高考数学二轮增分策略:第2篇第1讲《选择题的解法技巧(含答案)
高中数学多选题解题技巧
高中数学多选题解题技巧
解答高中数学的多选题需要一定的技巧和方法,以下是一些建议:
1. 仔细阅读题目:多选题通常给出了多个选项供选择,要仔细阅读题目,理解问题的要求和条件。
注意关键词、限制条件和题目的难点。
2. 分析选项间的关系:多选题中的选项往往有一些共同点或者相似之处。
通过分析选项之间的关系,可以帮助确定正确答案。
比较选项的特征、性质、关联等,找到不同选项之间的区别。
3. 利用排除法:如果对某个选项有把握,可以先选择该选项,然后再逐个排除其他选项。
通过排除错误选项,缩小范围,提高正确答案的概率。
4. 运用逻辑思维:多选题往往需要考验逻辑推理能力。
运用逻辑思维,根据已知条件和规则,推导出可能的结果。
注意观察题干中是否有线索,例如是否给出了特殊情况或者界限条件。
5. 考虑特殊情况:某些多选题中,选项可能包括了一些特殊情况或边界条件。
考虑这些特殊情况,可能能够排除一些错误选项或者得出正确答案。
6. 解题步骤与方法:对于数学题目,还是需要运用相应的解题方法和定理。
熟悉并灵活运用各种解题方法,可以更快地找到解题思路,减少错误。
7. 注意审题和计算精度:多选题容易因为计算错误或者疏忽而选错答案。
所以在计算过程中要注意审题、提高计算精度,并进行必要的检查。
最重要的是多做练习,熟悉各类题型和解题技巧,提高对数学问题的理解和分析能力。
通过不断的练习和积累,掌握解题的方法和技巧,就能更有把握地解答高中数学的多选题。
高考数学(理)二轮复习:巧解客观题的10大妙招(一)选择题的解法
值 49=7,故选 B.
题型概述
解题方法
归纳总结
方法二 特例法
从题干(或选项)出发,通过选取特殊情况代入,将问题 特殊化或构造满足题设条件的特殊函数或图形位置进行判 断.特殊化法是“小题小做”的重要策略,要注意在怎样的 情况下才可使用,特殊情况可能是:特殊值、特殊点、特 殊位置、特殊数列等.适用于题目中含有字母或具有一般性 结论的选择题.
题型概述
解题方法
归纳总结
探究提高 图形化策略是依靠图形的直观性进行研究的, 用这种策略解题比直接计算求解更能简捷地得到结果.运用 图解法解题一定要对有关函数图象、方程曲线、几何图形 较熟悉,否则,错误的图象反而会导致错误的选择.
题型概述
解题方法
归纳总结
【训练 4】 过点( 2,0)引直线 l 与曲线 y= 1-x2相交于 A、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线 l 的 斜率等于( )
则 tan θ2 等于(
)
m-3 A.9-m
m-3 B.|9-m|
C.-15
D.5
解析 由于受条件 sin2θ+cos2θ=1 的制约,m 一定为确定
的值进而推知 tan θ2 也是一确定的值,又π2 <θ<π,所以π4
θπ
< 2 < 2 ,故 tan
2θ>1.所以 D 正确.
答案 D
题型概述
解题方法
x=-1,排除 B.
(2)f(x)=14x2+sinπ2 +x=14x2+cos
x,故
f′(x)=14x2+cos
x′
=12x-sin x,记 g(x)=f′(x),其定义域为 R,且 g(-x)=12(-x)-
sin(-x)=-12x-sin
高考数学选择题蒙题技巧
高考数学选择题蒙题技巧
在高考数学选择题中,蒙题是一种应对不会做或不确定答案的方法。
以下是一些有用的蒙题技巧:
1. 先排除明显错误的选项:仔细阅读题目并分析选项,排除那些明显错误的选项。
这样可以缩小选择范围,增加答对的概率。
2. 利用逻辑推理:根据已知条件和题目要求,运用逻辑推理来猜测答案。
有时可以通过推理出某一个选项必定是正确或错误的,然后进行选择。
3. 利用专项知识:有时题目会涉及一些数学知识点,如果你对某一个知识点特别熟悉,可以将这个知识点与选项进行对比,选择答案。
4. 利用相近答案:有时相邻的选项答案可能会非常接近,此时可以选择答案接近正确答案的选项。
5. 利用排除法:如果你不确定答案,可以对选项进行排除,将你认为可能不对的选项先排除掉,再从剩下的选项中进行选择。
6. 利用常识和经验:有时题目可能与常识或经验相符,你可以根据自己的常识和经验来猜测答案。
需要注意的是,在使用蒙题技巧时要控制好时间和答题数量。
蒙题只是最后的应急方案,建议尽量通过复习和练习提高自己的解题能力。
(山东专版)高考数学二轮专题复习与策略 第2部分 必考补充专题 技法篇 6招巧解客观题,省时、省力得
必考补充专题技法篇 6招巧解客观题,省时、省力得高分教师用书理必考补充专题中的4个突破点在高考考查中较为简单,题型为选择、填空题,属送分题型,通过一轮复习,大多数考生已能熟练掌握,为节省宝贵的二轮复习时间,迎合教师与考生的需求,本部分只简单提炼核心知识,构建知识体系,讲解客观题解法,其余以练为主.建知识网络明内在联系[高考点拨] 必考补充专题涉及的知识点比较集中,多为新增内容,在高考中常以“四小”的形式呈现.本专题的考查也是高考中当仁不让的高频考点,考查考生应用新知识解决问题的能力和转化与化归能力等.综合近年高考命题规律,本专题主要从“集合与常用逻辑用语”“不等式与线性规划”“算法初步、复数、推理与证明”“排列组合、二项式定理”四大角度进行精练,引领考生明确考情,高效备考.技法篇:6招巧解客观题,省时、省力得高分[技法概述] 选择题、填空题是高考必考的题型,共占有75分,因此,探讨选择题、填空题的特点及解法是非常重要和必要的.选择题的特点是灵活多变、覆盖面广,突出的特点是答案就在给出的选项中.而填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,不设中间分,所以要求所填的是最简最完整的结果.解答选择题、填空题时,对正确性的要求比解答题更高、更严格.它们自身的特点决定选择题及填空题会有一些独到的解法.解法1 直接法直接法是直接从题设出发,抓住命题的特征,利用定义、性质、定理、公式等,经过变形、推理、计算、判断得出结果.直接法是求解填空题的常用方法.在用直接法求解选择题时,可利用选项的暗示性作出判断,同时应注意:在计算和论证时尽量简化步骤,合理跳步,还要尽可能地利用一些常用的性质、典型的结论,以提高解题速度.(1)(2016·高考)将函数y =sin ⎝ ⎛⎭⎪⎫2x -π3图象上的点P ⎝ ⎛⎭⎪⎫π4,t 向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin 2x 的图象上,则( )A .t =12,s 的最小值为π6B .t =32,s 的最小值为π6C .t =12,s 的最小值为π3D .t =32,s 的最小值为π3(2)(2015·某某高考)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R),则m -n 的值为______.[解题指导] (1)先求点P 坐标,再求点P ′的坐标,最后将点P ′的坐标代入y =sin 2x 求s 的最小值.(2)可以利用向量的坐标运算,通过坐标相等,直接得出参量m ,n 的值. (1)A (2)-3 [(1)因为点P ⎝⎛⎭⎪⎫π4,t 在函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象上,所以t =sin ⎝ ⎛⎭⎪⎫2×π4-π3=sin π6=12.所以P ⎝ ⎛⎭⎪⎫π4,12.将点P 向左平移s (s >0)个单位长度得P ′⎝ ⎛⎭⎪⎫π4-s ,12.因为P ′在函数y =sin 2x 的图象上,所以sin 2⎝ ⎛⎭⎪⎫π4-s =12,即cos 2s =12,所以2s=2k π+π3或2s =2k π+53π,即s =k π+π6或s =k π+5π6(k ∈Z),所以s 的最小值为π6.(2)∵m a +n b =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =-3.][变式训练1] (2015·某某高考)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x (万元) 8.2 8.6 10.0 11.3 11.9 支出y (万元)6.27.58.08.59.8根据上表可得回归直线方程y ^=b ^x +a ^,其中b ^=0.76,a ^=y -b ^x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元B [由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4,∴当x =15时,y ^=0.76×15+0.4=11.8(万元).] 解法2 等价转化法所谓等价转化法,就是通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果.(1)(2016·某某模拟)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →=( )A .20B .15C .9D .6(2)(2015·某某高考)若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =__________.[解题指导] (1)把向量AM →,NM →用AB →,BC →表示,再求数量积.(2)利用∠AOB =120°,得到圆心到直线的距离,最后用点到直线的距离公式求解.(1)C (2)2 [(1)依题意有AM →=AB →+BM →=AB →+34BC →,NM →=NC →+CM →=13DC →-14BC →=13AB →-14BC →,所以AM →·NM →=⎝⎛⎭⎪⎫AB →+34BC →·⎝ ⎛⎭⎪⎫13AB →-14BC →=13AB →2-316BC →2=9.故选C.(2)如图,过点O 作OD ⊥AB 于点D ,则|OD |=532+-42=1.∵∠AOB =120°,OA =OB , ∴∠OBD =30°,∴|OB |=2|OD |=2,即r =2.][变式训练2] (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为( ) 【导学号:67722071】A .2B.32 C .1D.12(2)若直线y =kx +1(k ∈R)与圆x 2+y 2-2ax +a 2-2a -4=0恒有交点,则实数a 的取值X 围是________.(1)D (2)[-1,3] [(1)因为AC →=AD →+DC →,BE →=BC →+CE →=AD →-12DC →,所以AC →·BE →=(AD →+DC →)·⎝ ⎛⎭⎪⎫AD →-12DC →=AD →2+12AD →·DC →-12DC 2,所以1+12|DC →|·cos 60°-12|DC →|2=1,|DC →|=12,故AB 的长为12.(2)直线y =kx +1恒过定点(0,1),则直线与圆恒有交点等价于点(0,1)在圆内或圆上,即02+12-2a ×0+a 2-2a -4≤0,即a 2-2a -3≤0,解得-1≤a ≤3.]解法3 特殊值法在解决选择题和填空题时,可以取一个或一些特殊数值或特殊位置、特殊函数、特殊点、特殊方程、特殊数列、特殊图形等来确定其结果,这种方法称为特值法.特值法由于只需对特殊数值、特殊情形进行检验,省去了推理论证、繁琐演算的过程,提高了解题的速度.特值法是考试中解答选择题和填空题时经常用到的一种方法,应用得当可以起到“四两拨千斤”的功效.(1)(2015·某某高考)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r=12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q(2)(2015·某某高考)“对任意x ∈⎝⎛⎭⎪⎫0,π2,k sin x cos x <x ”是“k <1”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解题指导] (1)从条件看这应是涉及利用基本不等式比较函数值大小的问题,若不等式在常规条件下成立,则在特殊情况下更能成立,所以不妨对a ,b 取特殊值处理,如a =1,b =e.(2)正常来说分析不等式k sin x cos x <x 成立的条件很复杂,也没必要,所以可以尝试在满足条件的情况下对x 取特殊值进行分析,这样既快又准确.(1)C (2)B [(1)根据条件,不妨取a =1,b =e ,则p =f (e)=ln e =12,q =f ⎝ ⎛⎭⎪⎫1+e 2>f (e)=12,r =12(f (1)+f (e))=12,在这种特例情况下满足p =r <q ,所以选C.(2)若对任意x ∈⎝⎛⎭⎪⎫0,π2,k sin x cos x <x 成立,不妨取x =π4,代入可得k <π2,不能推出k <1,所以是非充分条件;因为x ∈⎝⎛⎭⎪⎫0,π2,恒有sin x <x ,若k <1,则k cos x <1,一定有k sin x cos x <x ,所以选B.][变式训练3] (1)如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,那么( ) A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 5(2)(2016·某某模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c成等差数列,则cos A +cos C1+cos A cos C=________.(1)B (2)45 [(1)取特殊数列1,2,3,4,5,6,7,8,显然只有1×8<4×5成立.(2)令a =b =c ,则A =C =60°,cos A =cos C =12.从而cos A +cos C 1+cos A cos C =45.]解法4 数形结合法数形结合法是指在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来思考,促使抽象思维和形象思维有机结合,通过对规X 图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到简捷解决的方法.