On Witt vector cohomology for singular varieties

合集下载

小鼠脑电波周期节律与呼吸过程相关性分析

小鼠脑电波周期节律与呼吸过程相关性分析

• 94•由于外界刺激引起大脑兴奋,产生脑电波信号,而脑电波的信号可以通过局部场电位信号来表示。

本文对局部场电位信号进行小波分解,分解成五个频率段的波形,分别对应脑电波中的五个波段,即δ 波段、θ 波段、α 波段、β 波和 γ 波段。

通过相关性分析方法,计算出分解之后的δ波段与呼吸过程平均发生率之间的相关性系数。

根据小鼠平均呼吸发生率与脑电波中δ 波段的积差相关系数,推断在睡眠状态下的小鼠脑电波的周期节律与呼吸过程具有一定的相关性。

1 引言脑电波来自于大脑内部,一般认为大脑在活动时,脑皮质细胞群之间就会形成电位差,从而在大脑皮质的细胞外产生电流。

而局部场电位(Local Field Potential ,LFP )则反映来自神经元网络局部神经核团的活动状态,它也是一种神经集合的协同行为。

所以LFP 信号是脑内某局部大量神经元树突电位和的综合反映。

对应于不同行为或思维的脑电波,称之为脑电波成份。

如果能分离出与行为相关联的脑电波,将有助于对大脑疾病的诊断。

由于人的大脑非常复杂,研究人的思维也相对困难。

由于人脑的复杂性,在研究脑电波形成机理时,科学工作者大多采用动物实验,比如小鼠等。

呼吸系统是人体直接与外界接触最密切的子系统。

人体通过呼吸系统从外界空气中摄取氧气,同时排出二氧化碳,维持人体基本代谢的平衡。

呼吸运动是有节律的,在中枢神经系统支配下呼吸肌可以自律性收缩,通过调节呼吸的幅度和频率能使肺泡通气量适应机体新陈代谢的需要。

而呼吸的节律受中枢调节控制。

脑电波是一种自发的有节律的神经电活动,可划分为五个波段,即δ 波段(1~3Hz )、θ 波段(4~7Hz )、α 波段(8~13Hz )、β 波段(14~30Hz )和 γ 波段(30~35Hz )(J.Ito,S.Roy,Y.Liu,M.Fletcher,L.Lu,J.D.Boughter,S.Grun,D.H.Heck,Whisker barrel cortex delta oscillations and gamma power in the awake mouse are linked to respiration,Nature Communication,2014)。

单位球上加权Bergman空间上加权复合算子的本性范数英文

单位球上加权Bergman空间上加权复合算子的本性范数英文
t hese operators.
give s the essential no rms of weighted co mpo sitio n oper ato rs acting bet ween
weighted Ber gman spaces o n the unit ball. And it also c haracterizes boundedness and compact ness of
42
MAT HEMA TICA AP PL ICA TA
2010
2 (Bn ) . produci ng kernel ,which is unit vector i n Aα [1 ] Riedl charact erized boundednes s a nd compact nes s of compo si tion ope rator s bet ween p q ( p ≤ q) on Hardy spaces H p and Hq a nd Smit h [ 2] between wei ghte d Bergman spaces Aα and Aβ t he unit di sk ,in t erms of t he Neva nlinna and generalized Nevanli nna counti ng f unct io ns . The compact ne ss cri teria for t he case q < p were done by J archow [ 3 ] for t he Hardy space s and by Smit h and Yang[ 4] for t he weight ed Bergma n spaces . Esse ntial norm est imat es of composition operators f rom H p to Hq ( q < p ) on t he unit ball in C n were recentl y obt ai ned by Gorki n and MacClue r in [5 ]. p q In t hi s paper ,we give es sential norm esti mates for Wψ,φ f ro m Aα to Aβ , 0 < q ≤ p < ∞, - 1 < α,β < ∞ . The boundednes s and compact nes s of t he se operators a re al so charact erized.

非对称自变量线性各向同性张量函数的表示

非对称自变量线性各向同性张量函数的表示

非对称自变量线性各向同性张量函数的表示
郭仲衡
【期刊名称】《应用数学和力学》
【年(卷),期】1981(0)6
【摘要】本文给出了非对称自变量的线性各向同性标量值和张量值张量函数表示定理的数学证明.
【总页数】8页(P613-620)
【关键词】函数;量值;非对称;张量;自变量
【作者】郭仲衡
【作者单位】北京大学数学系
【正文语种】中文
【中图分类】O3
【相关文献】
1.非对称格林函数的指数梯度横向各向同性基体涂层系统 [J], F. Akbari;A. Khojasteh;M. Rahimian
2.鼓励学术争论,推动学术合作--张量和张量函数表示学术争论研讨会后记 [J], 黄克智;黄永念;郑泉水
3.关于各向同性张量函数的表示定理 [J], 梁浩云
4.非对称格林函数的指数梯度横向各向同性基体涂层系统 [J], F. Akbari;A. Khojasteh;M. Rahimian;
5.一类非对称各向同性张量函数导数的不变表示 [J], 王志乔;兑关锁
因版权原因,仅展示原文概要,查看原文内容请购买。

二维ising模型低温关联函数

二维ising模型低温关联函数

二维ising模型低温关联函数摘要:1.引言2.二维ising 模型的概述3.低温关联函数的定义和性质4.二维ising 模型在低温关联函数中的应用5.结论正文:【引言】在统计力学中,ising 模型是一个自发磁化的二维晶格模型,由L.Onsager 于1944 年首次提出。

在这个模型中,晶格上的每个点上都有一个自旋变量,这些自旋变量可以是+1 或-1。

在低温下,ising 模型表现出一些有趣的物理性质,如磁化强度、相变等现象。

本文主要讨论二维ising 模型在低温关联函数中的应用。

【二维ising 模型的概述】二维ising 模型是一个自发磁化的二维晶格模型,其中晶格上的每个点上都有一个自旋变量,这些自旋变量可以是+1 或-1。

在这个模型中,自旋变量之间的相互作用是通过一个哈密顿量来描述的。

二维ising 模型的哈密顿量可以表示为:H = -J ∑<i,j> [S_i·S_j - n_i·n_j]其中,J 是相互作用强度,S_i 和S_j 分别是晶格点i 和j 上的自旋变量,n_i 和n_j 分别是晶格点i 和j 上的自旋数。

在这个模型中,自旋变量之间的相互作用是短程的,并且是异号的。

【低温关联函数的定义和性质】在二维ising 模型中,低温关联函数是用来描述自旋变量之间在低温下的相关性的重要物理量。

低温关联函数可以定义为:C(r) = S_i·S_j - n_i·n_j其中,S_i 和S_j 分别是晶格点i 和j 上的自旋变量,n_i 和n_j 分别是晶格点i 和j 上的自旋数,表示期望值。

在二维ising 模型中,低温关联函数C(r) 随着距离r 的增大而衰减,表现出短程相关的特性。

【二维ising 模型在低温关联函数中的应用】二维ising 模型在低温关联函数中的应用主要体现在以下几个方面:1.磁化强度:在低温下,二维ising 模型的磁化强度可以描述为:M = S_i = ∑_i S_i其中,S_i 是晶格点i 上的自旋变量。

k接近一致凸空间的对偶空间

k接近一致凸空间的对偶空间

为主要结果 ,得到了这两类 B n c a ah空 间的特征刻 画及 一些性质 ,弄清了 一致光滑 空间、
k接 近 一 致 光 滑 空 间 、
系.
接 近 一致 光 滑 空 间, 完全 k光 滑 空 间和 接 近 一 致 光 滑 空 间 的 蕴 涵关 接 近 一 致光 滑 空 间; 完全 光滑 空 间;

致 凸和 接近 一致 凸空间 的对偶 空 间,本 文将 引入 k接近 一致 光滑 和 接 近 一致光 滑 空
间.
本文 中, 表 示 实 B n c 间, a ah空 表 示 它的共 轭 空间 . S ) z: ∈X, l 1 ( ={ I ) = 和 ( ={ ∈X, I 1 ) : )分别 表示 的 单位球 和单 位球 面 . c ( ) B) 味着 和 o{ U 意 B 所 成集 合 的 凸包 ,这 里 B 对 序 列 { 令 spx ) n { 一 I: c X. z )c X, e ( =if『 l n≠ m} I . 对 序列 { )c X 及 X ∈X, 一l 叫 i m : X意 味着 X 弱收 敛于 X .对 序列 { }c X 及 ^






V 1l 03 _. A
17 99年, FS lvn2 引入了 忌一致 凸空间 (U ) . la [ ui ] k R 的概念 , 其对偶 空间 一致 光滑空 间 (US k )由苏雅 拉 图和吴 【 于 19 。 】 9 8年 引入 ,并证 明: k一致光 滑空 间蕴含 自反性 ,且 ( 或
足条件 s ( ) 的任何序列 { } ( , {d 】使 1l +… + l ~ e x >e p c ) 存在 n L , l X X l <1

高分子物理名词解释

高分子物理名词解释

高分子物理名词解释Θ溶剂(Θ solvent):链段-溶剂相互吸引刚好抵消链段间空间排斥的溶剂,形成高分子溶液时观察不到远程作用,该溶剂中的高分子链的行为同无扰链2.7Θ温度(Θ temperature):溶剂表现出Θ溶剂性质的温度2.7Argon理论(Argon theory):一种银纹扩展过程的模型,描述了分子链被伸展将聚合物材料空化的过程5.3Avrami方程(Avrami equation):描述物质结晶转化率与时间关系的方程:--α,α为转化率,K与n称Avrami常数(Avrami constants) 4.8 =Kt1n)ex p(Bingham流体(Bingham liquid):此类流体具有一个屈服应力σy,应力低于σy时不产生形变,当应力大于σy时才发生流动,应力高于σy的部分与应变速率呈线性关系3.13 Boltzmann叠加原理(Blotzmann superposition principle):Boltzmann提出的粘弹性原理:认为样品在不同时刻对应力或应变的响应各自独立并可线性叠加 3.8Bravais晶格(Bravais lattice):结构单元在空间的排列方式4.1Burger's模型(Burger's model):由一个Maxwell模型和一个Kelvin模型串联构成的粘弹性模型3.7Cauchy应变(Cauchy strain):拉伸引起的相对于样品初始长度的形变分数,又称工程应变3.16Charpy冲击测试(Charpy impact test):样品以简支梁形式放置的冲击强度测试,测量样品单位截面积的冲击能5.4Considère构图(Considère construction):以真应力对工程应作图以判定细颈稳定性的方法5.2Eyring模型(Eyring model):一种描述材料形变过程的分子模型,认为形变是结构单元越过能垒的跳跃式运动5.2Flory-Huggins参数(Flory-Huggins interaction parameter):描述聚合物链段与溶剂分子间相互作用的参数,常用χ表示,物理意义为一个溶质分子被放入溶剂中作用能变化与动能之比2.11.2Flory构图(Flory construction):保持固定拉伸比所需的力f对实验温度作图得到,由截距确定内能对拉伸力的贡献,由斜率确定熵对拉伸力的贡献2.16.2Flory特征比(characteristic ratio):无扰链均方末端距与自由连接链均方末端距的比值2.4 Griffith理论(Griffith theory):一种描述材料断裂机理的理论,认为断裂是吸收外界能量产生新表面的过程5.4Hencky应变(Hencky strain):拉伸引起的相对于样品形变分数积分,又称真应变3.16 Hermans取向因子(Hermans orientation factor):描述结构单元取向程度的参数,是结构单元与参考方向夹角余弦均方值的函数4.8, 4.10Hoffman-Weeks作图法(Hoffman-Weeks plot):一种确定平衡熔点的方法。

大学物理中矢量微积分的计算

大学物理中矢量微积分的计算

0前言大学物理与中学物理相比,最显著的区别就应用矢量、导数和微积分来分析和求解生活实践中更一般的实际问题,微积分思想和方法的运用,使大学物理相比于中学物理有质的飞跃。

相对于高等数学只注重代数形式的导数和微积分性质和计算,大学物理中几乎全是矢量的导数和微积分模型的建立和求解[1],如果没有掌握矢量的导数和微积分的处理方法,对于解物理问题,往往会觉得无从下手。

本文就大学物理中矢量的导数和微积分的求解问题提出自己的一点见解,以期对初学者有所帮助。

1矢量和微积分思想矢量是既有大小又有方向的量。

大学物理中很多物理量都是用矢量的乘法来表示,这就涉及矢量的点积与叉积,如功W =F →·r →=Fr cosθ结果为标量,力矩M →=r →×F →结果为矢量,其中θ为两矢量之间的夹角。

