的值是A.-1 B.1 C.-i D.i4.已知函数()sin()()2f x x x R π=-∈,下面结论错误的是A.函数()f x 的最小正周期为2πB.函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数C.函数()f x 的图像关于直线0x =对称D.函数()f x 是奇函数 5.如图,已知六棱锥P ABCDEF -的底面是正六边形,,2PA ABC PA AB ⊥=平面,则下列结论正确的是A.PB AD ⊥ B.平面PAB PBC ⊥平面 C. 直线BC ∥平面PAE D.PD ABC ︒直线与平面所成的角为45 6.已知,,,a b c d 为实数,且c d >。
则“a b >”是“a c b d ->-”的 A. 充分而不必要条件 B. 必要而不充分条件 C .充要条件 D. 既不充分也不必要条件7.已知双曲线2221(0)2x y b b -=>的左右焦点分别为12,F F,其一条渐近线方程为y x =,点0(3,)P y 在该双曲线上,则12PF PF ∙=A. 12-B. 2- C .0 D. 48.如图,在半径为3的球面上有,,A B C 三点,90,ABC BA BC ︒∠==,球心O 到平面ABC 的距离是322,则B C 、两点的球面距离是A.3πB.πC.43πD.2π9.已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l的距离之和的最小值是A.2B.3C.115D.371610.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨。
销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨,那么该企业可获得最大利润是A. 12万元B. 20万元C. 25万元D. 27万元11.3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 360B. 228C. 216D. 9612.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是 A.0 B.12 C.1 D.522009年普通高等学校招生全国统一考试(四川卷) 数 学(理科) 第Ⅱ卷考生注意事项: 请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效. 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.61(2)2x x -的展开式的常数项是 (用数字作答)14.若⊙221:5O x y +=与⊙222:()20()O x m y m R -+=∈相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是15.如图,已知正三棱柱111ABC A B C -的各条棱长都相等,M 是侧棱1CC 的中点,则异面直线1AB BM和所成的角的大小是。
16.设V 是已知平面M 上所有向量的集合,对于映射:,f V V a V →∈,记a 的象为()f a 。
若映射:f V V →满足:对所有,a b V ∈及任意实数,λμ都有()()()f a b f a f b λμλμ+=+,则f 称为平面M 上的线性变换。
现有下列命题:①设f 是平面M 上的线性变换,则(0)0f =②对,()2a V f a a ∈=设,则f 是平面M 上的线性变换;③若e 是平面M 上的单位向量,对,()a V f a a e ∈=-设,则f 是平面M 上的线性变换; ④设f 是平面M 上的线性变换,,a b V ∈,若,a b 共线,则(),()f a f b 也共线。
其中真命题是 (写出所有真命题的序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分12分) 在ABC 中,,A B 为锐角,角,,A B C 所对应的边分别为,,a b c ,且310c o s 2,s i n510A B ==(I )求A B +的值; (II )若21a b +=-,求,,a b c 的值。
18. (本小题满分12分) 为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。
某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中34是省外游客,其余是省内游客。
在省外游客中有13持金卡,在省内游客中有23持银卡。
(I )在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率; (II )在该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量ξ,求ξ的分布列及数学期望E ξ。
19(本小题满分12分)如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ︒==∠=(I )求证:EF BCE ⊥平面;(II )设线段CD 的中点为P ,在直线AE 上是否存在一点M ,使得PM BCE 平面?若存在,请指出点M 的位置,并证明你的结论;若不存在,请说明理由; (III )求二面角F BD A --的大小。
20(本小题满分12分)已知椭圆2221(0)x y a b a b +=>>的左右焦点分别为12,F F ,离心率22e =,右准线方程为2x =。
(I )求椭圆的标准方程;(II )过点1F 的直线l 与该椭圆交于,M N 两点,且222263F M F N +=,求直线l 的方程。
21. (本小题满分12分)已知0,1a a >≠且函数()log (1)x a f x a =-。
(I )求函数()f x 的定义域,并判断()f x 的单调性;(II )若()*,lim ;f n n n a n N a a →+∞∈+求(III )当a e =(e 为自然对数的底数)时,设()2()(1)(1)f x h x e x m =--+,若函数()h x 的极值存在,求实数m 的取值范围以及函数()h x 的极值。
22. (本小题满分14分)设数列{}n a 的前n 项和为n S ,对任意的正整数n ,都有51n n a S =+成立,记*4()1nn na b n N a +=∈-。
(I )求数列{}n b 的通项公式;(II )记*221()n n n c b b n N -=-∈,设数列{}n c 的前n 项和为n T ,求证:对任意正整数n 都有32n T <;(III )设数列{}n b 的前n 项和为n R 。
已知正实数λ满足:对任意正整数,n n R n λ≤恒成立,求λ的最小值。
数学(理工农医类)参考答案选择题:本体考察基本概念和基本运算。
每小题5分,满分60分。
(1) C (2) B (3) A (4) D (5) D (6) B (7) C (8) B (9) A (10)D (11) B (12) A 二、填空题:本题考查基础知识和基本运算。
每小题4分,满分16分。
(13) -20 (14)4 (15)90 (16)①②③三、解答题(17)本小题主要考查同角三角函数间的关系,两角和差的三角函数、二倍角公式、正弦定理等基础知识及基本运算能力。
解:(Ⅰ)A 、B 为锐角,10sin 10B =,2310cos 1sin 10B b ∴=-=又23cos 212sin 5A A =-=,5sin 5A ∴=,225cos 1sin 5A A =-=,253105102cos()cos cos sin sin 5105102A B A B A B ∴+=-=⨯-⨯=0A B π<+<4A B π∴+=…………………………………………6分(Ⅱ)由(Ⅰ)知34C π=,2sin 2C ∴=. 由正弦定理sin sin sin a b cA B C ==得 5102a b c ==,即2a b =,5c b =21a b -=-Q ,221b b ∴-=-,1b ∴=2,5a c ∴== ……………………………………12分(18)本小题主要考察相互独立事件、互斥事件、随机变量的分布列、数学期望等概率计算,考察运用概率只是解决实际问题的能力。
解:(Ⅰ)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡。
设事件B 为“采访该团3人中,恰有1人持金卡且持银卡者少于2人”, 事件1A 为“采访该团3人中,1人持金卡,0人持银卡”, 事件2A 为“采访该团3人中,1人持金卡,1人持银卡”。
12()()()P B P A P A =+121119219621333636C C C C C C C =+ 92734170=+3685=所以在该团中随机采访3人,恰有1人持金卡且持银卡者少于2人的概率是3685。
…………………………………………………………6分 (Ⅱ)ξ的可能取值为0,1,2,333391(0)84C P C ξ===,1263393(1)14C C P C ξ===21633915(2)28C C P C ξ===,363915(3)21C P C ξ===,所以ξ的分布列为ξ 0 1 2 3P184 314 1528 521所以131550123284142821E ξ=⨯+⨯+⨯+⨯=, ……………………12分(19)本小题主要考察平面与平面垂直、直线与平面垂直、直线与平面平行、二面角等基础知识,考察空间想象能力、逻辑推理能力和数学探究意识,考察应用向量知识解决数学问题的能力。