(1)(2016·某某模拟)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -4≤0,y ≥1,则z =-2x+y 的最大值是( )【导学号:67722072】A .-1B .-2C .-5D .1(2)(2015·某某高考)函数f (x )=4cos 2x 2cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)|的零点个数为______.[解题指导] (1)要确定目标函数的最大值,需知道相应的x ,y 的值,从约束条件中不可能解出对应的x ,y 的值,所以只有通过图解法作出约束条件的可行域,据可行域数形结合得出目标函数的最大值.(2)函数的零点即对应方程的根,但求对应方程的根也比较困难,所以进一步转化为求两函数的图象的交点,所以作出两函数的图象确定交点个数即可.(1)A (2)2 [(1)二元一次不等式组表示的平面区域为如图所示的△ABC 内部及其边界,当直线y =2x +z 过A 点时z 最大,又A (1,1),因此z 的最大值为-1.(2)f (x )=4cos 2x 2cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)| =2(1+cos x )sin x -2sin x -|ln(x +1)| =2sin x cos x -|ln(x +1)|=sin 2x -|ln(x +1)|. 由f (x )=0,得sin 2x =|ln(x +1)|.设y 1=sin 2x ,y 2=|ln(x +1)|,在同一平面直角坐标系中画出二者的图象,如图所示.由图象知,两个函数图象有两个交点,故函数f (x )有两个零点.] [变式训练4] (1)(2016·某某模拟)方程x lg(x +2)=1的实数根的个数为( )A .1B .2C .0D .不确定(2)已知偶函数y =f (x )(x ∈R)在区间[0,2]上单调递增,在区间(2,+∞)上单调递减,且满足f (-3)=f (1)=0,则不等式x 3f (x )<0的解集为________.(1)B (2)(-3,-1)∪(0,1)∪(3,+∞) [(1)方程x lg(x +2)=1⇔lg(x +2)=1x,在同一坐标系中画出函数y =lg(x +2)与y =1x的图象,可得两函数图象有两个交点,故所求方程有两个不同的实数根.(2)由题意可画出y =f (x )的草图,如图.①x >0,f (x )<0时,x ∈(0,1)∪(3,+∞); ②x <0,f (x )>0时,x ∈(-3,-1).故不等式x 3f (x )<0的解集为(-3,-1)∪(0,1)∪(3,+∞).] 解法5 构造法用构造法解客观题的关键是利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到解决,它需要对基础知识和基本方法进行积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到的类似问题中寻找灵感,构造出相应的具体的数学模型,使问题简化.(1)(2016·某某一模)已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,则不等式x 2f ⎝ ⎛⎭⎪⎫1x -f (x )>0的解集为( )A .(0,1)B .(1,2)C .(1,+∞)D .(2,+∞)(2)如图1,已知球O 的面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.图1[解题指导] (1)构造函数g (x )=f xx,可证明函数g (x )在(0,+∞)上是减函数,再利用 x 2f ⎝ ⎛⎭⎪⎫1x -f (x )>0⇔f ⎝ ⎛⎭⎪⎫1x 1x>f x x ⇔g ⎝ ⎛⎭⎪⎫1x >g (x )求解. (2)以DA ,AB ,BC 为棱长构造正方体,则球O 是此正方体的外接球,从而球O 的直径是正方体的体对角线长.(1)C (2)6π [(1)设g (x )=f x x ,则g ′(x )=xf ′x -f xx 2,又因为f (x )>xf ′(x ),所以g ′(x )=xf ′x -f xx 2<0在(0,+∞)上恒成立,所以函数g (x )=f x x 为(0,+∞)上的减函数,又因为x 2f ⎝ ⎛⎭⎪⎫1x -f (x )>0⇔f ⎝ ⎛⎭⎪⎫1x 1x>f x x ⇔g ⎝ ⎛⎭⎪⎫1x >g (x ),则有1x<x ,解得x >1,故选C.(2)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =22+22+22=2R ,所以R =62,故球O 的体积V =4πR33=6π.][变式训练5] (1)(2016·某某高三诊断)已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (x +2)为偶函数,f (4)=1,则不等式f (x )<e x 的解集为( )A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)(2)已知a ,b 为不垂直的异面直线,α是一个平面,则a ,b 在α上的射影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面的结论中,正确结论的序号是________(写出所有正确结论的序号). (1)B (2)①②④ [(1)因为f (x +2)为偶函数, 所以f (x +2)的图象关于x =0对称, 所以f (x )的图象关于x =2对称, 所以f (4)=f (0)=1, 设g (x )=f xex(x ∈R),则g ′(x )=f ′x e x -f x e xex2=f ′x -f xex,又因为f ′(x )<f (x ), 所以g ′(x )<0(x ∈R),所以函数g (x )在定义域上单调递减, 因为f (x )<e x⇔g (x )=f xex<1,而g (0)=f 0e=1,所以f (x )<e x⇔g (x )<g (0),所以x >0,故选B.(2)用正方体ABCD A 1B 1C 1D 1实例说明A 1D 与BC 1在平面ABCD 上的射影互相平行,AB 1与BC 1在平面ABCD 上的射影互相垂直,BC 1与DD 1在平面ABCD 上的射影是一条直线及其外一点.故正确的结论为①②④.]解法6 排除法排除法就是充分运用选择题中单选题的特征,即有且只有一个正确选项这一信息,从选项入手,根据题设条件与各选项的关系,通过分析、推理、计算、判断,对选项进行筛选,将其中与题设相矛盾的干扰项逐一排除,从而获得正确结论的方法.使用该法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.排除法适用于定性型或不宜直接求解的选择题,当题目中的条件多于一个时,先根据某些条件,在选项中找到明显与之矛盾的予以否定,再根据另一些条件,在剩余的选项内找出矛盾,这样逐步筛选,直至得出正确的答案.(1)(2016·北师大附中模拟)函数y =cos 6x2x -2-x 的图象大致为( )【导学号:67722073】A BC D(2)(2015·某某高考)设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧ 1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x [解题指导] (1)根据函数的奇偶性和x →+∞时函数值的正负,以及x →0且x >0时函数值的正负,排除可得答案.(2)可验证当x <0时,等式成立的情况.(1)D (2)D [(1)函数y =cos 6x 为偶函数,函数y =2x -2-x为奇函数,故原函数为奇函数,排除A.又函数y =2x -2-x 为增函数,当x →+∞时,2x -2-x →+∞且|cos 6x |≤1,∴y =cos 6x 2x -2-x →0(x →+∞),排除C.∵y =cos 6x 2x -2-x =2x ·cos 6x 4x -1为奇函数,不妨考虑x >0时函数值的情况,当x →0时,4x →1,4x -1→0,2x →1,cos 6x →1,∴y →+∞,故排除B ,综上知选D.(2)当x <0时,|x |=-x ,x |sgn x |=x ,x sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,排除A ,B ,C ,故选D.] [变式训练6] (1)(2015·某某高考)函数f (x )=⎝ ⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )(2)(2015·高考)设{a n }是等差数列,下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0(1)D (2)C [(1)函数f (x )=⎝ ⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A ,B ;当x =π时,f (x )=⎝⎛⎭⎪⎫π-1πcos π=1π-π<0,排除选项C ,故选D. (2)设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故选项A 错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故选项B 错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,∴a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,∴a 2>a 1a 3,故选项C 正确;若a 1<0,则(a 2-a 1)(a 2-a 3)=d ·(-d )=-d 2≤0,故选项D 错.]客观题常用的6种解法已初步掌握,在突破点19~22的训练中一展身手吧!。
2022年高考数学二轮复习教案:第二部分 专题一 选择、填空题常用的10种解法 Word版含答案
专题一 选择、填空题常用的10种解法 抓牢小题,保住基本分才能得高分________________________________________________________________________ 原则与策略:1.基本原则:小题不用大做.2.基本策略:充分利用题干和选项所供应的信息作出推断.先定性后定量,先特殊后推理,先间接后直接,选择题可先排解后求解.解题时应认真审题、深化分析、正确推演运算、谨防疏漏. 题型特点:1.高中低档题,且多数按由易到难的挨次排列.2.留意基本学问、基本技能与思想方法的考查.3.解题方法机敏多变不唯一.4.具有较好的区分度,试题层次性强.方法一 定义法所谓定义法,就是直接利用数学定义解题,数学中的定理、公式、性质和法则等,都是由定义和公理推演出来的.简洁地说,定义是对数学实体的高度抽象,用定义法解题是最直接的方法.一般地,涉及圆锥曲线的顶点、焦点、准线、离心率等问题,常用定义法解决.[例1] 如图,F 1,F 2是双曲线C 1:x 216-y 29=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.若|F 1A |=|F 1F 2|,则C 2的离心率是( )A.56B.23C.25D.45解析:由双曲线C 1的方程可得|F 1F 2|=216+9=10, 由双曲线的定义可得|F 1A |-|F 2A |=216=8, 由已知可得|F 1A |=|F 1F 2|=10, 所以|F 2A |=|F 1A |-8=2.设椭圆的长轴长为2a ,则由椭圆的定义可得2a =|F 1A |+|F 2A |=10+2=12. 所以椭圆C 2的离心率e =2c 2a =1012=56.故选A.答案:A[增分有招] 利用定义法求解动点的轨迹或圆锥曲线的有关问题,要留意动点或圆锥曲线上的点所满足的条件,机敏利用相关的定义求解.如[本例]中依据双曲线的定义和已知条件,分别把A 到两个焦点的距离求出来,然后依据椭圆定义求出其长轴长,最终就可依据离心率的定义求值. [技法体验]1.(2021·广州模拟)假如P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点,它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点,若x 1+x 2+…+x n =10,则|P 1F |+|P 2F |+…+|P n F |=( ) A .n +10 B .n +20 C .2n +10D .2n +20解析:由题意得,抛物线C :y 2=4x 的焦点为(1,0),准线为x =-1,由抛物线的定义,可知|P 1F |=x 1+1,|P 2F |=x 2+1,…,|P n F |=x n +1,故|P 1F |+|P 2F |+…+|P n F |=x 1+x 2+…+x n +n =n +10,选A. 答案:A2.(2022·高考浙江卷)设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________. 解析:借助双曲线的定义、几何性质及余弦定理解决.∵双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,∴|F 1F 2|=4,||PF 1|-|PF 2||=2.若△F 1PF 2为锐角三角形,则由余弦定理知|PF 1|2+|PF 2|2-16>0,可化为(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|>16①.由||PF 1|-|PF 2||=2,得(|PF 1|+|PF 2|)2-4|PF 1||PF 2|=4.故2|PF 1||PF 2|=|PF 1|+|PF 2|2-42,代入不等式①可得(|PF 1|+|PF 2|)2>28,解得|PF 1|+|PF 2|>27.