与中学物理研究的大都是“常量”、“标量”,用代数和平面几何去解决生活实践中某个特殊类型的问题不同,大学物理中的研究的大都是“变量”、矢量”,用矢量和微积分来解决生活实践中更一般的实际问题。

对于一般物理实际问题,常常需要应用微积分来解决,其基本思想是先“微”后“积”。

由于物理量对时间或者空间分布不均,因而需要把研究物理量在时间或者空间范围内进行无限次分割,分割后的物理量在这些足够小的时空区域(即微元区域)就变成了均匀分布,这时恰当的选取微元,写出元过程或者元贡献的表达式,然后把所有有限小的过程累加求和[2],再应用定积分,确定积分上、下限,然后求得计算结果。

大学物理中的矢量求解,不管是微分还是积分,首先要将矢量标量化运算,也就是说先要把矢量向某一方向或者坐标系进行投影,然后再进行微积分运算。

大体可以归纳为两类,一类是矢量的微分或求导问题,一类是矢量的积分问题。

2矢量的求导问题这类问题在大学物理中比较简单,一般就是先把矢量在坐标系进行投影,然后再在各个分量方向上求导。

例如由位矢r →(t )求速度v →(t )和加速度a →(t ),则先对r →(t )“矢量标量化运算”,即把r →(t )向直接坐标系进行x ,y ,z 方向进行投影,即有r →(t )=x (t )i ^+y (t )j ^+z (t )k ^,然后在个方向上进行求导,如v →(t )=dr →dt =dx dt i ^+dy dt j ^+dz dt k^,同样的,求加速度也是先投影后求导,a →(t )=dv →dt =dvx dt i ^+dv y dt j ^+dv z dt k ^=d 2x dt 2i ^+d 2y dt 2j ^+d 2z dt2k ^。

薛定谔—麦克斯韦尔方程径向解的存在性和多重性(英文)

薛定谔—麦克斯韦尔方程径向解的存在性和多重性(英文)

In 1887, the German physicist Erwin Schrödinger proposed a radial solution to the Maxwell-Schrödinger equation. This equation describes the behavior of an electron in an atom and is used to calculate its energy levels. The radial solution was found to be valid for all values of angular momentum quantum number l, which means that it can describe any type of atomic orbital.The existence and multiplicity of this radial solution has been studied extensively since then. It has been shown that there are infinitely many solutions for each value of l, with each one corresponding to a different energy level. Furthermore, these solutions can be divided into two categories: bound states and scattering states. Bound states have negative energies and correspond to electrons that are trapped within the atom; scattering states have positive energies and correspond to electrons that escape from the atom after being excited by external radiation or collisions with other particles.The existence and multiplicity of these solutions is important because they provide insight into how atoms interact with their environment through electromagnetic radiation or collisions with other particles. They also help us understand why certain elements form molecules when combined together, as well as why some elements remain stable while others decay over time due to radioactive processes such as alpha decay or beta decay.。

量子力学英语词汇

量子力学英语词汇

1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator线性谐振子41、zero proint energy 零点能42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-partic le system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性本征矢量eigenvector本征态eigenstate本征值eigenvalue本征值方程eigenvalue equation本征子空间eigensubspace (可以理解为本征矢空间)变分法variatinial method标量scalar算符operator表象representation表象变换transformation of representation表象理论theory of representation波函数wave function波恩近似Born approximation玻色子boson费米子fermion不确定关系uncertainty relation狄拉克方程Dirac equation狄拉克记号Dirac symbol定态stationary state定态微扰法time-independent perturbation定态薛定谔方程time-independent Schro(此处上面有两点)dinger equation 动量表象momentum representation角动量表象angular mommentum representation占有数表象occupation number representation坐标(位置)表象position representation角动量算符angular mommentum operator角动量耦合coupling of angular mommentum对称性symmetry对易关系commutator厄米算符hermitian operator厄米多项式Hermite polynomial分量component光的发射emission of light光的吸收absorption of light受激发射excited emission自发发射spontaneous emission轨道角动量orbital angular momentum自旋角动量spin angular momentum轨道磁矩orbital magnetic moment归一化normalization哈密顿hamiltonion黑体辐射black body radiation康普顿散射Compton scattering基矢basis vector基态ground state基右矢basis ket ‘右矢’ket基左矢basis bra简并度degenerancy精细结构fine structure径向方程radial equation久期方程secular equation量子化quantization矩阵matrix模module模方square of module内积inner product逆算符inverse operator欧拉角Eular angles泡利矩阵Pauli matrix平均值expectation value (期望值)泡利不相容原理Pauli exclusion principle氢原子hydrogen atom球鞋函数spherical harmonics全同粒子identical partic les塞曼效应Zeeman effect上升下降算符raising and lowering operator 消灭算符destruction operator产生算符creation operator矢量空间vector space守恒定律conservation law守恒量conservation quantity投影projection投影算符projection operator微扰法pertubation method希尔伯特空间Hilbert space线性算符linear operator线性无关linear independence谐振子harmonic oscillator选择定则selection rule幺正变换unitary transformation幺正算符unitary operator宇称parity跃迁transition运动方程equation of motion正交归一性orthonormalization正交性orthogonality转动rotation自旋磁矩spin magnetic monent(以上是量子力学中的主要英语词汇,有些未涉及到的可以自由组合。

张量与并矢(即向量的直积)

张量与并矢(即向量的直积)


进阶定义
设 是域 上的一个线性空间,则下述定义是等价的。
定义1. 对于任意 量。更加推广,称
,称它们的张量积
为 和 的并矢积并将其简记为
中的元素为 上的并矢张量,或者二阶反变张量。
定义2. 如果有 上的一个线性空间 以及双线性映射
满足
(1)
,
以及
使得
,称为并矢张
(2) 当
; 线性无关时,
是 中的线性无关向量组,
页码,3/6
(1) 任意向量 和 并置摆放形成一个并矢积 ;
(2) 对于任意的
作பைடு நூலகம்

和任意的
,规定
,并把上述结果不加区分地记
(3) 称有限个并矢积的形式和为一个并矢张量;
(4) 对任意正整数 ,如果
是,
的充分必要条件是
线性无关,则


是线性无关向量组——特别
(5) 对任意的 、 、
,成立着分配律

注: 所谓形式和,就是说我们既不刻意追究求和的实际含义,也关心求和的结果在哪个集合中,而只是知道这种求和满足交换 律和结合律。
并矢张量与向量的缩并
既然上述定义等价,我们就把 上所有的并矢张量所构成线性空间记为
。在此基础上,如果 是一个内积空间并

的内积记为
(当
时,约定
对 是共轭线性的),则定义并矢张量 和矢量
的缩并

都是 中的向量,满足下述运算律:
(6) 对于任意的 从而可以把上述两个结果分别记为
以及 和
, 。在上述公式中,

其中,
是二维的单位并矢张量。
量子力学
设 是量子力学中所有的角动量本征态所张成的希尔伯特空间(囊括了所有可能的总角动量量子数 , , , ,

量子力学索引英汉对照

量子力学索引英汉对照

21-centimeter line, 21厘米线AAbsorption, 吸收Addition of angular momenta, 角动量叠加Adiabatic approximation, 绝热近似Adiabatic process, 绝热过程Adjoint, 自伴的Agnostic position, 不可知论立场Aharonov-Bohm effect, 阿哈罗诺夫—玻姆效应Airy equation, 艾里方程;Airy function, 艾里函数Allowed energy, 允许能量Allowed transition, 允许跃迁Alpha decay, α衰变;Alpha particle, α粒子Angular equation, 角向方程Angular momentum, 角动量Anomalous magnetic moment, 反常磁矩Antibonding, 反键Anti-hermitian operator, 反厄米算符Associated Laguerre polynomial, 连带拉盖尔多项式Associated Legendre function, 连带勒让德多项式Atoms, 原子Average value, 平均值Azimuthal angle, 方位角Azimuthal quantum number, 角量子数BBalmer series, 巴尔末线系Band structure, 能带结构Baryon, 重子Berry's phase, 贝利相位Bessel functions, 贝塞尔函数Binding energy, 束缚能Binomial coefficient, 二项式系数Biot-Savart law, 毕奥—沙法尔定律Blackbody spectrum, 黑体谱Bloch's theorem, 布洛赫定理Bohr energies, 玻尔能量;Bohr magneton, 玻尔磁子;Bohr radius, 玻尔半径Boltzmann constant, 玻尔兹曼常数Bond, 化学键Born approximation, 玻恩近似Born's statistical interpretation, 玻恩统计诠释Bose condensation, 玻色凝聚Bose-Einstein distribution, 玻色—爱因斯坦分布Boson, 玻色子Bound state, 束缚态Boundary conditions, 边界条件Bra, 左矢Bulk modulus, 体积模量CCanonical commutation relations, 正则对易关系Canonical momentum, 正则动量Cauchy's integral formula, 柯西积分公式Centrifugal term, 离心项Chandrasekhar limit, 钱德拉赛卡极限Chemical potential, 化学势Classical electron radius, 经典电子半径Clebsch-Gordan coefficients, 克—高系数Coherent States, 相干态Collapse of wave function, 波函数塌缩Commutator, 对易子Compatible observables, 对易的可观测量Complete inner product space, 完备内积空间Completeness, 完备性Conductor, 导体Configuration, 位形Connection formulas, 连接公式Conservation, 守恒Conservative systems, 保守系Continuity equation, 连续性方程Continuous spectrum, 连续谱Continuous variables, 连续变量Contour integral, 围道积分Copenhagen interpretation, 哥本哈根诠释Coulomb barrier, 库仑势垒Coulomb potential, 库仑势Covalent bond, 共价键Critical temperature, 临界温度Cross-section, 截面Crystal, 晶体Cubic symmetry, 立方对称性Cyclotron motion, 螺旋运动DDarwin term, 达尔文项de Broglie formula, 德布罗意公式de Broglie wavelength, 德布罗意波长Decay mode, 衰变模式Degeneracy, 简并度Degeneracy pressure, 简并压Degenerate perturbation theory, 简并微扰论Degenerate states, 简并态Degrees of freedom, 自由度Delta-function barrier, δ势垒Delta-function well, δ势阱Derivative operator, 求导算符Determinant, 行列式Determinate state, 确定的态Deuterium, 氘Deuteron, 氘核Diagonal matrix, 对角矩阵Diagonalizable matrix, 对角化Differential cross-section, 微分截面Dipole moment, 偶极矩Dirac delta function, 狄拉克δ函数Dirac equation, 狄拉克方程Dirac notation, 狄拉克记号Dirac orthonormality, 狄拉克正交归一性Direct integral, 直接积分Discrete spectrum, 分立谱Discrete variable, 离散变量Dispersion relation, 色散关系Displacement operator, 位移算符Distinguishable particles, 可分辨粒子Distribution, 分布Doping, 掺杂Double well, 双势阱Dual space, 对偶空间Dynamic phase, 动力学相位EEffective nuclear charge, 有效核电荷Effective potential, 有效势Ehrenfest's theorem, 厄伦费斯特定理Eigenfunction, 本征函数Eigenvalue, 本征值Eigenvector, 本征矢Einstein's A and B coefficients, 爱因斯坦A,B系数;Einstein's mass-energy formula, 爱因斯坦质能公式Electric dipole, 电偶极Electric dipole moment, 电偶极矩Electric dipole radiation, 电偶极辐射Electric dipole transition, 电偶极跃迁Electric quadrupole transition, 电四极跃迁Electric field, 电场Electromagnetic wave, 电磁波Electron, 电子Emission, 发射Energy, 能量Energy-time uncertainty principle, 能量—时间不确定性关系Ensemble, 系综Equilibrium, 平衡Equipartition theorem, 配分函数Euler's formula, 欧拉公式Even function, 偶函数Exchange force, 交换力Exchange integral, 交换积分Exchange operator, 交换算符Excited state, 激发态Exclusion principle, 不相容原理Expectation value, 期待值FFermi-Dirac distribution, 费米—狄拉克分布Fermi energy, 费米能Fermi surface, 费米面Fermi temperature, 费米温度Fermi's golden rule, 费米黄金规则Fermion, 费米子Feynman diagram, 费曼图Feynman-Hellman theorem, 费曼—海尔曼定理Fine structure, 精细结构Fine structure constant, 精细结构常数Finite square well, 有限深方势阱First-order correction, 一级修正Flux quantization, 磁通量子化Forbidden transition, 禁戒跃迁Foucault pendulum, 傅科摆Fourier series, 傅里叶级数Fourier transform, 傅里叶变换Free electron, 自由电子Free electron density, 自由电子密度Free electron gas, 自由电子气Free particle, 自由粒子Function space, 函数空间Fusion, 聚变Gg-factor, g—因子Gamma function, Γ函数Gap, 能隙Gauge invariance, 规范不变性Gauge transformation, 规范变换Gaussian wave packet, 高斯波包Generalized function, 广义函数Generating function, 生成函数Generator, 生成元Geometric phase, 几何相位Geometric series, 几何级数Golden rule, 黄金规则"Good" quantum number, “好”量子数"Good" states, “好”的态Gradient, 梯度Gram-Schmidt orthogonalization, 格莱姆—施密特正交化法Graphical solution, 图解法Green's function, 格林函数Ground state, 基态Group theory, 群论Group velocity, 群速Gyromagnetic railo, 回转磁比值HHalf-integer angular momentum, 半整数角动量Half-life, 半衰期Hamiltonian, 哈密顿量Hankel functions, 汉克尔函数Hannay's angle, 哈内角Hard-sphere scattering, 硬球散射Harmonic oscillator, 谐振子Heisenberg picture, 海森堡绘景Heisenberg uncertainty principle, 海森堡不确定性关系Helium, 氦Helmholtz equation, 亥姆霍兹方程Hermite polynomials, 厄米多项式Hermitian conjugate, 厄米共轭Hermitian matrix, 厄米矩阵Hidden variables, 隐变量Hilbert space, 希尔伯特空间Hole, 空穴Hooke's law, 胡克定律Hund's rules, 洪特规则Hydrogen atom, 氢原子Hydrogen ion, 氢离子Hydrogen molecule, 氢分子Hydrogen molecule ion, 氢分子离子Hydrogenic atom, 类氢原子Hyperfine splitting, 超精细分裂IIdea gas, 理想气体Idempotent operaror, 幂等算符Identical particles, 全同粒子Identity operator, 恒等算符Impact parameter, 碰撞参数Impulse approximation, 脉冲近似Incident wave, 入射波Incoherent perturbation, 非相干微扰Incompatible observables, 不对易的可观测量Incompleteness, 不完备性Indeterminacy, 非确定性Indistinguishable particles, 不可分辨粒子Infinite spherical well, 无限深球势阱Infinite square well, 无限深方势阱Inner product, 内积Insulator, 绝缘体Integration by parts, 分部积分Intrinsic angular momentum, 内禀角动量Inverse beta decay, 逆β衰变Inverse Fourier transform, 傅里叶逆变换KKet, 右矢Kinetic energy, 动能Kramers' relation, 克莱默斯关系Kronecker delta, 克劳尼克δLLCAO technique, 原子轨道线性组合法Ladder operators, 阶梯算符Lagrange multiplier, 拉格朗日乘子Laguerre polynomial, 拉盖尔多项式Lamb shift, 兰姆移动Lande g-factor, 朗德g—因子Laplacian, 拉普拉斯的Larmor formula, 拉摩公式Larmor frequency, 拉摩频率Larmor precession, 拉摩进动Laser, 激光Legendre polynomial, 勒让德多项式Levi-Civita symbol, 列维—西维塔符号Lifetime, 寿命Linear algebra, 线性代数Linear combination, 线性组合Linear combination of atomic orbitals, 原子轨道的线性组合Linear operator, 线性算符Linear transformation, 线性变换Lorentz force law, 洛伦兹力定律Lowering operator, 下降算符Luminoscity, 照度Lyman series, 赖曼线系MMagnetic dipole, 磁偶极Magnetic dipole moment, 磁偶极矩Magnetic dipole transition, 磁偶极跃迁Magnetic field, 磁场Magnetic flux, 磁通量Magnetic quantum number, 磁量子数Magnetic resonance, 磁共振Many worlds interpretation, 多世界诠释Matrix, 矩阵;Matrix element, 矩阵元Maxwell-Boltzmann distribution, 麦克斯韦—玻尔兹曼分布Maxwell’s equations, 麦克斯韦方程Mean value, 平均值Measurement, 测量Median value, 中位值Meson, 介子Metastable state, 亚稳态Minimum-uncertainty wave packet, 最小不确定度波包Molecule, 分子Momentum, 动量Momentum operator, 动量算符Momentum space wave function, 动量空间波函数Momentum transfer, 动量转移Most probable value, 最可几值Muon, μ子Muon-catalysed fusion, μ子催化的聚变Muonic hydrogen, μ原子Muonium, μ子素NNeumann function, 纽曼函数Neutrino oscillations, 中微子振荡Neutron star, 中子星Node, 节点Nomenclature, 术语Nondegenerate perturbationtheory, 非简并微扰论Non-normalizable function, 不可归一化的函数Normalization, 归一化Nuclear lifetime, 核寿命Nuclear magnetic resonance, 核磁共振Null vector, 零矢量OObservable, 可观测量Observer, 观测者Occupation number, 占有数Odd function, 奇函数Operator, 算符Optical theorem, 光学定理Orbital, 轨道的Orbital angular momentum, 轨道角动量Orthodox position, 正统立场Orthogonality, 正交性Orthogonalization, 正交化Orthohelium, 正氦Orthonormality, 正交归一性Orthorhombic symmetry, 斜方对称Overlap integral, 交叠积分PParahelium, 仲氦Partial wave amplitude, 分波幅Partial wave analysis, 分波法Paschen series, 帕邢线系Pauli exclusion principle, 泡利不相容原理Pauli spin matrices, 泡利自旋矩阵Periodic table, 周期表Perturbation theory, 微扰论Phase, 相位Phase shift, 相移Phase velocity, 相速Photon, 光子Planck's blackbody formula, 普朗克黑体辐射公式Planck's constant, 普朗克常数Polar angle, 极角Polarization, 极化Population inversion, 粒子数反转Position, 位置;Position operator, 位置算符Position-momentum uncertainty principles, 位置—动量不确定性关系Position space wave function, 坐标空间波函数Positronium, 电子偶素Potential energy, 势能Potential well, 势阱Power law potential, 幂律势Power series expansion, 幂级数展开Principal quantum number, 主量子数Probability, 几率Probability current, 几率流Probability density, 几率密度Projection operator, 投影算符Propagator, 传播子Proton, 质子QQuantum dynamics, 量子动力学Quantum electrodynamics, 量子电动力学Quantum number, 量子数Quantum statics, 量子统计Quantum statistical mechanics, 量子统计力学Quark, 夸克RRabi flopping frequency, 拉比翻转频率Radial equation, 径向方程Radial wave function, 径向波函数Radiation, 辐射Radius, 半径Raising operator, 上升算符Rayleigh's formula, 瑞利公式Realist position, 实在论立场Recursion formula, 递推公式Reduced mass, 约化质量Reflected wave, 反射波Reflection coefficient, 反射系数Relativistic correction, 相对论修正Rigid rotor, 刚性转子Rodrigues formula, 罗德里格斯公式Rotating wave approximation, 旋转波近似Rutherford scattering, 卢瑟福散射Rydberg constant, 里德堡常数Rydberg formula, 里德堡公式SScalar potential, 标势Scattering, 散射Scattering amplitude, 散射幅Scattering angle, 散射角Scattering matrix, 散射矩阵Scattering state, 散射态Schrodinger equation, 薛定谔方程Schrodinger picture, 薛定谔绘景Schwarz inequality, 施瓦兹不等式Screening, 屏蔽Second-order correction, 二级修正Selection rules, 选择定则Semiconductor, 半导体Separable solutions, 分离变量解Separation of variables, 变量分离Shell, 壳Simple harmonic oscillator, 简谐振子Simultaneous diagonalization, 同时对角化Singlet state, 单态Slater determinant, 斯拉特行列式Soft-sphere scattering, 软球散射Solenoid, 螺线管Solids, 固体Spectral decomposition, 谱分解Spectrum, 谱Spherical Bessel functions, 球贝塞尔函数Spherical coordinates, 球坐标Spherical Hankel functions, 球汉克尔函数Spherical harmonics, 球谐函数Spherical Neumann functions, 球纽曼函数Spin, 自旋Spin matrices, 自旋矩阵Spin-orbit coupling, 自旋—轨道耦合Spin-orbit interaction, 自旋—轨道相互作用Spinor, 旋量Spin-spin coupling, 自旋—自旋耦合Spontaneous emission, 自发辐射Square-integrable function, 平方可积函数Square well, 方势阱Standard deviation, 标准偏差Stark effect, 斯塔克效应Stationary state, 定态Statistical interpretation, 统计诠释Statistical mechanics, 统计力学Stefan-Boltzmann law, 斯特番—玻尔兹曼定律Step function, 阶跃函数Stem-Gerlach experiment, 斯特恩—盖拉赫实验Stimulated emission, 受激辐射Stirling's approximation, 斯特林近似Superconductor, 超导体Symmetrization, 对称化Symmetry, 对称TTaylor series, 泰勒级数Temperature, 温度Tetragonal symmetry, 正方对称Thermal equilibrium, 热平衡Thomas precession, 托马斯进动Time-dependent perturbation theory, 含时微扰论Time-dependent Schrodinger equation, 含时薛定谔方程Time-independent perturbation theory, 定态微扰论Time-independent Schrodinger equation, 定态薛定谔方程Total cross-section, 总截面Transfer matrix, 转移矩阵Transformation, 变换Transition, 跃迁;Transition probability, 跃迁几率Transition rate, 跃迁速率Translation,平移Transmission coefficient, 透射系数Transmitted wave, 透射波Trial wave function, 试探波函数Triplet state, 三重态Tunneling, 隧穿Turning points, 回转点Two-fold degeneracy , 二重简并Two-level systems, 二能级体系UUncertainty principle, 不确定性关系Unstable particles, 不稳定粒子VValence electron, 价电子Van der Waals interaction, 范德瓦尔斯相互作用Variables, 变量Variance, 方差Variational principle, 变分原理Vector, 矢量Vector potential, 矢势Velocity, 速度Vertex factor, 顶角因子Virial theorem, 维里定理WWave function, 波函数Wavelength, 波长Wave number, 波数Wave packet, 波包Wave vector, 波矢White dwarf, 白矮星Wien's displacement law, 维恩位移定律YYukawa potential, 汤川势ZZeeman effect, 塞曼效应。

一类伽利略共形李代数的poisson结构

一类伽利略共形李代数的poisson结构

一类伽利略共形李代数的poisson结构伽利略共形李代数是一类重要的李代数结构,被广泛应用于物理学,尤其是量子场论和统计力学中。

在这篇文章中,我们讨论了一类伽利略共形李代数的Poisson结构。

先回顾一下伽利略共形李代数的基本构建。

伽利略共形李代数可以看成是伽利略对称群和共形对称群在同一Lie代数下的并。

它由两个部分组成:一个是galilean对称群的李代数,另一个是conformal 对称群的李代数。

伽利略对称群的李代数包括平移、旋转和加速度生成元,它们按照如下的李括号关系组成:$[M_{ij},M_{kl}] = i(\delta_{jk} M_{il} - \delta_{ik} M_{jl} - \delta_{jl} M_{ik} + \delta_{il} M_{jk})$$[P_i,P_j] = [K_i,K_j] = 0$其中$i,j,k,l$表示在3D空间中的坐标方向,$M_{ij}$是旋转生成元,$P_i$是空间平移生成元,$K_i$是空间反平移(即boost)生成元,$D$是时间平移生成元。