不妨设P 在左支上,∵|PF 1|2+16-|PF 2|2>0,即(|PF 1|+|PF 2|)·(|PF 1|-|PF 2|)>-16,又|PF 1|-|PF 2|=-2,∴|PF 1|+|PF 2|<8.故27<|PF 1|+|PF 2|<8. 答案:(27,8)方法二 特例法特例法,包括特例验证法、特例排解法,就是充分运用选择题中单选题的特征,解题时,可以通过取一些特殊数值、特殊点、特殊函数、特殊数列、特殊图形、特殊位置、特殊向量等对选项进行验证的方法.对于定性、定值的问题可直接确定选项;对于其他问题可以排解干扰项,从而获得正确结论.这是一种求解选项之间有着明显差异的选择题的特殊化策略.[例2] (2022·高考浙江卷)已知实数a ,b ,c ( ) A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100 B .若|a 2+b +c |+|a 2+b -c |≤1,则a 2+b 2+c 2<100 C .若|a +b +c 2|+|a +b -c 2|≤1,则a 2+b 2+c 2<100 D .若|a 2+b +c |+|a +b 2-c |≤1,则a 2+b 2+c 2<100 解析:结合特殊值,利用排解法选择答案. 对于A ,取a =b =10,c =-110, 明显|a 2+b +c |+|a +b 2+c |≤1成立, 但a 2+b 2+c 2>100,即a 2+b 2+c 2<100不成立.对于B ,取a 2=10,b =-10,c =0, 明显|a 2+b +c |+|a 2+b -c |≤1成立, 但a 2+b 2+c 2=110,即a 2+b 2+c 2<100不成立.对于C ,取a =10,b =-10,c =0,明显|a +b +c 2|+|a +b -c 2|≤1成立, 但a 2+b 2+c 2=200,即a 2+b 2+c 2<100不成立. 综上知,A ,B ,C 均不成立,所以选D. 答案:D[增分有招] 应用特例排解法的关键在于确定选项的差异性,利用差异性选取一些特例来检验选项是否与题干对应,从而排解干扰选项. [技法体验]1.函数f (x )=cos x ·log 2|x |的图象大致为( )解析:函数的定义域为(-∞,0)∪(0,+∞),且f (12)=cos 12log 2|12|=-cos 12,f (-12)=cos(-12)·log 2|-12|=-cos 12,所以f (-12)=f (12),排解A ,D ;又f (12)=-cos 12<0,故排解C.综上,选B. 答案:B2.已知E 为△ABC 的重心,AD 为BC 边上的中线,令AB →=a ,AC →=b ,过点E 的直线分别交AB ,AC 于P ,Q 两点,且AP →=m a ,AQ →=n b ,则1m +1n=( )A .3B .4C .5D.13解析:由于题中直线PQ 的条件是过点E ,所以该直线是一条“动”直线,所以最终的结果必定是一个定值.故可利用特殊直线确定所求值.法一:如图1,PQ ∥BC ,则AP →=23AB →,AQ →=23AC →,此时m =n =23,故1m +1n=3.故选A.法二:如图2,取直线BE 作为直线PQ ,明显,此时AP →=AB →,AQ →=12AC →,故m =1,n =12,所以1m +1n =3.故选A.答案:A方法三 数形结合法数形结合法,包含“以形助数”和“以数辅形”两个方面,其应用分为两种情形:一是代数问题几何化,借助形的直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是几何问题代数化,借助于数的精确性阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.[例3] (2021·安庆模拟)已知函数f (x )=⎩⎪⎨⎪⎧|x +1|,-7≤x ≤0ln x ,e -2≤x ≤e ,g (x )=x 2-2x ,设a 为实数,若存在实数m ,使f (m )-2g (a )=0,则实数a 的取值范围为( )A .[-1,+∞)B .[-1,3]C .(-∞,-1]∪[3,+∞)D .(-∞,3]解析:∵g (x )=x 2-2x ,a 为实数,∴2g (a )=2a 2-4a .∵函数f (x )=⎩⎪⎨⎪⎧|x +1|,-7≤x ≤0ln x ,e -2≤x ≤e ,作出函数f (x )的图象可知,其值域为[-2,6],∵存在实数m ,使f (m )-2g (a )=0,∴-2≤2a 2-4a ≤6,即-1≤a ≤3, 故选B.答案:B[增分有招] 数形结合的思想,其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,如[本例]中求解,可通过作出图象,数形结合求解. [技法体验]1.(2021·珠海摸底)已知|a |=|b |,且|a +b |=3|a -b |,则向量a 与b 的夹角为( ) A .30° B .45° C .60°D .120°解析:通解:设a 与b 的夹角为θ,由已知可得a 2+2a ·b +b 2=3(a 2-2a ·b +b 2),即4a ·b =a 2+b 2,由于|a |=|b |,所以a ·b =12a 2,所以cos θ=a ·b |a |·|b |=12,θ=60°,选C.优解:由|a |=|b |,且|a +b |=3|a -b |可构造边长为|a |=|b |=1的菱形,如图,则|a +b |与|a -b |分别表示两条对角线的长,且|a +b |=3,|a -b |=1,故a 与b 的夹角为60°,选C. 答案:C2.已知点P 在抛物线y 2=4x 上,则点P 到点Q (2,-1)的距离与点P 到抛物线的焦点F 的距离之和取得最小值时,点P 的坐标为( ) A .(14,1)B .(14,-1)C .(1,2)D .(1,-2)解析:如图,由于点Q (2,-1)在抛物线的内部,由抛物线的定义可知,|PF |等于点P 到准线x =-1的距离.过Q (2,-1)作x =-1的垂线QH ,交抛物线于点K ,则点K 为点P 到点Q (2,-1)的距离与点P 到准线x =-1的距离之和取得最小值时的点.将y =-1代入y 2=4x 得x =14,所以点P 的坐标为(14,-1),选B.答案:B方法四 待定系数法要确定变量间的函数关系,设出某些未知系数,然后依据所给条件来确定这些未知系数的方法叫作待定系数法,其理论依据是多项式恒等——两个多项式各同类项的系数对应相等.使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决.待定系数法主要用来解决所求解的数学问题具有某种确定的数学表达式,例如数列求和、求函数式、求复数、解析几何中求曲线方程等. [例4] (2021·天津红桥区模拟)已知椭圆C 的焦点在y 轴上,焦距等于4,离心率为22,则椭圆C 的标准方程是( ) A.x 216+y 212=1 B.x 212+y 216=1C.x 24+y 28=1 D.x 28+y 24=1 解析:由题意可得2c =4,故c =2,又e =2a =22,解得a =22,故b =222-22=2,由于焦点在y 轴上,故选C. 答案:C[增分有招] 待定系数法主要用来解决已经定性的问题,如[本例]中已知椭圆的焦点所在坐标轴,设出标准方程,依据已知列方程求解. [技法体验]1.若等差数列{a n }的前20项的和为100,前45项的和为400,则前65项的和为( ) A .640 B .650 C .660D .780解析:设等差数列{a n}的公差为d ,依题意,得⎩⎪⎨⎪⎧ 20a 1+20×192d =10045a 1+45×442d =400⇒⎩⎪⎨⎪⎧a 1=9245d =1445,则前65项的和为65a 1+65×642d =65×9245+65×642×1445=780.答案:D2.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则f (π4)的值为( )A. 2 B .0 C .1D. 3解析:由题图可知,A =2,34T =11π12-π6=34π,∴T =2πω=π,∴ω=2,即f (x )=2sin(2x +φ),由f (π6)=2sin(2×π6+φ)=2得2×π6+φ=2k π+π2,k ∈Z ,即φ=π6+2k π,k ∈Z ,又0<φ<π,∴φ=π6,∴f (x )=2sin(2x +π6),∴f (π4)=2sin(2×π4+π6)=2cos π6=3,故选D.答案:D 方法五 估值法估值法就是不需要计算出代数式的精确 数值,通过估量其大致取值范围从而解决相应问题的方法.该种方法主要适用于比较大小的有关问题,尤其是在选择题或填空题中,解答不需要具体的过程,因此可以猜想、合情推理、估算而获得,从而削减运算量.[例5] 若a =20.5,b =log π3,c =log 2sin 2π5,则( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a解析:由指数函数的性质可知y =2x在R 上单调递增,而0<0.5<1,所以a =20.5∈(1,2).由对数函数的性质可知y =log πx ,y =log 2x 均在(0,+∞)上单调递增,而1<3<π,所以b =log π3∈(0,1);由于sin 2π5∈(0,1),所以c =log 2sin 2π5<0.综上,a >1>b >0>c ,即a >b >c .故选A. 答案:A[增分有招] 估算,省去很多推导过程和比较简单的计算,节省时间,是发觉问题、争辩问题、解决问题的一种重要的运算方法.但要留意估算也要有依据,如[本例]是依据指数函数与对数函数的单调性估量每个值的取值范围,从而比较三者的大小,其实质就是找一个中间值进行比较. [技法体验]已知函数f (x )=2sin(ωx +φ)+1⎝⎛⎭⎪⎫ω>0,|φ|≤π2,其图象与直线y =-1相邻两个交点的距离为π.若f (x )>1对于任意的x ∈⎝ ⎛⎭⎪⎫-π12,π3恒成立,则φ的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π6,π3 B.⎣⎢⎡⎦⎥⎤π12,π2 C.⎣⎢⎡⎦⎥⎤π12,π3D.⎝⎛⎦⎥⎤π6,π2解析:由于函数f (x )的最小值为-2+1=-1,由函数f (x )的图象与直线y =-1相邻两个交点的距离为π可得,该函数的最小正周期为T =π,所以2πω=π,解得ω=2.故f (x )=2sin(2x +φ)+1.由f (x )>1,可得sin(2x +φ)>0.又x ∈⎝ ⎛⎭⎪⎫-π12,π3,所以2x ∈⎝ ⎛⎭⎪⎫-π6,2π3.对于选项B ,D ,若取φ=π2,则2x +π2∈⎝ ⎛⎭⎪⎫π3,7π6,在⎝ ⎛⎭⎪⎫π,7π6上,sin(2x +φ)<0,不合题意;对于选项C ,若取φ=π12,则2x +π12∈⎝ ⎛⎭⎪⎫-π12,3π4,在⎝ ⎛⎭⎪⎫-π12,0上,sin(2x +φ)<0,不合题意.选A.答案:A方法六 反证法反证法是指从命题正面论证比较困难,通过假设原命题不成立,经过正确的推理,最终得出冲突,因此说明假设错误,从而证明白原命题成立的证明方法.反证法证明问题一般分为三步:(1)反设,即否定结论;(2)归谬,即推导冲突;(3)得结论,即说明命题成立.[例6] 已知x ∈R ,a =x 2+32,b =1-3x ,c =x 2+x +1,则下列说法正确的是( )A .a ,b ,c 至少有一个不小于1B .a ,b ,c 至多有一个不小于1C .a ,b ,c 都小于1D .a ,b ,c 都大于1解析:假设a ,b ,c 均小于1,即a <1,b <1,c <1,则有a +b +c <3,而a +b +c =2x 2-2x +72=2⎝ ⎛⎭⎪⎫x -122+3≥3.明显两者冲突,所以假设不成立.故a ,b ,c 至少有一个不小于1.选A. 答案:A[增分有招] 反证法证明全称命题以及“至少”“至多”类型的问题比较便利.其关键是依据假设导出冲突——与已知条件、定义、公理、定理及明显的事实冲突或自相冲突.如[本例]中导出等式的冲突,从而说明假设错误,原命题正确. [技法体验]假如△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:由条件知△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形. 假设△A 2B 2C 2是锐角三角形,则由题意可得⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1,解得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1,所以A 2+B 2+C 2=⎝ ⎛⎭⎪⎫π2-A 1+⎝ ⎛⎭⎪⎫π2-B 1+⎝ ⎛⎭⎪⎫π2-C 1,即π=3π2-π,明显该等式不成立,所以假设不成立.易知△A 2B 2C 2不是锐角三角形,所以△A 2B 2C 2是钝角三角形.故选D. 答案:D 方法七 换元法换元法又称帮助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者变为生疏的形式,把简单的计算和推证简化.换元的实质是转化,关键是构造元和设元.理论依据是等量代换,目的是变换争辩对象,将问题移至新对象的学问背景中去争辩,从而使非标准型问题标准化、简单问题简洁化.换元法经常用于三角函数的化简求值、复合函数解析式的求解等. [例7] 已知正数x ,y 满足4y -2yx=1,则x +2y 的最小值为________.解析:由4y -2y x =1,得x +2y =4xy ,即14y +12x =1,所以x +2y =(x +2y )⎝ ⎛⎭⎪⎫14y +12x =1+x 4y +y x ≥1+2x 4y ×yx=2⎝ ⎛⎭⎪⎫当且仅当x 4y =yx ,即x =2y 时等号成立.所以x +2y 的最小值为2.答案:2[增分有招] 换元法主要有常量代换和变量代换,要依据所求解问题的特征进行合理代换.