共形对称群的李代数由两个部分组成:矢量生成元和特殊的共形生成元。

矢量生成元包括平移$P_\mu$和旋转$L_{\mu\nu}$。

特殊的共形生成元可以分为标量生成元和向量生成元,包括dilatation $D$,特殊共形伸缩$K_\mu$和特殊共形旋转$M_{\mu\nu}$。

共形生成元之间的李括号关系为:$[L_{\mu\nu},P_\rho] = i(\eta_{\mu\rho} P_\nu - \eta_{\nu\rho} P_\mu)$$[M_{\mu\nu},L_{\rho\sigma}] = i(\eta_{\mu\rho} L_{\nu\sigma} - \eta_{\nu\rho} L_{\mu\sigma} - \eta_{\mu\sigma} L_{\nu\rho}+ \eta_{\nu\sigma} L_{\mu\rho})$$[D,P_\mu] = iP_\mu$其中,$\mu,\nu,\rho,\sigma$表示四个坐标方向,$\eta_{\mu\nu}$是Minkowski度规。

fundamentals of vector network analysis -回复

fundamentals of vector network analysis -回复

fundamentals of vector network analysis -回复Fundamentals of Vector Network AnalysisIntroduction:Vector Network Analysis (VNA) is a powerful technique used in the field of electrical engineering for measuring and characterizing high-frequency electrical networks. It provides a comprehensive understanding of the behavior of networks, allowing engineers to design and optimize complex systems in various industries like telecommunications, aerospace, and electronics. In this article, we will delve into the fundamentals of Vector Network Analysis, explaining the underlying principles, measurement techniques, and applications.1. What is Vector Network Analysis?Vector Network Analysis is a method used to measure and analyze the electrical properties of complex networks at high frequencies. It involves the use of a specialized instrument called a Vector Network Analyzer. A VNA measures the amplitude and phase of electronic signals at the input and output ports of the device under test (DUT). These measurements are then used to determine the characteristics of the network, such as transmission and reflectioncoefficients, impedance, and scattering parameters.2. Basic Measurement Principles:Vector Network Analysis relies on the principle of superposition, where the measured signals can be treated as a sum of individual frequency components. The VNA generates a continuous wave signal at specific frequencies and measures the response of the DUT. By varying the frequency, the VNA can capture the behavior of the network across a wide range.3. Measurement Techniques:To perform vector network analysis, the VNA sends a stimulus signal to the DUT and measures the response at its input and output ports. There are two main measurement techniques used in VNA:a) Transmission Measurement: In this technique, the VNA measures the signal transmitted through the DUT. By comparing the transmitted signal with the reference signal, the VNA determines the transmission coefficient, providing information about the network's gain or loss.b) Reflection Measurement: This technique involves the measurement of the signal reflected at the input or output ports of the DUT. By comparing the reflected signal with the incident signal, the VNA calculates the reflection coefficient, which indicates the impedance match or mismatch between the network and the VNA.4. Calibration:Calibration is a critical step in VNA to remove the systematic errors introduced by the measurement setup. It involves the use of calibration standards and reference standards to establish accurate measurement references. Common calibration techniques include the Short-Open-Load-Thru (SOLT) and the Reflect-Match-Reflect (RMR) methods.5. Network Parameters:Vector Network Analysis provides several key parameters that help characterize the behavior of networks. These parameters include:a) S-parameters: S-parameters describe the scattering behavior of networks. They consist of two parts, magnitude, and phase, representing the amplitude and phase shift of signals.S-parameters provide information about signal reflections,transmission, and isolation between ports.b) Impedance: Impedance is a critical parameter that reflects how a network responds to the flow of AC current. It is expressed in terms of real (resistance) and imaginary (reactance) components.c) Transmission and Reflection Coefficients: These coefficients represent the amount of signal transmitted or reflected at the ports of the DUT. They determine the efficiency and impedance match of the network.d) Group Delay: Group delay indicates the time delay of the signal passing through the network. It is crucial in applications where phase coherence and timing are essential, such as in communications systems.6. Applications:Vector Network Analysis finds applications in various fields such as:a) Antenna Design and Testing: VNA helps characterize the performance of antennas by measuring the impedance match and radiation patterns.b) RF/Microwave Component Characterization: VNA is used to measure the performance of components like filters, amplifiers, and mixers, ensuring their proper functioning and efficiency.c) Material Characterization: By analyzing the reflection and transmission of electromagnetic waves through materials, VNA can determine the dielectric properties and material behavior, enabling applications in fields like material science and quality control.d) Circuit Design: VNA plays a significant role in designing and optimizing circuits by measuring their impedance and transmission characteristics. It aids in identifying issues like signal reflections and matching problems.Conclusion:Vector Network Analysis is a fundamental technique inhigh-frequency electrical engineering. With its ability to measure and analyze complex networks accurately, it enables engineers to design, troubleshoot, and optimize systems for various industries. By understanding the principles, measurement techniques,calibration, and network parameters, engineers can harness the power of VNA to ensure efficient, reliable, and well-designed networks.。

基于没有交集的主成分模型下的模式识别方法-外文文献及翻译

基于没有交集的主成分模型下的模式识别方法-外文文献及翻译

基于没有交集的主成分模型下的模式识别方法-外文文献及翻译xx工业大学毕业设计(论文)外文资料翻译学院:系(专业):姓名:学号:外文出处:Pattern Recognition附件: 1.外文资料翻译译文;2.外文原文。

指导教师评语:签名:2010年6 月日附件1:外文资料翻译译文基于没有交集的主成分模型下的模式识别方法化学计量学研究组,化学研究所,umea大学摘要:通过独立的主成分建模方法对单独种类进行模式识别,这一方法我们已经进行了深刻的研究,主成分的模型说明了单一种类之内拟合所有的连续变量。

所以,假如数据充足的话,主成分模型的方法可以对指定的一组样品中存在的任何模式进行识别,另外,将每一种类中样品通过独立的主成分模型作出拟合,用这种简单的方式,可以提供有关这些变量作为单一变量的相关性。

这些试样中存在着“离群”,而且不同种类间也有“距离”。

我们应用经典的Fisher鸢尾花数据作为例证。

1介绍对于挖掘和使用经验数据的规律性,已经在像化学和生物这样的学科中成为了首要考虑的因素。

在化学上一个经典的例子就是元素周期表。

当元素按渐增的原子质量排列时,化学元素特性上的规律以每8个为一个周期的出现。

相似的,生物学家也常按照植物和动物形态学上的规律才将其归类。

比如,植物的花朵和叶片的形状,动物两臂的长度和宽度以及动物不同的骨骼等等。

数据分析方法(通常叫做模式识别方法),特别的创制用以探知多维数据的规律性。

这种方法已在科学的各分支上得到了广泛的应用。

模式识别中的经典问题可系统的陈述如下:指定一些种类,每一类都被定义为一套样本,训练集和检验集,还有基于每组样本的M测度值,那么是否有可能基于原M值对新的样本作出分类呢?我们提出解决这类或相关问题的许多方法,这些方法也由Kanal和另外一些人回顾过了。

在科学的分支中,比如化学和生物中,数据分析的范围往往比仅获得一组未分类数据广泛,通常上,数据分析的目的之一仍然可说是分类,但有时我们不能确定一个样本是否属于一未知的或未辨明的类别,我们希望不仅去辨别已知种类,还有未知种类。

介观尺度物理学中的Chern数和拓扑物态

介观尺度物理学中的Chern数和拓扑物态

介观尺度物理学中的Chern数和拓扑物态介观尺度物理学是研究微观和宏观之间的物理现象的一个重要领域。

在这个领域中,Chern数和拓扑物态是研究的热门话题之一。

本文将从理论和实验两个方面来介绍这两个概念。

Chern数起源于磁场对电流的影响。

通过对磁场的研究,我们可以了解电流的输运性质和磁性材料中的磁性原子的行为。

Chern数是一个理论上的概念,它可以给我们关于物质中的电子演化的一些有关信息。

Chern数是拓扑不变量,可以用来描述物质的拓扑结构。

在物质中,Chern数可以用来描述电子在空间上的分布和旋转。

这使得我们可以在物质的微观结构上了解它的宏观性质。

然而,Chern数的确定需要一些数学上的技巧,例如流形和连续映射的概念。

这些数学上的工具可以用来把复杂的拓扑结构转换为数学上的算法。

这些算法可以被用来研究物体中的电子输运性质和其它物理性质。

通过 Chemsimulc 上的例子,我们可以看到Chern 数在磁性材料中的应用。

除了Chern 数,拓扑物态是另一个介观尺度物理学的热门话题。

拓扑性质是指物质的某些性质在形状和尺寸改变时不会发生改变。

在这种物质中,有些性质只受空间结构的限制而不受具体物理量的限制。

拓扑物态是一种在物质中出现的奇异量子现象。

在拓扑物态中,边界和内部在物理性质上是不同的。

这种物质中的电子可以被看作占据一些“态”。

这些态只受空间结构限制,而不受具体物理场的限制。

因此,在拓扑物态中,电子和其它物质间的相互作用要比在其它物质中更加复杂。

不过,如果我们可以解决这些复杂性,那么拓扑物态便可以成为许多新型电子器件的基础。

拓扑物态的研究一直是一个非常活跃的领域。

许多学者都在基础理论和实验研究上取得了重要进展。

例如,在凝聚态物理中,拓扑相变是一个快速发展的热门话题。

在这种相变中,物体从一个拓扑相位转变为另一个拓扑相位。

这种相变可以产生新的物理现象和电子系统的拓扑结构,在其它领域如材料探索和神经科学等应用蕴藏着巨大的潜力。

数学专业词汇及翻译

数学专业词汇及翻译

一、字母顺序表 (1)二、常用的数学英语表述 (7)三、代数英语(高端) (13)一、字母顺序表1、数学专业词汇Aabsolute value 绝对值 accept 接受 acceptable region 接受域additivity 可加性 adjusted 调整的 alternative hypothesis 对立假设analysis 分析 analysis of covariance 协方差分析 analysis of variance 方差分析 arithmetic mean 算术平均值 association 相关性 assumption 假设 assumption checking 假设检验availability 有效度average 均值Bbalanced 平衡的 band 带宽 bar chart 条形图beta-distribution 贝塔分布 between groups 组间的 bias 偏倚 binomial distribution 二项分布 binomial test 二项检验Ccalculate 计算 case 个案 category 类别 center of gravity 重心 central tendency 中心趋势 chi-square distribution 卡方分布 chi-square test 卡方检验 classify 分类cluster analysis 聚类分析 coefficient 系数 coefficient of correlation 相关系数collinearity 共线性 column 列 compare 比较 comparison 对照 components 构成,分量compound 复合的 confidence interval 置信区间 consistency 一致性 constant 常数continuous variable 连续变量 control charts 控制图 correlation 相关 covariance 协方差 covariance matrix 协方差矩阵 critical point 临界点critical value 临界值crosstab 列联表cubic 三次的,立方的 cubic term 三次项 cumulative distribution function 累加分布函数 curve estimation 曲线估计Ddata 数据default 默认的definition 定义deleted residual 剔除残差density function 密度函数dependent variable 因变量description 描述design of experiment 试验设计 deviations 差异 df.(degree of freedom) 自由度 diagnostic 诊断dimension 维discrete variable 离散变量discriminant function 判别函数discriminatory analysis 判别分析distance 距离distribution 分布D-optimal design D-优化设计Eeaqual 相等 effects of interaction 交互效应 efficiency 有效性eigenvalue 特征值equal size 等含量equation 方程error 误差estimate 估计estimation of parameters 参数估计estimations 估计量evaluate 衡量exact value 精确值expectation 期望expected value 期望值exponential 指数的exponential distributon 指数分布 extreme value 极值F factor 因素,因子 factor analysis 因子分析 factor score 因子得分 factorial designs 析因设计factorial experiment 析因试验fit 拟合fitted line 拟合线fitted value 拟合值 fixed model 固定模型 fixed variable 固定变量 fractional factorial design 部分析因设计 frequency 频数 F-test F检验 full factorial design 完全析因设计function 函数Ggamma distribution 伽玛分布 geometric mean 几何均值 group 组Hharmomic mean 调和均值 heterogeneity 不齐性histogram 直方图 homogeneity 齐性homogeneity of variance 方差齐性 hypothesis 假设 hypothesis test 假设检验Iindependence 独立 independent variable 自变量independent-samples 独立样本 index 指数 index of correlation 相关指数 interaction 交互作用 interclass correlation 组内相关 interval estimate 区间估计 intraclass correlation 组间相关 inverse 倒数的iterate 迭代Kkernal 核 Kolmogorov-Smirnov test柯尔莫哥洛夫-斯米诺夫检验 kurtosis 峰度Llarge sample problem 大样本问题 layer 层least-significant difference 最小显著差数 least-square estimation 最小二乘估计 least-square method 最小二乘法 level 水平 level of significance 显著性水平 leverage value 中心化杠杆值 life 寿命 life test 寿命试验 likelihood function 似然函数 likelihood ratio test 似然比检验linear 线性的 linear estimator 线性估计linear model 线性模型 linear regression 线性回归linear relation 线性关系linear term 线性项logarithmic 对数的logarithms 对数 logistic 逻辑的 lost function 损失函数Mmain effect 主效应 matrix 矩阵 maximum 最大值 maximum likelihood estimation 极大似然估计 mean squared deviation(MSD) 均方差 mean sum of square 均方和 measure 衡量 media 中位数 M-estimator M估计minimum 最小值 missing values 缺失值 mixed model 混合模型 mode 众数model 模型Monte Carle method 蒙特卡罗法 moving average 移动平均值multicollinearity 多元共线性multiple comparison 多重比较 multiple correlation 多重相关multiple correlation coefficient 复相关系数multiple correlation coefficient 多元相关系数 multiple regression analysis 多元回归分析multiple regression equation 多元回归方程 multiple response 多响应 multivariate analysis 多元分析Nnegative relationship 负相关 nonadditively 不可加性 nonlinear 非线性 nonlinear regression 非线性回归 noparametric tests 非参数检验 normal distribution 正态分布null hypothesis 零假设 number of cases 个案数Oone-sample 单样本 one-tailed test 单侧检验 one-way ANOVA 单向方差分析 one-way classification 单向分类 optimal 优化的optimum allocation 最优配制 order 排序order statistics 次序统计量 origin 原点orthogonal 正交的 outliers 异常值Ppaired observations 成对观测数据paired-sample 成对样本parameter 参数parameter estimation 参数估计 partial correlation 偏相关partial correlation coefficient 偏相关系数 partial regression coefficient 偏回归系数 percent 百分数percentiles 百分位数 pie chart 饼图 point estimate 点估计 poisson distribution 泊松分布polynomial curve 多项式曲线polynomial regression 多项式回归polynomials 多项式positive relationship 正相关 power 幂P-P plot P-P概率图predict 预测predicted value 预测值prediction intervals 预测区间principal component analysis 主成分分析 proability 概率 probability density function 概率密度函数 probit analysis 概率分析 proportion 比例Qqadratic 二次的 Q-Q plot Q-Q概率图 quadratic term 二次项 quality control 质量控制 quantitative 数量的,度量的 quartiles 四分位数Rrandom 随机的 random number 随机数 random number 随机数 random sampling 随机取样random seed 随机数种子 random variable 随机变量 randomization 随机化 range 极差rank 秩 rank correlation 秩相关 rank statistic 秩统计量 regression analysis 回归分析regression coefficient 回归系数regression line 回归线reject 拒绝rejection region 拒绝域 relationship 关系 reliability 可*性 repeated 重复的report 报告,报表 residual 残差 residual sum of squares 剩余平方和 response 响应risk function 风险函数 robustness 稳健性 root mean square 标准差 row 行 run 游程run test 游程检验Sample 样本 sample size 样本容量 sample space 样本空间 sampling 取样 sampling inspection 抽样检验 scatter chart 散点图 S-curve S形曲线 separately 单独地 sets 集合sign test 符号检验significance 显著性significance level 显著性水平significance testing 显著性检验 significant 显著的,有效的 significant digits 有效数字 skewed distribution 偏态分布 skewness 偏度 small sample problem 小样本问题 smooth 平滑 sort 排序 soruces of variation 方差来源 space 空间 spread 扩展square 平方 standard deviation 标准离差 standard error of mean 均值的标准误差standardization 标准化 standardize 标准化 statistic 统计量 statistical quality control 统计质量控制 std. residual 标准残差 stepwise regression analysis 逐步回归 stimulus 刺激 strong assumption 强假设 stud. deleted residual 学生化剔除残差stud. residual 学生化残差 subsamples 次级样本 sufficient statistic 充分统计量sum 和 sum of squares 平方和 summary 概括,综述Ttable 表t-distribution t分布test 检验test criterion 检验判据test for linearity 线性检验 test of goodness of fit 拟合优度检验 test of homogeneity 齐性检验 test of independence 独立性检验 test rules 检验法则 test statistics 检验统计量 testing function 检验函数 time series 时间序列 tolerance limits 容许限total 总共,和 transformation 转换 treatment 处理 trimmed mean 截尾均值 true value 真值 t-test t检验 two-tailed test 双侧检验Uunbalanced 不平衡的 unbiased estimation 无偏估计 unbiasedness 无偏性 uniform distribution 均匀分布Vvalue of estimator 估计值 variable 变量 variance 方差 variance components 方差分量 variance ratio 方差比 various 不同的 vector 向量Wweight 加权,权重 weighted average 加权平均值 within groups 组内的ZZ score Z分数2. 最优化方法词汇英汉对照表Aactive constraint 活动约束 active set method 活动集法 analytic gradient 解析梯度approximate 近似 arbitrary 强制性的 argument 变量 attainment factor 达到因子Bbandwidth 带宽 be equivalent to 等价于 best-fit 最佳拟合 bound 边界Ccoefficient 系数 complex-value 复数值 component 分量 constant 常数 constrained 有约束的constraint 约束constraint function 约束函数continuous 连续的converge 收敛 cubic polynomial interpolation method三次多项式插值法 curve-fitting 曲线拟合Ddata-fitting 数据拟合 default 默认的,默认的 define 定义 diagonal 对角的 direct search method 直接搜索法 direction of search 搜索方向 discontinuous 不连续Eeigenvalue 特征值 empty matrix 空矩阵 equality 等式 exceeded 溢出的Ffeasible 可行的 feasible solution 可行解 finite-difference 有限差分 first-order 一阶GGauss-Newton method 高斯-牛顿法 goal attainment problem 目标达到问题 gradient 梯度 gradient method 梯度法Hhandle 句柄 Hessian matrix 海色矩阵Independent variables 独立变量inequality 不等式infeasibility 不可行性infeasible 不可行的initial feasible solution 初始可行解initialize 初始化inverse 逆 invoke 激活 iteration 迭代 iteration 迭代JJacobian 雅可比矩阵LLagrange multiplier 拉格朗日乘子 large-scale 大型的 least square 最小二乘 least squares sense 最小二乘意义上的 Levenberg-Marquardt method 列文伯格-马夸尔特法line search 一维搜索 linear 线性的 linear equality constraints 线性等式约束linear programming problem 线性规划问题 local solution 局部解M medium-scale 中型的 minimize 最小化 mixed quadratic and cubic polynomialinterpolation and extrapolation method 混合二次、三次多项式内插、外插法multiobjective 多目标的Nnonlinear 非线性的 norm 范数Oobjective function 目标函数 observed data 测量数据 optimization routine 优化过程optimize 优化 optimizer 求解器 over-determined system 超定系统Pparameter 参数 partial derivatives 偏导数 polynomial interpolation method 多项式插值法Qquadratic 二次的 quadratic interpolation method 二次内插法 quadratic programming 二次规划Rreal-value 实数值 residuals 残差 robust 稳健的 robustness 稳健性,鲁棒性S scalar 标量 semi-infinitely problem 半无限问题 Sequential Quadratic Programming method 序列二次规划法 simplex search method 单纯形法 solution 解 sparse matrix 稀疏矩阵 sparsity pattern 稀疏模式 sparsity structure 稀疏结构 starting point 初始点 step length 步长 subspace trust region method 子空间置信域法 sum-of-squares 平方和 symmetric matrix 对称矩阵Ttermination message 终止信息 termination tolerance 终止容限 the exit condition 退出条件 the method of steepest descent 最速下降法 transpose 转置Uunconstrained 无约束的 under-determined system 负定系统Vvariable 变量 vector 矢量Wweighting matrix 加权矩阵3 样条词汇英汉对照表Aapproximation 逼近 array 数组 a spline in b-form/b-spline b样条 a spline of polynomial piece /ppform spline 分段多项式样条Bbivariate spline function 二元样条函数 break/breaks 断点Ccoefficient/coefficients 系数cubic interpolation 三次插值/三次内插cubic polynomial 三次多项式 cubic smoothing spline 三次平滑样条 cubic spline 三次样条cubic spline interpolation 三次样条插值/三次样条内插 curve 曲线Ddegree of freedom 自由度 dimension 维数Eend conditions 约束条件 input argument 输入参数 interpolation 插值/内插 interval取值区间Kknot/knots 节点Lleast-squares approximation 最小二乘拟合Mmultiplicity 重次 multivariate function 多元函数Ooptional argument 可选参数 order 阶次 output argument 输出参数P point/points 数据点Rrational spline 有理样条 rounding error 舍入误差(相对误差)Sscalar 标量 sequence 数列(数组) spline 样条 spline approximation 样条逼近/样条拟合spline function 样条函数 spline curve 样条曲线 spline interpolation 样条插值/样条内插 spline surface 样条曲面 smoothing spline 平滑样条Ttolerance 允许精度Uunivariate function 一元函数Vvector 向量Wweight/weights 权重4 偏微分方程数值解词汇英汉对照表Aabsolute error 绝对误差 absolute tolerance 绝对容限 adaptive mesh 适应性网格Bboundary condition 边界条件Ccontour plot 等值线图 converge 收敛 coordinate 坐标系Ddecomposed 分解的 decomposed geometry matrix 分解几何矩阵 diagonal matrix 对角矩阵 Dirichlet boundary conditions Dirichlet边界条件Eeigenvalue 特征值 elliptic 椭圆形的 error estimate 误差估计 exact solution 精确解Ggeneralized Neumann boundary condition 推广的Neumann边界条件 geometry 几何形状geometry description matrix 几何描述矩阵 geometry matrix 几何矩阵 graphical user interface(GUI)图形用户界面Hhyperbolic 双曲线的Iinitial mesh 初始网格Jjiggle 微调LLagrange multipliers 拉格朗日乘子Laplace equation 拉普拉斯方程linear interpolation 线性插值 loop 循环Mmachine precision 机器精度 mixed boundary condition 混合边界条件NNeuman boundary condition Neuman边界条件 node point 节点 nonlinear solver 非线性求解器 normal vector 法向量PParabolic 抛物线型的 partial differential equation 偏微分方程 plane strain 平面应变 plane stress 平面应力 Poisson's equation 泊松方程 polygon 多边形 positive definite 正定Qquality 质量Rrefined triangular mesh 加密的三角形网格 relative tolerance 相对容限 relative tolerance 相对容限 residual 残差 residual norm 残差范数Ssingular 奇异的二、常用的数学英语表述1.Logic∃there exist∀for allp⇒q p implies q / if p, then qp⇔q p if and only if q /p is equivalent to q / p and q are equivalent2.Setsx∈A x belongs to A / x is an element (or a member) of Ax∉A x does not belong to A / x is not an element (or a member) of AA⊂B A is contained in B / A is a subset of BA⊃B A contains B / B is a subset of AA∩B A cap B / A meet B / A intersection BA∪B A cup B / A join B / A union BA\B A minus B / the diference between A and BA×B A cross B / the cartesian product of A and B3. Real numbersx+1 x plus onex-1 x minus onex±1 x plus or minus onexy xy / x multiplied by y(x - y)(x + y) x minus y, x plus yx y x over y= the equals signx = 5 x equals 5 / x is equal to 5x≠5x (is) not equal to 5x≡y x is equivalent to (or identical with) yx ≡ y x is not equivalent to (or identical with) yx > y x is greater than yx≥y x is greater than or equal to yx < y x is less than yx≤y x is less than or equal to y0 < x < 1 zero is less than x is less than 10≤x≤1zero is less than or equal to x is less than or equal to 1| x | mod x / modulus xx 2 x squared / x (raised) to the power 2x 3 x cubedx 4 x to the fourth / x to the power fourx n x to the nth / x to the power nx −n x to the (power) minus nx (square) root x / the square root of xx 3 cube root (of) xx 4 fourth root (of) xx n nth root (of) x( x+y ) 2 x plus y all squared( x y ) 2 x over y all squaredn! n factorialx ^ x hatx ¯ x barx ˜x tildex i xi / x subscript i / x suffix i / x sub i∑ i=1 n a i the sum from i equals one to n a i / the sum as i runs from 1 to n of the a i4. Linear algebra‖ x ‖the norm (or modulus) of xOA →OA / vector OAOA ¯ OA / the length of the segment OAA T A transpose / the transpose of AA −1 A inverse / the inverse of A5. Functionsf( x ) fx / f of x / the function f of xf:S→T a function f from S to Tx→y x maps to y / x is sent (or mapped) to yf'( x ) f prime x / f dash x / the (first) derivative of f with respect to xf''( x ) f double-prime x / f double-dash x / the second derivative of f with r espect to xf'''( x ) triple-prime x / f triple-dash x / the third derivative of f with respect to xf (4) ( x ) f four x / the fourth derivative of f with respect to x∂f ∂ x 1the partial (derivative) of f with respect to x1∂ 2 f ∂ x 1 2the second partial (derivative) of f with respect to x1∫ 0 ∞the integral from zero to infinitylim⁡x→0 the limit as x approaches zerolim⁡x→0 + the limit as x approaches zero from abovelim⁡x→0 −the limit as x approaches zero from belowlog e y log y to the base e / log to the base e of y / natural log (of) yln⁡y log y to the base e / log to the base e of y / natural log (of) y一般词汇数学mathematics, maths(BrE), math(AmE)公理axiom定理theorem计算calculation运算operation证明prove假设hypothesis, hypotheses(pl.)命题proposition算术arithmetic加plus(prep.), add(v.), addition(n.)被加数augend, summand加数addend和sum减minus(prep.), subtract(v.), subtraction(n.)被减数minuend减数subtrahend差remainder乘times(prep.), multiply(v.), multiplication(n.)被乘数multiplicand, faciend乘数multiplicator积product除divided by(prep.), divide(v.), division(n.)被除数dividend除数divisor商quotient等于equals, is equal to, is equivalent to 大于is greater than小于is lesser than大于等于is equal or greater than小于等于is equal or lesser than运算符operator数字digit数number自然数natural number整数integer小数decimal小数点decimal point分数fraction分子numerator分母denominator比ratio正positive负negative零null, zero, nought, nil十进制decimal system二进制binary system十六进制hexadecimal system权weight, significance进位carry截尾truncation四舍五入round下舍入round down上舍入round up有效数字significant digit无效数字insignificant digit代数algebra公式formula, formulae(pl.)单项式monomial多项式polynomial, multinomial系数coefficient未知数unknown, x-factor, y-factor, z-factor 等式,方程式equation一次方程simple equation二次方程quadratic equation三次方程cubic equation四次方程quartic equation不等式inequation阶乘factorial对数logarithm指数,幂exponent乘方power二次方,平方square三次方,立方cube四次方the power of four, the fourth power n次方the power of n, the nth power开方evolution, extraction二次方根,平方根square root三次方根,立方根cube root四次方根the root of four, the fourth root n次方根the root of n, the nth root集合aggregate元素element空集void子集subset交集intersection并集union补集complement映射mapping函数function定义域domain, field of definition值域range常量constant变量variable单调性monotonicity奇偶性parity周期性periodicity图象image数列,级数series微积分calculus微分differential导数derivative极限limit无穷大infinite(a.) infinity(n.)无穷小infinitesimal积分integral定积分definite integral不定积分indefinite integral有理数rational number无理数irrational number实数real number虚数imaginary number复数complex number矩阵matrix行列式determinant几何geometry点point线line面plane体solid线段segment射线radial平行parallel相交intersect角angle角度degree弧度radian锐角acute angle直角right angle钝角obtuse angle平角straight angle周角perigon底base边side高height三角形triangle锐角三角形acute triangle直角三角形right triangle直角边leg斜边hypotenuse勾股定理Pythagorean theorem钝角三角形obtuse triangle不等边三角形scalene triangle等腰三角形isosceles triangle等边三角形equilateral triangle四边形quadrilateral平行四边形parallelogram矩形rectangle长length宽width附:在一个分数里,分子或分母或两者均含有分数。