如[本例]中就是使用常数1的代换,将已知条件改写为“14y +12x =1”,然后利用乘法运算规律,任何式子与1的乘积等于本身,再将其开放,通过构造基本不等式的形式求解最值. [技法体验]1.(2022·成都模拟)若函数f (x )=1+3x+a ·9x,其定义域为(-∞,1],则a 的取值范围是( ) A .a =-49B .a ≥-49C .a ≤-49D .-49≤a <0解析:由题意得1+3x +a ·9x≥0的解集为(-∞,1],即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13x 2+⎝ ⎛⎭⎪⎫13x +a ≥0的解集为(-∞,1].令t =⎝ ⎛⎭⎪⎫13x ,则t ≥13,即方程t 2+t +a ≥0的解集为⎣⎢⎡⎭⎪⎫13,+∞,∴⎝ ⎛⎭⎪⎫132+13+a =0,所以a =-49.答案:A2.函数y =cos 2x -sin x 在x ∈⎣⎢⎡⎦⎥⎤0,π4上的最大值为________.解析:y =cos 2x -sin x =-sin 2x -sin x +1. 令t =sin x ,又x ∈⎣⎢⎡⎦⎥⎤0,π4,∴t ∈⎣⎢⎡⎦⎥⎤0,22,∴y =-t 2-t +1,t ∈⎣⎢⎡⎦⎥⎤0,22.∵函数y =-t 2-t +1在⎣⎢⎡⎦⎥⎤0,22上单调递减,∴t =0时,y max =1.答案:1 方法八 补集法补集法就是已知问题涉及的类别较多,或直接求解比较麻烦时,可以通过求解该问题的对立大事,求出问题的结果,则所求解问题的结果就可以利用补集的思想求得.该方法在概率、函数性质等问题中应用较多. [例8]某学校为了争辩高中三个班级的数学学习状况,从三个班级中分别抽取了1,2,3个班级进行问卷调查,若再从中任意抽取两个班级进行测试,则两个班级不来自同一班级的概率为________. 解析:记高一班级中抽取的班级为a 1,高二班级中抽取的班级为b 1,b 2, 高三班级中抽取的班级为c 1,c 2,c 3.从已抽取的6个班级中任意抽取两个班级的全部可能结果为(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 1,c 2),(a 1,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3),共15种.设“抽取的两个班级不来自同一班级”为大事A ,则大事A 为抽取的两个班级来自同一班级. 由题意,两个班级来自同一班级的结果为(b 1,b 2),(c 1,c 2),(c 1,c 3),(c 2,c 3),共4种. 所以P (A )=415,故P (A )=1-P (A )=1-415=1115. 所以两个班级不来自同一班级的概率为1115.答案:1115[增分有招] 利用补集法求解问题时,肯定要精确 把握所求问题的对立大事.如[本例]中,“两个班级不来自同一班级”的对立大事是“两个班级来自同一班级”,而高一班级只有一个班级,所以两个班级来自同一班级的可能性仅限于来自于高二班级,或来自于高三班级,明显所包含基本大事的个数较少. [技法体验]1.(2022·四川雅安中学月考)已知命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是( ) A .(-∞,-1) B .(-1,3) C .(-3,+∞)D .(-3,1)解析:依题意可知“∀x ∈R,2x 2+(a -1)x +12>0”为真命题,所以Δ=(a -1)2-4×2×12<0,即(a +1)·(a -3)<0,解得-1<a <3.故选B. 答案:B2.已知函数f (x )=ax 2-x +ln x 在区间(1,2)上不单调,则实数a 的取值范围为________. 解析:f ′(x )=2ax -1+1x.(1)若函数f (x )在区间(1,2)上单调递增,则f ′(x )≥0在(1,2)上恒成立,所以2ax -1+1x≥0,得a ≥12⎝ ⎛⎭⎪⎫1x -1x 2.①令t =1x ,由于x ∈(1,2),所以t ∈⎝ ⎛⎭⎪⎫12,1, 设h (t )=12(t -t 2)=-12⎝ ⎛⎭⎪⎫t -122+18,t ∈⎝ ⎛⎭⎪⎫12,1,明显函数y =h (t )在区间⎝ ⎛⎭⎪⎫12,1上单调递减,所以h (1)<h (t )<h ⎝ ⎛⎭⎪⎫12,即0<h (t )<18. 由①可知,a ≥18.(2)若函数f (x )在区间(1,2)上单调递减,则f ′(x )≤0在(1,2)上恒成立,所以2ax -1+1x≤0,得a ≤12⎝ ⎛⎭⎪⎫1x -1x 2.②结合(1)可知,a ≤0.综上,若函数f (x )在区间(1,2)上单调,则实数a 的取值范围为(-∞,0]∪⎣⎢⎡⎭⎪⎫18,+∞. 所以若函数f (x )在区间(1,2)上不单调,则实数a 的取值范围为⎝ ⎛⎭⎪⎫0,18.答案:⎝ ⎛⎭⎪⎫0,18 方法九 分别参数法分别参数法是求解不等式有解、恒成立问题常用的方法,通过分别参数将问题转化为相应函数的最值或范围问题求解,从而避开对参数进行分类争辩的繁琐过程.该种方法也适用于含参方程有解、无解等问题的解决.但要留意该种方法仅适用于分别参数后能够求解相应函数的最值或值域的状况.[例9] 若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是________.解析:由于x >0,则由已知可得a ≥-x -1x 在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立,而当x ∈⎝ ⎛⎦⎥⎤0,12时,⎝ ⎛⎭⎪⎫-x -1x max =-52, ∴a ≥-52,故a 的最小值为-52.答案:-52[增分有招] 分别参数法解决不等式恒成立问题或有解问题,关键在于精确 分别参数,然后将问题转化为参数与函数最值之间的大小关系.分别参数时要留意参数系数的符号是否会发生变化,假如参数的系数符号为负号,则分别参数时应留意不等号的变化,否则就会导致错解. [技法体验]1.(2022·长沙调研)若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,518 B .(-∞,3] C.⎣⎢⎡⎭⎪⎫518,+∞D .[3,+∞)解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立, 即3x 2-2tx +3≤0在[1,4]上恒成立,则t ≥32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上恒成立,由于y =32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝ ⎛⎭⎪⎫4+14=518,故选C.答案:C2.(2022·湖南五校调研)方程log 12(a -2x)=2+x 有解,则a 的最小值为________.解析:若方程log 12(a -2x )=2+x 有解,则⎝ ⎛⎭⎪⎫122+x =a -2x有解,即14⎝ ⎛⎭⎪⎫12x +2x =a 有解,∵14⎝ ⎛⎭⎪⎫12x +2x ≥1,故a 的最小值为1. 答案:1 方法十 构造法构造法是指利用数学的基本思想,经过认真的观看,深化的思考,构造出解题的数学模型,从而使问题得以解决.构造法的内涵格外丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体问题的特点实行相应的解决方法,其基本的方法是借用一类问题的性质,来争辩另一类问题的相关性质.常见的构造法有构造函数、构造方程、构造图形等. [例10] 已知m ,n ∈(2,e),且1n 2-1m 2<ln mn,则( )A .m >nB .m <nC .m >2+1nD .m ,n 的大小关系不确定解析:由不等式可得1n 2-1m2<ln m -ln n ,即1n 2+ln n <1m2+ln m .设f (x )=1x2+ln x (x ∈(2,e)),则f ′(x )=-2x 3+1x =x 2-2x3.由于x ∈(2,e),所以f ′(x )>0,故函数f (x )在(2,e)上单调递增. 由于f (n )<f (m ),所以n <m .故选A. 答案:A[增分有招] 构造法的实质是转化,通过构造函数、方程或图形等将问题转化为对应的问题来解决.如[本例]属于比较两个数值大小的问题,依据数值的特点,构造相应的函数f (x )=1x2+ln x .[技法体验]1.a =ln 12 014-12 014,b =ln 12 015-12 015,c =ln 12 016-12 016,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b解析:令f (x )=ln x -x ,则f ′(x )=1x -1=1-xx.当0<x <1时,f ′(x )>0,即函数f (x )在(0,1)上是增函数.∵1>12 014>12 015>12 016>0,∴a >b >c .答案:A2.如图,已知球O 的面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析:如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =22+22+22=2R ,所以R =62,故球O 的体积V =4πR33=6π.答案:6π。
高考数学单选题和多选题的答题技巧
高考数学单选题和多选题的答题技巧【命题规律】高考的单选题和多选题绝大部分属于中档题目,通常按照由易到难的顺序排列,每道题目一般是多个知识点的小型综合,其中不乏渗透各种数学的思想和方法,基本上能够做到充分考查灵活应用基础知识解决数学问题的能力.(1)基本策略:单选题和多选题属于“小灵通”题,其解题过程可以说是“不讲道理”,所以其解题的基本策略是充分利用题干所提供的信息作出判断和分析,先定性后定量,先特殊后一般,先间接后直接,尤其是对选择题可以先进行排除,缩小选项数量后再验证求解.(2)常用方法:单选题和多选题也属“小”题,解题的原则是“小”题巧解,“小”题快解,“小”题解准.求解的方法主要分为直接法和间接法两大类,具体有:直接法,特值法,图解法,构造法,估算法,对选择题还有排除法(筛选法)等.【核心考点目录】核心考点一:直接法核心考点二:特珠法核心考点三:检验法核心考点四:排除法核心考点五:构造法核心考点六:估算法核心考点七:坐标法核心考点八:图解法【真题回归】1.(2022·天津·统考高考真题)函数()21x f x x-=的图像为()A .B .C .D .2.(2022·天津·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为()A .23B .24C .26D .273.(2022·全国·统考高考真题)函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .4.(2022·北京·统考高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A .40B .41C .40-D .41-5.(多选题)(2022·全国·统考高考真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥6.(多选题)(2022·全国·统考高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =7.(多选题)(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A B .32C D 8.(多选题)(2022·全国·统考高考真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【方法技巧与总结】1、排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获得正确结论.2、特殊值法:从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特值法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊数列等.3、图解法:对于一些含有几何背景的题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率和截距、向量的夹角、解析几何中两点间距离等.4、构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模型,揭示问题的本质,从而找到解题的方法5、估算法:由于选择题提供了唯一正确的选项,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量.6、检验法:将选项分别代人题设中或将题设代人选项中逐一检验,确定正确选项.【核心考点】核心考点一:直接法【典型例题】例1.(2022春·贵州贵阳·高三统考期中)基本再生数0R 与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()e rtI t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 近似满足01R rT =+.有学者基于已有数据估计出0 3.28R =6T =.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间约为(ln 20.69≈)()A .1.8天B .2.5天C .3.6天D .4.2天例2.(2022春·广东深圳·高三深圳中学校考阶段练习)设函数()()πsin sin 03f x x x ωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π上有且仅有3个极值点,则ω的取值范围是().A .710,33⎛⎤⎥⎝⎦B .47,33⎛⎤ ⎥⎝⎦C .1013,33⎛⎤ ⎥⎝⎦D .14,33⎛⎤ ⎥⎝⎦例3.