关于Weil猜想

关于Weil猜想

作者: NULL
出版物刊名: 韶关学院学报
页码: 67-72页
主题词: 上同调类;猜想;有限域;函数方程;不动点;黎曼假设;定义;上同调论;代数簇;多项式方程组
摘要: <正> 1949年法国数学家 A.Weil 公布了有关有限域上多项式方程组解的数目的猜想。

这个猜想揭示了定义于有限域上代数簇的算术性质同定义于复数域上代数簇的拓扑性之间的深刻联系。

Weil 指出若有适当的关于抽象簇的上同调理论,类似于定义于 C 上的簇的寻常上同调,则可能从上同调论的多种标准性质推演出他的猜想。

1963年,Grothendieck 证明他的 l—adic 上同调具有 Weil 猜想内蕴部分的充分性(zeta 函数的有理性),1973年 Delign 完成了Weil 猜想的全部证明。

纤维丛之基础与示性类理论之概要

纤维丛之基础与示性类理论之概要

E ⎯⎯ → E/G ,而且上述投影 π 具有局部横截性。
[注]:最简单的 G-主丛乃是下述卡积 G-主丛(product G-bundle) ,即: (9) E=X × G,E × G → E:(x, g1) g2 = (x,g1g2) 它显然具有全局横截;反之,由例一的讨论易见一个具有全局横截的 G-主丛也就是等同于 上述卡积 G-主丛。由此可见,G-主丛的定义中的局部横截性其实也就是它具有局部卡积性 是也! §.2 纤维丛的定义之一(构造描述方式) : 对于§.1 中所列举的这些典型的实例,加以比较分析,就自然可以总结而得下述共性, 这就是纤维丛结构的定义的来源。兹简述如下: 纤维丛的结构包括下列要点: 1. 丛空间(bundle space,total space)E; 2. 底空间(base space)X; 3. 投影 E ⎯⎯ → X 和纤维 Y ;每个 π (x) 都和 Y 拓扑同构;
s → E 满足 π s=IdV.对于一个取定的横截 s,就有下述 E 的卡积结构(Cartesian 即 V ⎯⎯
product) ,即 (2)
≅ → E (p,t) V × 1 ⎯⎯
s(p) ⋅ t
Einstein 在 1905 年的文章中,明确了妥加选取上述横截的基本重要性,称之为瞬时性 (simultaneity) 。而他是结合光速守恒律 Michelson-Morley 实验之结果]来对于瞬时性妥加 定义的。然后就可以用来建立时空的坐标系,即 (3) E ≅ V × 1 ≅ 3 × 1 接着他对于这样妥加选取的时空坐标系研讨其坐标变换式(亦即时空的相对性) ,发现它就 是 Lorentz 变换!由此,他引领我们认识到 Lorentz 变换所表达者,不但是电磁现象的相对 性,它根本就是时空的相对性(the relativity of space-time) !有鉴于一切自然现象皆发生于 时空之中,所以它当然也是一切自然定律的相对性,古典力学当然也如此,其基本定律必须
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a rX iv:mat h /51349v1[mat h.AG ]17Oct25ON WITT VECTOR COHOMOLOGY FOR SINGULAR VARIETIES PIERRE BERTHELOT,SPENCER BLOCH,AND H ´EL `ENE ESNAULT Abstract.Over a perfect field k of characteristic p >0,we con-struct a “Witt vector cohomology with compact supports”for sep-arated k -schemes of finite type,extending (after tensorisation with Q )the classical theory for proper k -schemes.We define a canonical morphism from rigid cohomology with compact supports to Witt vector cohomology with compact supports,and we prove that it provides an identification between the latter and the slope <1part of the former.Over a finite field,this allows one to compute con-gruences for the number of rational points in special examples.In particular,the congruence modulo the cardinality of the finite field of the number of rational points of a theta divisor on an abelian variety does not depend on the choice of the theta divisor.This answers positively a question by J.-P.Serre.Contents 1.Introduction 12.Witt vector cohomology with compact supports 63.A descent theorem 174.Witt vector cohomology and rigid cohomology 215.Proof of the main theorem 286.Applications and examples 33References 411.IntroductionLet k be a perfect field of characteristic p >0,W =W (k ),K =Frac(W ).If X is a proper and smooth variety defined over k ,the theory of the de Rham-Witt complex and the degeneration of the slope2PIERRE BERTHELOT,SPENCER BLOCH,AND H´EL`ENE ESNAULT spectral sequence provide a functorial isomorphism([6,III,3.5],[20, II,3.5])(1.1)H∗crys(X/K)<1∼−−→H∗(X,W O X)K,where H∗crys(X/K)<1is the maximal subspace on which Frobenius acts with slopes<1,and the subscript K denotes tensorisation with K.If we only assume that X is proper,but maybe singular,we can use rigid cohomology to generalize crystalline cohomology while retaining all the standard properties of a topological cohomology theory.Thus, the left hand side of(1.1)remains well defined,and,when k isfinite, the alternated product of the corresponding characteristic polynomials of Frobenius can be interpreted as the factor of the zeta functionζ(X,t)“of slopes<1”(see6.1for a precise definition).On the other hand,the classical theory of the de Rham-Witt complex can no longer be directly applied to X,but the sheaf of Witt vectors W O X is still available. Thus the right hand side of(1.1)remains also well defined.As in the smooth case,this is afinitely generated K-vector space endowed with a Frobenius action with slopes in[0,1[(Proposition2.10),which has the advantage of being directly related to the coherent cohomology of X.It is therefore of interest to know whether,when X is singular, (1.1)can be generalized as an isomorphism(1.2)H∗rig(X/K)<1∼−−→H∗(X,W O X)K,where H∗rig(X/K)<1denotes the subspace of slope<1of H∗rig(X/K). Our main result gives a positive answer to this question.More gener-ally,we show that a“Witt vector cohomology with compact supports”can be defined for separated k-schemes offinite type,giving cohomology spaces H∗c(X,W O X,K)which arefinite dimensional K-vector spaces, endowed with a Frobenius action with slopes in[0,1[.Then,for any such scheme X,the slope<1subspace of the rigid cohomology with compact supports of X has the following description:Theorem1.1.Let k be a perfectfield of characteristic p>0,X a sep-arated k-scheme offinite type.There exists a functorial isomorphism (1.3)−−→H∗c(X,W O X,K).H∗rig,c(X/K)<1∼This is a striking confirmation of Serre’s intuition[24]about the relation between topological and Witt vector cohomologies.On the other hand,this result bears some analogy with Hodge theory.Recall from[8](or[12])that if X is a proper scheme defined over C,then its Betti cohomology H∗(X,C)is a direct summand of its de Rham cohomology H∗(X,Ω•X).Coherent cohomology H∗(X,O X)does not exactly compute the corner piece of the Hodgefiltration,as would beWITT VECTOR COHOMOLOGY OF SINGULAR VARIETIES3 an exact analogy with the formulation of Theorem1.1,but it gives an upper bound.Indeed,by[14],Proposition1.2,and[15],Proof of Theorem1.1,one has a functorial surjective map H∗(X,O X)։gr0F H∗(X,C).The construction of these Witt vector cohomology spaces is given in section2.If U is a separated k-scheme offinite type,U֒→X an open immersion in a proper k-scheme,and I⊂O X any coherent ideal such that V(I)=X\U,we define W I=Ker(W O X→W(O X/I)),and we show that the cohomology spaces H∗(X,W I K)actually depend onlyon U(Theorem2.4).This results from an extension to Witt vectors of Deligne’s results on the independence on the compactification for the construction of the f!functor for coherent sheaves[18].When U varies,these spaces are contravariant functors with respect to proper maps,and covariant functors with respect to open immer-sions.In particular,they give rise to the usual long exact sequence relating the cohomologies of U,of an open subset V⊂U,and of the complement T of V in U.Thus,they can be viewed as providing a notion of Witt vector cohomology spaces with compact support for U. We defineH∗c(U,W O U,K):=H∗(X,W I K).Among other properties,we prove in section3that these cohomology spaces satisfy a particular case of cohomological descent(Theorem3.2) which will be used in the proof of Theorem1.1.The construction of the canonical homomorphism between rigid and Witt vector cohomologies is given in section4(Theorem4.5).First, we recall how to compute rigid cohomology for a proper k-scheme X when there exists a closed immersion of X in a smooth formal W-scheme P,using the de Rham complex of P with coefficients in an appropriate sheaf of O P-algebras A X,P.When P can be endowed with a lifting of the absolute Frobenius endomorphism of its specialfibre,a simple construction(based on an idea of Illusie[20])provides a func-torial morphism from this de Rham complex to W O X,ingˇCech resolutions,this morphism can still be defined in the general case as a morphism in the derived category of sheaves of K-vector spaces.Then we obtain(1.3)by taking the morphism induced on cohomology and restricting to the slope<1subspace.By means of simplicial resolu-tions based on de Jong’s theorem,we prove in section5that it is an isomorphism.The proof proceeds by reduction to the case of proper and smooth schemes,using Theorem3.2and the descent properties of rigid cohomology proved by Chiarellotto and Tsuzuki([10],[27],[28]).4PIERRE BERTHELOT,SPENCER BLOCH,AND H´EL`ENE ESNAULTWe now list some applications of Theorem1.1,which are developed in section6.Wefirst remark that it implies a vanishing theorem.If X is smooth projective,and Y⊂X is a divisor so that U=X\Y is affine,then Serre vanishing says that H i(X,O X(−nY))=0for n large and i<dim(X).If k has characteristic0,then we can take n=1by Kodaira vanishing.One then has H i(X,O X(−Y))=0for i<dim(X). It is tempting to view the following corollary as an analogue when k has characteristic p:Corollary1.2.Let X be a proper scheme defined over a perfectfield k of characteristic p>0.Let I⊂O X be a coherent ideal defining a closed subscheme Y⊂X such that U=X\Y is affine,smooth and equidimensional of dimension n.ThenH i c(U,W O U,K)=H i(X,W I)K=H i(X,W I r)K=0for all i=n and all r≥1.Indeed,when U is smooth and affine,H i rig(U/K)can be identified with Monsky-Washnitzer cohomology[4],and therefore vanishes for i>n=dim(U).If moreover U is equidimensional,it follows by Poincar´e duality[5]that H i rig,c(U/K)=0for i<n.So(1.3)implies that H i(X,W I)K=0for i<n.On the other hand,the closureU.Therefore H i(X,W I)K=0for i>n.When k is afinitefield F q,with q=p a,Theorem1.1implies a statement about zeta functions.By([16],Th´e or`e me II),the Lefschetz trace formula provides an expression of theζ-function of X as the alternating productζ(X,t)= i P i(X,t)(−1)i+1,where P i(X,t)=det(1−tφ|H i rig,c(X/K)),andφ=F a denotes theF q-linear Frobenius endomorphism of X.On the other hand,we define(1.4)P W i(X,t)=det(1−tφ|H i c(X,W O X,K)),ζW(X,t)= i P W i(X,t)(−1)i+1.If we denote byζ<1(X,t)the“slope<1factor”ofζ(X,t)(cf.6.1),we get formally from(1.3):WITT VECTOR COHOMOLOGY OF SINGULAR VARIETIES5 Corollary1.3.Let X be a separated scheme offinite type over afinite field.Then one has(1.5)ζ<1(X,t)=ζW(X,t).This result can be used to prove congruences mod q on the number of F q-rational points of certain varieties.The following theorem answers a question of Serre,and was the initial motivation for this work.Recall that an effective divisor D on an abelian variety A is called a theta divisor if O A(D)is ample and defines a principal polarization. Theorem1.4.LetΘ,Θ′be two theta divisors on an abelian variety defined over afinitefield F q.Then:(1.6)|Θ(F q)|≡|Θ′(F q)|mod q.Actually,Serre’s original formulation predicts that,on an abelian variety defined over afield,the difference of the motives ofΘandΘ′is divisible by the Lefschetz motive.Our Theorem1.4answers the point counting consequence of it.We also have more elementary point counting consequences. Corollary1.5(Ax[1],Katz[21]).Let D1,...,D r⊂P n be hypersur-faces of degrees d1,...,d r,defined over thefinitefield F q.Assume that j d j≤n.Then(1.7)|(D1∩...∩D r)(F q)|≡1mod q.We observe here that this congruence is the best approximation of the results of Ax and Katz that can be obtained using Witt vector cohomology,since this method only provides information on the slope <1factor of the zeta function.It would be worthwhile to have for higher slopes results similar to Theorem1.1which might give the full Ax-Katz congruences.We also remark that Ax’s theorem has a motivic proof[7],which of course is more powerful than this slope proof.Yet it is of interest to remark that Theorem1.1applies here as well.As for Theorem1.4,it seems more difficult to formulate a motivic proof,as it would have to deal with non-effective motives(see the discussion in6.6).Let us mentionfinally the following general consequence of Theorem 1.1,which for example can be applied in the context of the work of Fu and Wan on mirror congruences for Calabi-Yau varieties([29],[30]): Corollary1.6.Let f:X→Y be a morphism between two proper F q-−−→H i(X,O X) schemes.If f induces isomorphisms f∗:H i(Y,O Y)∼for all i≥0,then(1.8)|X(F q)|≡|Y(F q)|mod q.6PIERRE BERTHELOT,SPENCER BLOCH,AND H´EL`ENE ESNAULT Acknowledgements:It is a pleasure to thank Jean-Pierre Serre for hisstrong encouragement and his help.Theorem1.4was the main moti-vation for this work.We thank Luc Illusie for useful discussions.The third named author thanks Eckart Viehweg for his interest and en-couragement.Corollary1.2is inspired by the analogy on the relation between de Rham and coherent cohomology,which has been developed jointly with him.Notations and conventions:Throughout this article,k denotes a per-fectfield of characteristic p,W=W(k),σ:W→W the Frobenius automorphism of W,K=Frac(W).The subscript K will denote ten-sorisation with K over W.We recall that,on any noetherian topo-logical space,taking cohomology commutes with tensorisation by Q. Therefore the subscript K will be moved inside or outside cohomology or direct images without further justification.We denote by D b(K)(resp.D b(X,K))the derived category of bound-ed complexes of K-vector spaces(plexes of sheaves of K-vector spaces on a topological space X).All formal schemes considered in this article are W-formal schemes for the p-adic topology.2.Witt vector cohomology with compact supports We give in this section some properties of Witt vector cohomology which are a strong indication of its topological nature,and will be used later in our proof of Theorem1.1.In particular,we show how to attach Witt vector cohomology spaces with compact supports to any separated k-scheme offinite type.If X is a scheme,A a sheaf of rings on X,and n≥1,we denote by W n A,or W n(A)if confusion may arise,the sheaf of Witt vectors of length n with coefficients in A,and by W A=lim←−n W n A,or W(A), the sheaf of Witt vectors of infinite length.If I⊂A is an ideal,we denote by W n I=Ker(W n A→W n(A/I)),or W n(I),the sheaf of Witt vectors(a0,a1,...,a n−1)such that a i is a section of I for all i,and we define similarly W I.Note that,when I is quasi-coherent,the canonicalmorphism W I→R lim←−n W n I is an isomorphism,as H1(U,W n I)=0 for any affine open subset U⊂X and any n,and the projective system Γ(U,W n I)has surjective transition maps.For any X,any sheaf of rings A on X,and any ideal I⊂A,we use the notations RΓ(X,W I)and H∗(X,W I)to denote the ZariskiWITT VECTOR COHOMOLOGY OF SINGULAR VARIETIES7 cohomology of the sheaf W I.Thus,when I is quasi-coherent,the canonical morphismRΓ(X,W I)→R lim←−n RΓ(X,W n I)is an isomorphism.When X is a proper k-scheme and I⊂O X is a coherent ideal,the cohomology modules H∗(X,W n I)are artinian W-modules;then it follows from the Mittag-Leffler criterium that the morphismH∗(X,W I)→lim←−n H∗(X,W n I)is an isomorphism.We will shorten notations by writing W O X,K,W I K for(W O X)K, (W I)K.We recall again that,when X is noetherian,there is a canon-ical isomorphism−−→RΓ(X,W I K).RΓ(X,W I)K∼In this article,we will be particularly interested in the K-vector spaces H∗(X,W O X,K),and in their generalizations H∗(X,W I K).Our main observation is that,in contrast to the W-modules H∗(X,W O X), which are sensitive to nilpotent sections of O X,they behave like a topological cohomology theory for separated k-schemes offinite type. The following easy proposition is somehow a key point.Proposition2.1.Let X be a k-scheme offinite type.(i)The canonical homomorphismW O X,K→W O X red,Kis an isomorphism,and induces a functorial isomorphism−−→H∗(X red,W O X red,K),H∗(X,W O X,K)∼compatible with the action of F and V.√J,i.e.(ii)Let I,J⊂O X be coherent ideals,and assumethere exists N≥1such that I N⊂J and J N⊂I.Then there is a canonical identificationW I K∼=W J K,inducing a functorial isomorphismH∗(X,W I K)∼=H∗(X,W J K),compatible with the action of F and V.8PIERRE BERTHELOT,SPENCER BLOCH,AND H´EL`ENE ESNAULT Proof.Let N=Ker(O X→O X red).To prove thefirst claim of assertion (i),it suffices to show that W N K=0.But the action of p is invertible, and p=V F=F V,so it suffices to show F is nilpotent.This is clear since F acts on W N by raising coordinates to the p-th power.Taking cohomology,the second claim follows.Assertion(ii)follows from assertion(i)applied to O X/I and O X/J.We now prove the existence of Mayer-Vietoris exact sequences for Witt vector cohomology.Proposition2.2.Let X be a k-scheme offinite type,X1,X2⊂X two closed subschemes such that X=X1∪X2,and Z=X1∩X2.There is an exact sequence(2.1)0→W O X,K→W O X1,K⊕W O X2,K→W O Z,K→0, providing a Mayer-Vietoris long exact sequence···→H i(X,W O X,K)→H i(X1,W O X1,K)⊕H i(X2,W O X2,K)→H i(Z,W O Z,K)→H i+1(X,W O X,K)→···. Proof.Let I1,I2be the ideals of O X defining X1and X2.Thanks to 2.1,we may assume that O Z=O X/(I1+I2).It is easy to check that W(I1+I2)=W(I1)+W(I2).From the exact sequence0→O X/(I1∩I2)→O X/I1⊕O X/I2→O X/(I1+I2)→0,we can then deduce an exact sequence0→W(O X/(I1∩I2))→W O X1⊕W O X2→W O Z→0. Since X=X1∪X2,I1∩I2is a nilpotent ideal,and Proposition2.1 implies that W O X,K∼−−→W(O X/(I1∩I2))K.This gives the short exact sequence of the statement.The long one follows by taking coho-mology. Corollary2.3.Let X be a k-scheme offinite type,X1,...,X r⊂X closed subschemes such that X=X1∪···∪X r.For each sequence 1≤i0<···<i n≤r,let X i0,...,i n=X i0∩···∩X i n.Then the sequence(2.2)0→W O X,K→ri=1W O Xi,K→···→W O X1,...,r,K→0is exact.WITT VECTOR COHOMOLOGY OF SINGULAR VARIETIES9 Proof.The statement being true for r=2,we proceed by induction on r.Let X′=X2∪···∪X r.Up to a shift,the complex(2.2)is the coneof the morphism of complexes(2.3)0W O X2,...,r,K0 0 r i=2W O X1,i,K W O X1,...,r,KW O X,K W O X′,K00W O X1∩X′,K10PIERRE BERTHELOT,SPENCER BLOCH,AND H´EL`ENE ESNAULT Lemma 2.5.Let I⊂A be an ideal in a ring A.For all integers n≥2,r,s∈N,defineW r,s n(I)={(a0,a1,...)∈W n(A)|a0∈I r,a i∈I s for all i≥1}.(i)If s≤pr,the subset W r,s n(I)is an ideal of W n(A),which sits in the short exact sequence of abelian groups−−−→I r→0.(2.7)0→W n−1(I s)V−→W r,s n(I)R n−1(ii)If r≤s≤pr,the sequence(2.7)sits in a commutative diagram of short exact sequences(2.8)0W n(I s)I s00V R n−100W n(I r)R n−10where the vertical arrows are the natural inclusions.Proof.Assumefirst that s≤pr.The subset W r,s n(I)can be described as the set of Witt vectors of the form adenotes the Teichm¨u ller representative of a.To prove that it is an additive subgroup,it suffices to verify that if a,a′∈I r,then a′=a+a′(x0,x1,x2,...)=(ax0,a p x1,a p2x2,...),V(b)x=V(bF(x)).If we assume in addition that r≤s,then the vertical inclusions of the diagram are defined,and its commutativity is obvious.We will use repeatedly the following elementary remark.WITT VECTOR COHOMOLOGY OF SINGULAR VARIETIES11 Lemma2.6.Let C be an abelian category,and let(2.9)EvGG′′wFbe a commutative diagram of morphisms of C such that the horizontal sequence is exact.If u′=0and u′′=0,then w◦v=0.Proof.Exercise. Lemma2.7.(i)Under the assumptions of Theorem2.4,(i)there exists an integer a≥0such that,for all q≥1,all n≥1and all r≥0, the canonical morphism(2.10)R q f∗(W n(I′r+a))→R q f∗(W n(I′r))is the zero morphism.−−→U,and define (ii)Assume that f induces an isomorphism U′∼K r n=Ker W n(I r)→f∗(W n(I′r)) ,C r n=Coker W n(I r)→f∗(W n(I′r)) .Then there exists an integer a≥0such that,for all n≥1and all r≥0,the canonical morphisms(2.11)K r+an→K r n,C r+a n→C r n,are the zero morphisms.Proof.Wefirst prove assertion(i).We mayfix q≥1,since R q f∗=0 for q big enough.When n=1,we can apply Deligne’s result[18,App., Prop.5]to O X′,and we obtain an integer b≥0such that,for all r≥0, the canonical morphismu1:R q f∗(I′r+b)→R q f∗(I′r)is0(note that,for this result,Deligne’s argument only uses that f is finite above U).Let us prove by induction on n that,for all n≥1and all r≥b,the canonical morphismu n:R q f∗(W n(I′r+b))→R q f∗(W n(I′r))is also0.The condition r≥b implies that the couple(r,r+b)is such that r≤r+b≤pr.Therefore,we may use Lemma2.5to define ideals (I′)⊂W n(O X′),and,for n≥2,we obtain a commutative W r,r+bn12PIERRE BERTHELOT,SPENCER BLOCH,AND H´EL`ENE ESNAULT diagram(2.8)relative to I′and(r,r+b).Since the middle row of (2.8)is a short exact sequence,the diagramR q f∗(W n(I′r+b))R q f∗(I′r+b)u1V R n−1R q f∗(W n(I′r))obtained by applying the functor R q f∗to(2.8)has an exact middle row.As u1=0,and the composition of the middle vertical arrows is u n,Lemma2.6shows by induction that u n=0for all n≥1.If we set a=2b,then assertion(i)holds.Assertion(ii)can be proved by the same method.Let R= r≥0I r. It follows from[17,3.3.1]that the quasi-coherent graded R-modules K1= r≥0K r1and C1= r≥0C r1arefinitely