(多选题)(2022春·吉林长春·高一东北师大附中校考期中)设函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,若对任意(,]x m ∈-∞,都有()3f x ≤,则实数m 的取值可以是()A .3B .4C .92D .112核心考点二:特珠法【典型例题】例4.(辽宁省鞍山市第一中学2022届高三下学期六模考试数学试题)若e b a >>>b m a =,a n b =,log a p b =,则m ,n ,p 这三个数的大小关系为()A .m n p >>B .n p m >>C .n m p>>D .m p n>>例5.(多选题)(广东省佛山市顺德区2022届高三下学期三模数学试题)已知01b a <<<,则下列不等式成立的是()A .log log a b b a<B .log 1a b >C .ln ln a b b a<D .ln ln a a b b>例6.(多选题)(2022春·重庆沙坪坝·高一重庆一中校考阶段练习)我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数.有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.现已知函数()11f x ax a x =++-,则下列说法正确的是()A .函数()12y f x a =+-为奇函数B .当0a >时,()f x 在()1,+∞上单调递增C .若方程()0f x =有实根,则()[),01,a ∞∞∈-⋃+D .设定义域为R 的函数()g x 关于()1,1中心对称,若12a =,且()f x 与()g x 的图象共有2022个交点,记为()(),1,2,,2022i i i A x y i = ,则()()()112220222022x y x y x y ++++++ 的值为4044核心考点三:检验法【典型例题】例7.(多选题)(2022·高一课时练习)对于定义在R 上的函数()y f x =,若存在非零实数0x ,使得()y f x =在()0,x -∞和()0,x +∞上均有零点,则称0x 为()y f x =的一个“折点”.下列函数中存在“折点”的是()A .()132x f x -=+B .()()1lg 32f x x =+-C .3()3x f x x=-D .21()4x f x x +=+例8.(多选题)(2022·全国·高三专题练习)已知函数()()2cos 10,02f x x πωϕωϕ⎛⎫=+-><< ⎪⎝⎭的图象经过原点,且恰好存在2个[]00,1x ∈,使得()f x 的图象关于直线0x x =对称,则()A .3πϕ=B .ω的取值范围为58,33ππ⎡⎫⎪⎢⎣⎭C .一定不存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称D .()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减例9.(多选题)(2022秋·高二课时练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹·布劳威尔,简单地讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是()A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根D .设函数()f x =R a ∈,e 为自然对数的底数),若曲线sin y x =上存在点00(,)x y 使00(())f f y y =成立,则a 的取值范围是[]1,e 核心考点四:排除法【典型例题】例10.函数()y f x =的部分图象如图所示,则()A .B .C .D .例11.定义在R 上的函数()f x 满足(2)(2)f x f x -=+,且在(2,)+∞单调递增,(4)0f =,4()g x x =,则函数(2)()y f x g x =+的图象可能是()A .B .C .D .例12.如图1,已知PABC 是直角梯形,//AB PC ,AB BC ⊥,D 在线段PC 上,.AD PC ⊥将PAD 沿AD 折起,使平面PAD ⊥平面ABCD ,连接PB ,PC ,设PB的中点为N ,如图2.对于图2,下列选项错误的是()A .平面PAB ⊥平面PBC B .BC ⊥平面PDC C .PD AC⊥D .2PB AN=核心考点五:构造法【典型例题】例13.已知关于x 的不等式ln ln(1)0x e mx x m ---+在(0,)+∞恒成立,则m 的取值范围是()A .(1,1]e --B .(1,1]-C .(1,1]e -D .(1,]e 例14.已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足(1)[()()]0x f x f x -'->,22(2)()xf x f x e--=⋅则下列判断一定正确的是()A .(1)(0)f f <B .2(2)(0)f e f >C .3(3)(0)f e f >D .4(4)(0)f e f <例15.已知log a π=12log sin 35b =︒,ee c ππ=,则()A .c b a >>B .c a b >>C .b c a >>D .a b c>>核心考点六:估算法【典型例题】例16.(2020春·江苏淮安·高三江苏省涟水中学校考阶段练习)古希腊时期,人们认为最美0.618≈称为黄金分割比例),已知一位美女身高160cm ,穿上高跟鞋后肚脐至鞋底的长度约103.8cm ,若她穿上高跟鞋后达到黄金比例身材,则她穿的高跟鞋约是()(结果保留一位小数)A .7.8cmB .7.9cmC .8.0cmD .8.1cm例17.设函数()f x 是定义在R 上的奇函数,在区间[1,0]-上是增函数,且(2)()f x f x +=-,则有()A .B .C .D .核心考点七:坐标法【典型例题】例18.在ABC 中,3AC =,4BC =,90.C P ∠=︒为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-例19.如图,在直角梯形ABCD 中,//,,2,AB CD AD DC AD DC AB E ⊥==为AD的中点,若(,)CA CE DB R λμλμ=+∈,则λμ+的值为()A .65B .85C .2D .83例20.(多选题)如图,在边长为2的正方形ABCD 中,P 为以A 为圆心、AB 为半径的圆弧(BD包含B ,)D 上的任意一点,且AP x AB y AD =+,则下列结论正确的是()A .x y +的最大值为B .x y +的最小值为2C .AP AD ⋅的最大值为4D .PB PD ⋅的最小值为4-核心考点八:图解法【典型例题】例21.已知函数31,(0),()2ln ,(0),x x f x x x --⎧=⎨>⎩若方程()f x ax =有三个不同的解1x ,2x ,3x ,则a 的取值范围为()A .2(0,eB .2(0,eC .2(,1]eD .(0,1)例22.已知A ,B 是圆O :221x y +=上的两个动点,||AB =,32OC OA OB =- ,M 为线段AB 的中点,则OC OM ⋅的值为()A .14B .12C .34D .32例23.过原点O 的直线交双曲线E :22221(0,0)x y a b a b-=>>于A ,C 两点,A 在第一象限,1F 、2F 分别为E 的左、右焦点,连接2AF 交双曲线E 右支于点B ,若2||||OA OF =,222||3||CF BF =,则双曲线E 的离心率为.()A .2145B .2134C.5D .535【新题速递】一、单选题1.已知函数()f x ,()g x 都是定义域为R 的函数,函数(1)g x -为奇函数,(1)()0f x g x +-=,(3)(2)0f x g x ----=,则(2)f =()A .1-B .0C .1D .22.已知a b <,0a ≠,0b ≠,c R ∈,则下列不等关系正确的是()A .22a b<B .11a b>C .a c b c -<-D .ac bc<3.某同学掷骰子5次,分别记录每次骰子出现的点数,根据5次的统计结果,可以判断一定没有出现点数6的是A .中位数是3,众数是2B .平均数是3,中位数是2C .方差是2.4,平均数是2D .平均数是3,众数是24.在平面内,,A B 是两个定点,C 是动点.若1AC BC ⋅=,则点C 的轨迹为()A .圆B .椭圆C .抛物线D .直线5.在ABC 中,3AC =,4BC =,90.C P ∠=︒为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-6.在平行四边形ABCD 中,3A π∠=,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足||||||||BM CN BC CD =,则AM AN ⋅ 的最大值是()A .2B .3C .4D .5二、多选题7.已知0a >,0b >,且41a b +=,则()A .162a b+B .1122log log 4a b +C .4ln 1ab e --- D .24sin 1a b -+8.定义在(0,)+∞上的函数()f x 的导函数为()f x ',且恒成立,则A.B .C.D.9.已知1a >,1b >,且333a b e e a b ++=+,则下列结论正确的是()A .322ab +>B .2218a b+<C .ln()1a b ->D .ln()ln 4a b +<10.已知定义在R 上的单调递增函数()f x 满足:任意x ∈R 有(1)(1)2f x f x -++=,(2)(2)4f x f x ++-=,则()A .当x ∈Z 时,()f x x =B .任意x ∈R ,()()f x f x -=-C .存在非零实数T ,使得任意x ∈R ,()()f x T f x +=D .存在非零实数c ,使得任意x ∈R ,|()|1f x cx - 11.已知函数()f x 及其导函数()f x '的定义域均为R ,对任意的x ,y ∈R ,恒有()()2()()f x y f x y f x f y ++-=⋅,则下列说法正确的有()A .(0)1f =B .()f x '必为奇函数C .()(0)0f x f +D .若1(1)2f =,则202311()2n f n ==∑12.函数2||()x f x x a=+的大致图象可能是()A.B.C.D .13.已知函数()tan(cos )cos(sin )f x x x =+,则()A .()f x 是定义域为R 的偶函数B .()f x 的最大值为2C .()f x 的最小正周期为πD .()f x 在[0,2π上单调递减14.若10a b c >>>>,则有()A .log log c c a b >B .cca b >C .()()a b c b a c +>+D .a b b c<15.十六世纪中叶,英国数学家雷科德在《砺志石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,c R ∈,则下列命题正确的是()A .若0a b >>,则22ac bc>B .若0a b <<,则11a b b a+<+C .若0a b c <<<,则b b ca a c+<+D .若0,0a b >>,则22b a a ba b++ 16.下面有四个说法正确的有()A .1a <且12b a b <⇒+<且1ab <B .1a <且110b ab a b <⇒--+<C .D .111x x>⇒参考答案【真题回归】1.(2022·天津·统考高考真题)函数()21x f x x-=的图像为()A .B .C .D .【答案】D【解析】函数()21x f x -=的定义域为{}0x x ≠,且()()()2211x x f x f x xx----==-=--,函数()f x 为奇函数,A 选项错误;又当0x <时,()210x f x x -=≤,C 选项错误;当1x >时,()22111x x f x x xx x--===-函数单调递增,故B 选项错误;故选:D.2.(2022·天津·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为()A .23B .24C .26D .27【答案】D【解析】该几何体由直三棱柱AFD BHC -及直三棱柱DGC AEB -组成,作HM CB ⊥于M ,如图,因为3,120CH BH CHB ==∠= ,所以32CM BM HM ===,因为重叠后的底面为正方形,所以AB BC ==在直棱柱AFD BHC -中,AB ⊥平面BHC ,则AB HM ⊥,由AB BC B ⋂=可得HM ⊥平面ADCB ,设重叠后的EG 与FH 交点为,I 则132713813333,=3333=322224I BCDA AFD BHC V V --=⨯=⨯⨯则该几何体的体积为8127222742AFD BHC I BCDA V V V --=-=⨯-=.故选:D.3.(2022·全国·统考高考真题)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .【答案】A【解析】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.4.(2022·北京·统考高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A .40B .41C .40-D .41-【答案】B【解析】令1x =,则432101a a a a a ++++=,令=1x -,则()443210381a a a a a -+-+=-=,故420181412a a a +++==,故选:B.5.