generated.As the restric-tion of f to U′is an isomorphism,they are supported in Y.Therefore, there exists an integer m such that I m K r1=I m C r1=0for all r≥0. Moreover,there exists an integer d such that,for all r≥d the canonical morphismsI⊗O X K r1→K r+11,I⊗O X C r1→C r+11,are surjective.It follows that the morphismsK r+m1→K r1,C r+m1→C r1are0for r≥d.Replacing m by b=d+m,the corresponding mor-phisms are0for all r≥0,which proves assertion(ii)when n=1. As K r1⊂O X for all r,this implies that K r1=0for r≥b.Thanks to the exact sequences−−−→K r1,0→K r n−1V−→K r n R n−1it follows that K r n=0for all n≥1and all r≥b.Thus assertion(ii) holds for the modules K r n,with a=b.To prove it for the modules C r n,we introduce for r≥b the modulesC r,r+b n=Coker W r,r+b n(I)→f∗(W r,r+b n(I′)) .WITT VECTOR COHOMOLOGY OF SINGULAR VARIETIES13 The snake lemma applied to the diagramsf∗(W n−1(I′r+b))V f∗(I′r)gives exact sequences−−−→C r1.C r+b n−1V−→C r,r+b n R n−1The functoriality of the diagrams(2.8)imply that these exact sequences sit in commutative diagramsC r+b n C r+b1u1V R n−1C r n,where the morphisms u i are the canonical morphisms,and the com-position of the middle vertical arrows is u n.As u1=0,Lemma2.6 implies by induction that u n=0for all n.This proves assertion(ii) for C r n,with a=2b.2.8.Proof of Theorem2.4.Under the assumptions of2.4,let q≥1be an integer,and let a be an integer satisfying the conclusion of Lemma2.7(i)for the family of sheaves R q f∗(W n(I′r)),for all n≥1 and r≥0.Let c be such that p c>a.Since the Frobenius map F c:R q f∗(W n(I′r))→R q f∗(W n(I′r))factors through R q f∗(W n(I′p c r)), it follows from Lemma2.7that F c acts by zero on R q f∗(W n(I′r)),for all n≥1and all r≥1.Therefore,for all r≥1,F c acts by zero onR lim←−n(R q f∗(W n(I′r))).In particular,F c acts by zero on the sheaves lim←−n R q f∗(W n I′)and R1lim←−n R q f∗(W n I′).As the inverse system(W n I′)n≥1has surjective transition maps,and terms with vanishing cohomology on affine open subsets,it is lim←−n-acyclic,and we obtainR f∗(W I′)=R f∗(R lim←−n W n I′)∼=R lim←−n R f∗(W n I′).14PIERRE BERTHELOT,SPENCER BLOCH,AND H´EL`ENE ESNAULTThis isomorphism provides a biregular spectral sequenceE i,j2=R i lim←−n R j f∗(W n I′)⇒R i+j f∗(W I′),in which thefiltration of the terms R i+j f∗(W I′)is of length≤2sincethe functors R i lim←−n are zero for i≥2.As F c acts by zero on the terms E i,j2for j≥1,F2c acts by zero on the terms R i+j f∗(W I′)for i+j≥2.On the other hand,the term E1,02=R1lim←−n f∗(W n I′)is0,be-cause the morphisms f∗(W n+1I′)→f∗(W n I′)are surjective(since f∗(W n I′)∼=W n(f∗(I′))),and the cohomology of the terms f∗(W n I′) vanishes on any open affine subset.Therefore,F c acts by zero on R1f∗(W I′).Thus the action of F on R q f∗(W I′)is nilpotent for all q≥1.Since this action becomes an isomorphism after tensorisation with K,we obtain that R q f∗(W I′K)=R q f∗(W I′)K=0for all q≥1,which proves assertion(i)of Theorem2.4.Let us assume now that f:U′→U is an isomorphism.It follows from Lemma2.7(ii)that there exists an integer a such that,for alln≥1and all r≥0,the morphisms K r+an→K r n and C r+a n→C r n are zero. Taking c such that p c>a,it follows that F c acts by zero on K r n and C r n for all n and all r.Therefore,F c acts by zero on lim←−n K1n and lim←−n C1n.It is easy to check that these two inverse systems and the inverse system Im W n I→f∗(W n I′) all have surjective transition maps.As theirterms have vanishing cohomology on affine open subsets,they are lim←−-acyclic,and we obtainKer W I→f∗(W I′) =lim←−n K1n,Coker W I→f∗(W I′) =lim←−n C1n.After tensorisation with K,F becomes an isomorphism on lim←−n K1n and lim←−n C1n,and assertion(ii)of Theorem2.4follows.2.9.We now observe that the previous results imply that the coho-mology spaces H∗(X,W I K)only depend on the k-scheme U,and have the same functoriality properties with respect to U than cohomology with compact supports.Indeed,suppose U isfixed,and let U֒→X1,U֒→X2be two open immersions into proper k-schemes.Let X⊂X1×k X2be the scheme theoretic closure of U embedded diagonally into X1×k X2.The two projections induce proper maps p1:X→X1,p2:X→X2.If I⊂O X,I1⊂O X1,I2⊂O X2are the ideals defining Y=(X\U)red,WITT VECTOR COHOMOLOGY OF SINGULAR VARIETIES15 Y1=(X1\U)red and Y2=(X2\U)red,we deduce from2.1and2.4that the homomorphismsRΓ(X2,W I2,K)p∗2−→RΓ(X,W I K)p∗1←−RΓ(X1,W I1,K)are isomorphisms.If we defineε12=p∗−11◦p∗2:RΓ(X2,W I2,K)∼−→RΓ(X1,W I1,K),it is easy to check that the isomorphismsεij satisfy the transitivity condition for a third open immersion U֒→X3into a proper k-scheme. Therefore,they provide canonical identifications between the cohomol-ogy complexes RΓ(X,W I K)defined by various open immersions of U into proper k-schemes X.Assume U is a separated k-scheme offinite type.Since,by Nagata’s theorem,there exists a proper k-scheme X and an open immersion U֒→X,this independence property allows to define the Witt vector cohomology with compact supports of U by setting(2.12)RΓc(U,W O U,K):=RΓ(X,W I K)∼=RΓ(X,W I)K,(2.13)H∗c(U,W O U,K):=H∗(X,W I K)∼=H∗(X,W I)K, where I⊂O X is any coherent ideal defining the closed subset X\U. As the restriction of W I to U is W O U,there is a canonical morphism RΓc(U,W O U,K)→RΓ(U,W O U,K),which is an isomorphism when U is proper.These cohomology groups have the following functoriality properties:(i)They are contravariant with respect to proper maps.Let f:U′→U be a proper k-morphism of separated k-schemes, and let U′֒→X′,U֒→X be open immersions into proper k-schemes. Replacing if necessary X′by the scheme theoretic closure of the graph of f in X′×k X,we may assume that there exists a k-morphism g: X′→X extending f,and that U′is dense in X′.As f is proper,it follows that U′=g−1(U).If I⊂O X is any coherent ideal such that V(I)=X\U,then I′=IO X′is such that V(I′)=X′\U′,and we can define the homomorphismf∗:RΓc(U,W O U,K)→RΓc(U′,W O U′,K)as beingg∗:RΓ(X,W I K)→RΓ(X′,W I′K).We leave as an exercise to check that,up to canonical isomorphism,f∗does not depend on the choices.(ii)They are covariant with respect to open immersions.16PIERRE BERTHELOT,SPENCER BLOCH,AND H´EL`ENE ESNAULTLet j:V֒→U be an open immersion,let U֒→X be an open immersion into a proper k-scheme,and let I,J⊂O X be the ideals of Y=(X\U)red and Z=(X\V)red.Then the homomorphismj∗:RΓc(V,W O V,K)→RΓc(U,W O U,K)is defined as beingRΓ(X,W J K)→RΓ(X,W I K).If T=U\V=Z∩U,then T is open in the proper k-scheme Z,and the ideal I/J⊂O Z defines the complement of T in Z.Thus,the usual distinguished triangle(2.14)RΓc(V,W O V,K)→RΓc(U,W O U,K)→RΓc(T,W O T,K)+1−→is obtained by tensoring the short exact sequence0→W J→W I→W(I/J)→0,with K,and taking its cohomology on X.Proposition2.10.For any separated k-scheme offinite type U,the co-homology spaces H∗c(U,W O U,K)arefinite dimensional K-vector spaces, on which the Frobenius endomorphism has slopes in[0,1[.Proof.It suffices to prove the statement when U is a proper k-scheme X.Then the statement reduces to thefiniteness of the usual cohomol-ogy spaces H∗(X,W O X)K.This is a well-known result(cf.[6,III,Th.2.2],which is valid for W O X without the smoothness assumption).For the sake of completeness,we give a proof here.Write M:=H i(X,W O X).As X is proper,the groups H i(X,W n O X) satisfy the Mittag-Leffler condition,so that the homomorphismH i(X,W O X)→lim←−n H i(X,W n O X)is an isomorphism.Therefore,the Verschiebung endomorphism endows M with a structure of module over the non necessarily commutative ring R:=Wσ[[V]],where the indexσrefers to the commutation rules aV=Vσ(a)for a∈W.Then M is separated and complete for the V-adic topology.On the other hand,M/V M֒→H i(X,O X)is a finite dimensional k-vector space.Since M/V M isfinitely generated over W,it follows that M isfinitely generated over R.Moreover, the fact that M/V M hasfinite length implies that M is a torsion R-module.Thus,there exists afinite number of non zero elements a i(V)=a i,0+a i,1V+a i,2V2+...∈R,i=1,...,r,and a surjection(2.15)ri=1R/Ra i(V)։M.WITT VECTOR COHOMOLOGY OF SINGULAR VARIETIES17 Fix some i,1≤i≤r.We are interested in the module structure after inverting p,so we may assume that a i,ℓ∈W(k)×for someℓ.Letℓbeminimal,so p|a i,j,0≤j<ℓ.Even if the ring R is not commutative, we can get a factorizationja i,j V j= c i,0+c i,1V+...b i,0+...+b i,ℓ−1Vℓ−1+Vℓ ;p|b i,j. To see this,we factorj a i,j V j≡c(s)i,0+c(s)i,1V+... b(s)i,0+...+b(s)i,ℓ−1Vℓ−1+Vℓ mod p s+1,where b(s+1)i,j ,c(s+1)i,j≡b(s)i,j,c(s)i,j mod p s+1,starting with b(0)i,j=0andc(0)i,j=a i,j+ℓ.Note that c(s)i,0∈W(k)×.Details are standard and are left for the reader.Writing b i(V)=b i,0+b i,1V+...+Vℓwith b i,j=lim b(s)i,j, it follows that R/Ra i(V)∼=R/Rb i(V)∼=W(k)⊕ℓ.Thefiniteness now follows from(2.15).As H∗(X,W O X)is afinitely generated W-module modulo torsion, the slopes of the Frobenius endomorphism are positive.On the other hand,the existence of a Verschiebung endomorphism V such that F V=V F=p implies that all slopes are≤1.As V is topologi-cally nilpotent,there cannot be any non zero element of slope1in H∗(X,W O X,K),and all its slopes belong to[0,1[.3.A descent theoremWe will need simplicial resolutions based on de Jong’s fundamental result on alterations.In this section,we briefly recall some related definitions,and how to construct such resolutions.We then prove for Witt vector cohomology with compact supports a particular case of ´e tale cohomological descent which will be one of the main ingredients in our proof of Theorem1.1.If X is a scheme,and n≥−1an integer,we denote as usual by sk X n the truncation functor from the category of simplicial X-schemes to the category of n-truncated simplicial X-schemes,and by cosk X n its right adjoint[12,5.1].Definition3.1.Let X be a reduced k-scheme offinite type,and letX•be a simplicial k-scheme(resp.N-truncated simplicial scheme,forsome N∈N).a)A k-augmentation f•:X•→X is called a proper hypercovering(resp.N-truncated proper hypercovering)of X if,for all n≥0(resp.。

相关文档
最新文档