(多选题)(2022·全国·统考高考真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥【答案】BC【解析】因为22222a b a b ab ++⎛⎫≤≤⎪⎝⎭(,a b ÎR ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设cos ,sin 22y x y θθ-==,所以cos ,x y θθθ==,因此2222511cos sin cos 12cos 2333x y θθθθ=θ-θ+=++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当,33x y ==-时满足等式,但是221x y +≥不成立,所以D 错误.故选:BC .6.(多选题)(2022·全国·统考高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD 【解析】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACD V ED S a a a =⋅⋅=⋅⋅⋅= ,()232111223323ABC V FB S a a a =⋅⋅=⋅⋅⋅= ,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥,又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D = ,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ===,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ====,3EF a ==,222EM FM EF +=,则EM FM ⊥,212EFM S EM FM =⋅=,AC =,则33123A EFM C EFM EFM V V V AC S a --=+=⋅= ,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确.故选:CD.7.(多选题)(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A B .32C .2D .2【答案】AC【解析】[方法一]:几何法,双曲线定义的应用情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为B ,所以1OB F N ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的左支,OB a =,1OF c =,1FB b =,设12F NF α∠=,由即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,21NF NF 2a-=532222a a b a ⎛⎫--= ⎪⎝⎭,2b e 2a =∴=,选A 情况二若M 、N 在双曲线的两支,因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OB a =,1OF c =,1FB b =,设12F NF α∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,12NF NF 2a -=352222a b a a +-=,所以23b a =,即32b a =,所以双曲线的离心率2c e a ==选C[方法二]:答案回代法A e 2=选项特值双曲线())22121,F ,F 4x y -=∴,过1F 且与圆相切的一条直线为(y 2x =+,两交点都在左支,N ⎛∴ ⎝,2112NF 5,NF 1,FF ∴===则123cos 5F NF ∠=,C e 2=选项特值双曲线())2212x y 1,F ,F 49-=∴,过1F 且与圆相切的一条直线为(2y x 3=,两交点在左右两支,N 在右支,N ∴,2112NF 5,NF 9,FF ∴===则123cos 5F NF ∠=,[方法三]:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,若,M N 分别在左右支,因为1OG NF ⊥,且123cos 05F NF ∠=>,所以N 在双曲线的右支,又OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,在12F NF △中,有()212sin sin sin NF NF cβαβα==+,故()122sin sin sin NF NF cαββα-=+-即()sin sin sin a c αββα=+-,所以sin cos cos sin sin sin a cαβαββα=+-,而3cos 5α=,sin a c β=,cos b c β=,故4sin 5α=,代入整理得到23b a =,即32b a =,所以双曲线的离心率c e a ==若,M N 均在左支上,同理有()212sin sin sin NF NF c βαβα==+,其中β为钝角,故cos bcβ=-,故()212sin sin sin NF NF cβαβα-=-+即sin sin cos cos sin sin a c βαβαβα=--,代入3cos 5α=,sin a c β=,4sin 5α=,整理得到:1424a b a =+,故2a b =,故e ==故选:AC.8.(多选题)(2022·全国·统考高考真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC【解析】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确;对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222f x f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC.故选:BC.[方法三]:因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.【方法技巧与总结】1、排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获得正确结论.2、特殊值法:从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特值法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊数列等.3、图解法:对于一些含有几何背景的题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率和截距、向量的夹角、解析几何中两点间距离等.4、构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模型,揭示问题的本质,从而找到解题的方法5、估算法:由于选择题提供了唯一正确的选项,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量.6、检验法:将选项分别代人题设中或将题设代人选项中逐一检验,确定正确选项.【核心考点】核心考点一:直接法【典型例题】例1.(2022春·贵州贵阳·高三统考期中)基本再生数0R 与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()e rtI t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 近似满足01R rT =+.有学者基于已有数据估计出0 3.28R =,6T =.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间约为(ln 20.69≈)()A .1.8天B .2.5天C .3.6天D .4.2天【答案】C【解析】把0 3.28R =,6T =代入01R rT =+,可得0.38r =,所以()0.38e tI t =.设在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间为1t ,则有()()14I t t I t +=,即()10.380.38t e 4e t t +=,整理有10.38t e 4=,则10.38ln 4t =,解得1ln 42ln 220.693.60.380.380.38t ⨯==≈≈.故选:C .例2.(2022春·广东深圳·高三深圳中学校考阶段练习)设函数()()πsin sin 03f x x x ωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π上有且仅有3个极值点,则ω的取值范围是().A .710,33⎛⎤⎥⎝⎦B .47,33⎛⎤ ⎥⎝⎦C .1013,33⎛⎤ ⎥⎝⎦D .14,33⎛⎤ ⎥⎝⎦【答案】A【解析】由题知,()ππsin sin sin326f x x x x x x ωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭,因为[]0,πx ∈,所以πππ,π666x ωω⎡⎤+∈+⎢⎥⎣⎦,因为()f x 在[]0,π上有且仅有3个极值点,所以5ππ7ππ262ω<+≤,解得71033ω<≤,所以ω的取值范围是710,33⎛⎤ ⎥⎝⎦,故选:A例3.(多选题)(2022春·吉林长春·高一东北师大附中校考期中)设函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,若对任意(,]x m ∈-∞,都有()3f x ≤,则实数m 的取值可以是()A .3B .4C .92D .112【答案】ABC【解析】因为函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,所以当(2,4]x ∈时,()2(2)[2(2)]2(2)(4)f x x x x x =---=--,当6(4],x ∈时,()4[(2)2][4(2)]4(4)(6)f x x x x x =----=--,函数部分图象如图所示,由4(4)(6)3x x --=,得2440990x x -+=,解得92x =或112x =,因为对任意(,]x m ∈-∞,都有()3f x ≤,所以由图可知92m ≤,故选:ABC核心考点二:特珠法【典型例题】例4.(辽宁省鞍山市第一中学2022届高三下学期六模考试数学试题)若e b a >>>b m a =,a n b =,log a p b =,则m ,n ,p 这三个数的大小关系为()A .m n p >>B .n p m >>C .n m p >>D .m p n>>【答案】C【解析】因为e b a >>>所以取52,2a b ==,则()5225,6bm a ====,2525 6.2524an b ⎛⎫=== ⎪⎝⎭=,()25log log 1,22a pb ==∈,所以n m p >>.故选:C.例5.(多选题)(广东省佛山市顺德区2022届高三下学期三模数学试题)已知01b a <<<,则下列不等式成立的是()A .log log a b b a <B .log 1a b >C .ln ln a b b a <D .ln ln a a b b>【答案】BC【解析】选项A :()()22lg lg lg lg lg lg lg lg log log lg lg lg lg lg lg a b b a b a b a b a b a a b a b a b-+--=-==由01b a <<<,可得lg lg 0b a <<,则lg lg 0b a >,lg lg 0b a -<,lg lg 0b a +<则()()lg lg lg lg 0lg lg b a b a a b-+>,则log log a b b a >.判断错误;选项B :由01a <<,可得log a y x =为(0,)+∞上减函数,又0b a <<,则log log 1a a b a >=.判断正确;选项C :由01a <<,可知x y a =为R 上减函数,又b a <,则a b a a >由0a >,可知a y x =为(0,)+∞上增函数,又b a <,则a a b a <,则b a a b >又ln y x =为(0,)+∞上增函数,则ln ln b a a b >,则ln ln a b b a <.判断正确;选项D :令211e e a b ==,,则01b a <<<,e ln l 111e n e a a =-=,222ln ln 112e e eb b =-=则22122e0e ln eln e a a b b --+==<-,即ln ln a a b b <.判断错误.故选:BC例6.(多选题)(2022春·重庆沙坪坝·高一重庆一中校考阶段练习)我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数.有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.现已知函数()11f x ax a x =++-,则下列说法正确的是()A .函数()12y f x a =+-为奇函数B .当0a >时,()f x 在()1,+∞上单调递增C .若方程()0f x =有实根,则()[),01,a ∞∞∈-⋃+D .设定义域为R 的函数()g x 关于()1,1中心对称,若12a =,且()f x 与()g x 的图象共有2022个交点,记为()(),1,2,,2022i i i A x y i = ,则()()()112220222022x y x y x y ++++++ 的值为4044【答案】ACD【解析】对于A.()()11121211f x a a x a a ax x x+-=+++-=++-由解析式可知1y ax x=+是奇函数,故A 正确;对于B.特殊值法33152322212f a a a ⎛⎫=++=+ ⎪⎝⎭-,()1223121f a a a =++=+-即3(2)122a f f ⎛⎫-=- ⎪⎝⎭,若02a <<,则()f x 在()1,+∞上不是单调递增,故B 错误.对于C.令()101f x ax a x =++=-,分离参数后211a x=-,()(]21,0)(0,1x ∞-∈-⋃故()[)21,01,1x ∞∞∈-⋃+-,C 正确;对于D.由A 可知,当12a =时,()f x 关于()1,1中心对称,且()g x 关于()1,1中心对称,所以这2022个交点关于()1,1对称,故()()122022122022202220224044x x x y y y +++++++=+= ,D 正确.故选:ACD核心考点三:检验法【典型例题】例7.(多选题)(2022·高一课时练习)对于定义在R 上的函数()y f x =,若存在非零实数0x ,使得()y f x =在()0,x -∞和()0,x +∞上均有零点,则称0x 为()y f x =的一个“折点”.下列函数中存在“折点”的是()A .()132x f x -=+B .()()1lg 32f x x =+-C .3()3x f x x=-D .21()4x f x x +=+【答案】BC【解析】A :因为10()32323x f x -=+≥+=,所以()f x 没有零点,即()f x 没有“折点”;B :当0x ≥时1()lg(3)2f x x =+-单调递增,又1(0)lg 302f =-<,1(7)lg1002f =->,所以()f x 在()0,+∞上有零点.又()()1lg 32f x x =+-是偶函数,所以()f x 在(),0-∞上有零点,所以()f x 存在“折点”.C :令3()03x f x x =-=,得0x =或()f x 在()0,+∞上有零点,在(),0-∞上有零点,即()f x 存在“折点”.D :令21()04x f x x +==+,解得=1x -,所以()f x 只有一个零点,即()f x 没有“折点”.故选:BC例8.(多选题)(2022·全国·高三专题练习)已知函数()()2cos 10,02f x x πωϕωϕ⎛⎫=+-><< ⎪⎝⎭的图象经过原点,且恰好存在2个[]00,1x ∈,使得()f x 的图象关于直线0x x =对称,则()A .3πϕ=B .ω的取值范围为58,33ππ⎡⎫⎪⎢⎣⎭C .一定不存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称D .()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减【答案】ABD【解析】因为()02cos 10,02f πϕϕ=-=<<,得3πϕ=,A 正确.设3u x πω=+,则2cos 1y u =-如图所示,由[]0,1x ∈,得,333x πππωω⎡⎤+∈+⎢⎥⎣⎦,所以233ππωπ≤+<,得5833ππω≤<,B 正确.如图所示,当5323ππωπ≤+<时,存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称.C 错误.因为10,4x ⎡⎤∈⎢⎥⎣⎦,所以1,3343x πππωω⎡⎤+∈+⎢⎥⎣⎦,又5833ππω≤<,所以31443ππωπ≤+<,所以()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减,D 正确.故选:ABD例9.(多选题)(2022秋·高二课时练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹·布劳威尔,简单地讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是()A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根D .设函数()f x =R a ∈,e 为自然对数的底数),若曲线sin y x =上存在点00(,)x y 使00(())f f y y =成立,则a 的取值范围是[]1,e 【答案】BCD【解析】对于A ,令()sin g x x x =-,x ∈R ,()cos 10g x x '=-≤,当且仅当cos 1x =时取“=”,则()g x 在R 上单调递减,而(0)0g =,即()g x 在R 上只有一个零点,函数()f x 只有一个不动点,A 不正确;对于B ,因二次函数2(1)y ax b x c =+-+至多有两个零点,则函数()f x 至多有两个不动点,B 正确;对于C ,依题意,方程2()0(1)0f x x ax b x c -=⇔+-+=无实数根,即2(1)40b ac ∆=--<,当0a >时,二次函数()y f x x =-的图象开口向上,则()0f x x ->恒成立,即R x ∀∈,恒有()f x x >,而()R f x ∈,因此有[()]()f f x f x x >>恒成立,即方程(())f f x x =无实根,当a<0时,二次函数()y f x x =-的图象开口向下,则()0f x x -<恒成立,即R x ∀∈,恒有()f x x <,而()R f x ∈,因此有[()]()f f x f x x <<恒成立,即方程(())f f x x =无实根,所以函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根,C 正确;对于D ,点00(,)x y 在曲线sin y x =上,则0[1,1]y ∈-,又00(())f f y y =,即有001y ≤≤,当001y ≤≤时,00()f y y =满足00(())f f y y =,显然函数()f x =函数,若00()f y y >,则000(())()f f y f y y >>与00(())f f y y =矛盾,若00()f y y <,则000(())()f f y f y y <<与00(())f f y y =矛盾,因此,当001y ≤≤时,00()f y y =,即当01x ≤≤时,()f x x =,对[0,1]x ∈,2e e x x x a x a x x +-=⇔=-+,令2()e x h x x x =-+,[0,1]x ∈,()e 21220x h x x x '=-+≥-≥,而两个“=”不同时取得,即当[0,1]x ∈时,()0h x '>,于是得()h x 在[0,1]上单调递增,有(0)()(1)h h x h ≤≤,即1()e h x ≤≤,则1e a ≤≤,D 正确.故选:BCD核心考点四:排除法【典型例题】例10.函数()y f x =的部分图象如图所示,则()A .B .C .D .【答案】A【解析】由题意,函数()f x 图象可得函数()f x 为奇函数,对于A ,111()2(1)2(1)f x x x x -=++-+---,符合题意,对于B ,111()2(1)2(1)f x x x x -=-+-+---,符合题意,对于C ,111()2(1)2(1)f x x x x -=+--+---,不符合题意,对于D ,111()2(1)2(1)f x x x x -=--+-+---,不符合题意,故排除C ,D 选项,又当0.1x =时,代入B 中函数解析式,即111(0.1)2(0.11)0.12(0.11)f =-++-55100119=--<,不符合题意;故排除B 选项,故选.A 例11.定义在R 上的函数()f x 满足(2)(2)f x f x -=+,且在(2,)+∞单调递增,(4)0f =,4()g x x =,则函数(2)()y f x g x =+的图象可能是()A .B .C .D .【答案】B【解析】依题意可知函数()f x 的对称轴方程为2x =,在(2,)+∞上单调递增,且(4)0f =,设()(2)h x f x =+,则函数()h x 的对称轴方程为0x =,在(0,)+∞上单调递增,且(2)0h =,()h x ∴是偶函数,且当02x <<时,()0.h x <因此函数4(2)()()y f x g x h x x =+=⋅也是偶函数,其图象关于y 轴对称,故可以排除选项A 和D ;当02x <<时,4()0y h x x =⋅<,由此排除选项.C 例12.如图1,已知PABC 是直角梯形,//AB PC ,AB BC ⊥,D 在线段PC 上,.AD PC ⊥将PAD 沿AD 折起,使平面PAD ⊥平面ABCD ,连接PB ,PC ,设PB的中点为N ,如图2.对于图2,下列选项错误的是()A .平面PAB ⊥平面PBC B .BC ⊥平面PDC C .PD AC⊥D .2PB AN=【答案】A【解析】解:因为AD PC ⊥,所以AD DC ⊥,AD PD ⊥,又DC ,PD ⊂平面PDC ,DC PD D ⋂=,即AD ⊥平面PDC ,折叠前有//AB PC ,AB BC ⊥,AD PC ⊥,所以//AD BC ,所以BC ⊥平面PDC ,故B 正确.由于平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PD ⊂平面PAD ,且AD PD ⊥,所以PD ABCD ⊥平面,又AC ABCD ⊂平面,所以PD AC ⊥,故C 正确.DC PD ⊥ ,DC AD ⊥,PD AD D ⋂=,PD 、AD 在平面PAD 内,DC ∴⊥平面PAD ,//AB DC ,AB ∴⊥平面PAD ,又PA ⊂平面PAD ,故AB PA ⊥,PAB ∴∆为直角三角形,N 为斜边的中点,所以2PB AN =,故D 正确.由排除法可得A 错误.故选.A 核心考点五:构造法【典型例题】例13.已知关于x 的不等式ln ln(1)0xe mx x m ---+在(0,)+∞恒成立,则m 的取值范围是()A .(1,1]e --B .(1,1]-C .(1,1]e -D .(1,]e 【答案】A【解析】解:由ln ln(1)0xe mx x m ---+得ln(1)x e mx m x -+ ,即,令()xf x e x =+,(0,)x ∈+∞,则,故()f x 在(0,)x ∈+∞单调递增,若()(ln(1))f x f m x + ,则在(0,)x ∈+∞恒成立,记()ln(1)g x x m x =-+,则()0g x 在(0,)x ∈+∞上恒成立,即min ()0g x ,因为1()1g x x'=-,则当1x <时,()0,g x '<当1x >时,()0,g x '>故()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,故min ()(1)1ln(1)0g x g m ==-+所以,即01m e <+,解得11m e -<- ,所以m 的取值范围是(1,e --故选:.A 例14.已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足(1)[()()]0x f x f x -'->,22(2)()xf x f x e--=⋅则下列判断一定正确的是()A .(1)(0)f f <B .2(2)(0)f e f >C .3(3)(0)f e f >D .4(4)(0)f e f <【答案】C【解析】解:令()()x f x g x e =,则()()().xf x f xg x e''-=()f x 满足:(1)[()()]0x f x f x -'->,∴当1x <时,()()0.()0.f x f x g x '-<∴'<此时函数()g x 单调递减.(1)(0).g g ∴->即10(1)(0)(0).f f f e e-->=。
高考数学选择题的解题策略带答案
高考数学选择题的解题策略要点:①充分利用题干和选择支两方面提供的信息,快速、准确地作出判断,是解选择题的基本策略。
②解选择题的基本思想是:既要看到通常各类常规题的解题思想,原则上都可以指导选择题的解答;更应看到。
根据选择题的特殊性,必定存在着若干异于常规题的特殊解法。
我们需把这两方面有机地结合起来,对具体问题具体分析。
(一)数学选择题的解题方法1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法.运用此种方法解题需要扎实的数学基础.例1、已知()()2sin 1f x x x ax =++,()35,f =则()3f -= ( )(A)-5 (B)-1 (C)1 (D)无法确定例2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直.其中正确命题的个数为( )A .0 B .1 C .2 D .3例3.设a>b>c,n ∈N,且c a n c b b a -≥-+-11恒成立,则n 的最大值是( )(A)2 (B)3 (C)4 (D)52、特例法:就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法.用特例法解选择题时,特例取得愈简单、愈特殊愈好.(1)特殊值例4、若sin α>tan α>cot α(24παπ<<-),则α∈( ) A .(2π-,4π-) B .(4π-,0) C .(0,4π) D .(4π,2π) 分析:因24παπ<<-,取α=-6π代入sin α>tan α>cot α,满足条件式,则排除A 、C 、D ,故选B.例5、一个等差数列的前n 项和为48,前2n 项和为60,则它的前3n 项和为( )A .-24B .84C .72D .36分析:结论中不含n ,故本题结论的正确性与n 取值无关,可对n 取特殊值,如n=1,此时a 1=48,a 2=S 2-S 1=12,a 3=a 1+2d= -24,所以前3n 项和为36,故选D.(2)特殊函数例6、如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( )A.增函数且最小值为-5B.减函数且最小值是-5C .增函数且最大值为-5 D.减函数且最大值是-5分析:构造特殊函数f(x)=35x ,虽然满足题设条件,并易知f(x)在区间[-7,-3]上是增函数,且最大值为f(-3)=-5,故选C.例7、定义在R 上的奇函数f(x)为减函数,设a+b ≤0,给出下列不等式:①f(a)·f(-a)≤0;②f(b)·f(-b)≥0;③f(a)+f(b)≤f(-a)+f(-b);④f(a)+f(b)≥f(-a)+f(-b).其中正确的不等式序号是( )A .①②④B .①④C .②④D .①③分析:取f(x)= -x ,逐项检查可知①④正确.故选B.(3)特殊数列例8、已知等差数列{}n a 满足121010a a a ++⋅⋅⋅+=,则有( )A 、11010a a +>B 、21020a a +<C 、3990a a +=D 、5151a =分析:取满足题意的特殊数列0n a =,则3990a a +=,故选C.(4)特殊位置例9.在三棱柱的侧棱A 1A 和B 1B 上各一动点P 、Q 满足A 1P =BQ ,过P 、Q 、C 三点的截面把棱柱分成两部分则其体积之比为( )A 、3∶1B 、2∶1C 、4∶1D 1例10、向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如右图所示,那么水瓶的形状是 ( )分析:取2H h =,由图象可知,此时注水量V 大于容器容积的12,故选B.(5)特殊点 例11. 如果函数y = sin2x + a cos2x 的图象关于x=8π-对称,则a=( ).A.2B.-2C. 1 D . -13、图解法:就是利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法.这种解法贯穿数形结合思想,每年高考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速.例12、如果实数x,y 满足等式(x -2)2+y 2=3,那么x y 的最大值是( ) A .21 B .33 C .23 D .3 分析:题中x y 可写成00--x y .联想数学模型:过两点的直线的斜率公式k=1212x x y y --,可将问题看成圆(x -2)2+y 2=3上的点与坐标原点O 连线的斜率的最大值,即得D.例13、已知α、β都是第二象限角,且cos α>cos β,则( )A .α<βB .sin α>sin βC .tan α>tan βD .cot α<cot β分析:在第二象限角内通过余弦函数线cos α>cos β找出α、β的终边位置关系,再作出判断,得B.例14、已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |=( )A .7B .10C .13D .4分析:,a +3b =OB ,在OAB ∆中,||1,||3,120,OA AB OAB ==∠=∴由余弦定理得|a +3b |=|OB |=13,故选C.例15、已知{a n }是等差数列,a 1=-9,S 3=S 7,那么使其前n 项和S n 最小的n 是( )A .4B .5C .6D .7分析:等差数列的前n 项和S n =2d n 2+(a 1-2d )n 可表示为过原点的抛物线,又本题中a 1=-9<0, S 3=S 7,可表示如图,由图可知,n=5273=+,是抛物线的对称轴,所以n=5是抛物线的对称轴,所以n=5时S n 最小,故选B.4、验证法:就是将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法.在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度.例16、方程lg 3x x +=的解0x ∈ ( )A.(0,1)B.(1,2) C .(2,3) D.(3,+∞)分析:若(0,1)x ∈,则l g 0x <,则l g 1x x +<;若(1,2)x ∈,则0l g 1x <<,则1l g 3x x <+<;若(2,3)x ∈,则0lg 1x <<,则2lg 4x x <+<;若3,lg 0x x >>,则lg 3x x +>,故选C.5、筛选法(也叫排除法、淘汰法):就是充分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法.使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.例17、若x 为三角形中的最小内角,则函数y=sinx+cosx 的值域是( )A .(1,2]B .(0,23] C .[21,22] D .(21,22] 分析:因x 为三角形中的最小内角,故(0,]3x π∈,由此可得y=sinx+cosx>1,排除B,C,D ,故应选A.6、分析法:就是对有关概念进行全面、正确、深刻的理解或对有关信息提取、分析和加工后而作出判断和选择的方法.(1)特征分析法——根据题目所提供的信息,如数值特征、结构特征、位置特征等,进行快速推理,迅速作出判断的方法,称为特征分析法.例18、已知)2(524cos ,53sin πθπθθ<<+-=+-=m m m m ,则2tan θ等于( ) A 、m m --93 B 、|93|m m -- C 、31 D 、5 分析:由于受条件sin 2θ+cos 2θ=1的制约,故m 为一确定的值,于是sin θ,cos θ的值应与m 的值无关,进而推知tan 2θ的值与m 无关,又2π<θ<π,4π<2θ<2π,∴tan 2θ>1,故选D. 例19. 不等式x x x x 22log log +<+的解集是( ).A. ()1,0B. ()+∞,1C. ()+∞,0D. ()∞+∞-,(2)逻辑分析法——通过对四个选择支之间的逻辑关系的分析,达到否定谬误支,选出正确支的方法,称为逻辑分析法. (1)若(A )真⇒(B )真,则(A )必排出,否则与“有且仅有一个正确结论”相矛盾. (2) 若(A )⇔(B ),则(A )(B )均假。
高中数学选择题解题技巧
高中数学选择题解题技巧第1篇:数学选择题解题技巧答题技巧是一门学问,心理准备、答题顺序、审题方式、遇到难题时的处理等,都大有讲究。
掌握这方面的技巧,充分发挥主观能动*,将记忆力、理解力、分析综合融为一体,对提高考试成绩将产生直接影响。
究。
掌握这方面的技巧,充分发挥主观能动*●调理个*品质,进入数学情境高考对个*品质的要求是:"克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神"由此可知,个*品质不仅包含了"智商",也强调"情商"。
所以,应在最后阶段优化考试心理,提高自己应对挑战的能力。
比如考前要摒弃杂念,排除干扰思绪,通过清点用具、暗示重要知识和方法、提醒常见解题误区等进行针对*自我安慰,从而以最佳竞技状态去克服慌乱急躁、紧张焦虑的情绪,增强信心。
●沉着应对考试,确保旗开得胜,将记忆力、理解力、分析综合融为一体,对良好的开端是成功的一半,从考试心理角度来说,这确实是有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览全卷,摸透题情,然后选择好答题顺序,再稳*一两道易题熟题,让自己产生"旗开得胜"的快意,从而有一个良好的开端,以振奋精神,鼓舞士气,很快进入最佳思维状态,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
●采取"六先六后",因人因卷制宜旗开得胜后,情绪趋于稳定,大脑趋于亢奋,思维趋于积极,之后便是临场解题的黄金季节了。
这时,考生可结合自己的解题习惯和基本功,结合整套试题的结构,采取"六先六后"的答题策略。
即①先易后难。
要力求有效,防浪费时间、伤害情绪;②先熟后生。
使思维流畅,可超常发挥;③先同后异。
避免跳跃过频,减轻大脑负担;④先小后大。
赢得宝贵时间,创造心理基础;⑤先点后面。
要步步为营,梯度分段得分明显;⑥先高后低。
高考数学选择题有哪些蒙题策略
高考数学选择题有哪些蒙题策略高考数学选择题蒙题策略1.选择与填空中出现不等式的题目,优选特殊值法,选取中间值带入,选取好算易得的;2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法,将各种函数模型牢记于心,每个模型特点也要牢记;3.函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”,函数的零点就是方程的根。
4.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如恒过的定点,二次函数的对称轴,三角函数的周期等;5.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;6.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,采取分离常数,最终变为恒成立问题,求最值;7.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);8.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;高考数学选择题蒙题技巧有零与无零区间的开与闭(看极端情况能否取等号)正无穷与负无穷(通过极限考虑)整数与小数(分数) 质数与合数大于与小于整除与不能整除带符号与不带符号(例如根号、平方号等等)少数服从多数原则即看选项特征,具有同一特征多的选项优先考虑。
复杂表达式化简题一般情况下选项出现1、2、0、-1、-2的情况比较多前后无定位连续几道题均不会都需猜蒙答案的情况,观察已做完的选项情况,哪个选项少就将这几道题全写成这个选项。
答案往往出现在互为相反数、互为倒数、相加为一(概率题)的几个选项高考数学选择题方法数学第一题一般不会是a最后一题不会是a选择题的答案分布均匀填空题不会就填0或1答案有根号的,不选答案有1的,选三个答案是正的时候,在正的中选有一个是正x,一个是负x的时候,在这两个中选题目看起来数字简单,那么答案选复杂的,反之亦然上一题选什么,这一题选什么,连续有三个相同的则不适合本条以上都不实用的时候选b在计算题中,要首先写一答字如果选项是4个数,一般是第二大的是正确选项。
高考数学二轮复习课件高考5个大题题题研诀窍函数与导数综合问题巧在“转”、难在“分”讲义理(含解析)
函数与导数综合问题巧在“转”、难在“分”[思维流程——找突破口] [技法指导——迁移搭桥]函数与导数问题一般以函数为载体,以导数为工具,重点考查函数的一些性质,如含参函数的单调性、极值或最值的探求与讨论,复杂函数零点的讨论,函数不等式中参数范围的讨论,恒成立和能成立问题的讨论等,是近几年高考试题的命题热点.对于这类综合问题,一般是先转化(变形),再求导,分解出基本函数,分类讨论研究其性质,再根据题意解决问题.[典例] 已知函数f (x )=eln x -ax (a ∈R). (1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x+2e x ≤0. [快审题] 求什么 想什么 讨论函数的单调性,想到利用导数判断. 证明不等式,想到对所证不等式进行变形转化. 给什么 用什么 已知函数的解析式,利用导数解题.差什么 找什么 证不等式时,对不等式变形转化后还不能直接判断两函数的关系,应找出所构造函数的最值.[稳解题](1)f ′(x )=ex-a (x >0),①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增; ②若a >0,则当0<x <e a 时,f ′(x )>0,当x >ea时,f ′(x )<0,故f (x )在⎝⎛⎭⎪⎫0,e a 上单调递增,在⎝ ⎛⎭⎪⎫e a ,+∞上单调递减.(2)证明:法一:因为x >0,所以只需证f (x )≤exx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max=f (1)=-e.记g (x )=exx-2e(x >0),则g ′(x )=x -1e xx 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减; 当x >1时,g ′(x )>0,g (x )单调递增, 所以g (x )min =g (1)=-e.综上,当x >0时,f (x )≤g (x ),即f (x )≤exx-2e ,即xf (x )-e x+2e x ≤0. 法二:证xf (x )-e x+2e x ≤0, 即证e x ln x -e x 2-e x+2e x ≤0, 从而等价于ln x -x +2≤exe x .设函数g (x )=ln x -x +2, 则g ′(x )=1x-1.所以当x ∈(0,1)时,g ′(x )>0; 当x ∈(1,+∞)时,g ′(x )<0,故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而g (x )在(0,+∞)上的最大值为g (1)=1. 设函数h (x )=e xe x,则h ′(x )=exx -1e x2. 所以当x ∈(0,1)时,h ′(x )<0,当x ∈(1,+∞)时,h ′(x )>0,故h (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 从而h (x )在(0,+∞)上的最小值为h (1)=1. 综上,当x >0时,g (x )≤h (x ), 即xf (x )-e x+2e x ≤0.[题后悟道] 函数与导数综合问题的关键(1)会求函数的极值点,先利用方程f (x )=0的根,将函数的定义域分成若干个开区间,再列成表格,最后依表格内容即可写出函数的极值;(2)证明不等式,常构造函数,并利用导数法判断新构造函数的单调性,从而可证明原不等式成立;(3)不等式恒成立问题除了用分离参数法,还可以从分类讨论和判断函数的单调性入手,去求参数的取值范围.[针对训练]已知函数f (x )=x ln x ,g (x )=ax 22,直线l :y =(k -3)x -k +2.(1)若曲线y =f (x )在x =e 处的切线与直线l 平行,求实数k 的值; (2)若至少存在一个x 0∈[1,e]使f (x 0)<g (x 0)成立,求实数a 的取值范围; (3)设k ∈Z ,当x >1时,函数f (x )的图象恒在直线l 的上方,求k 的最大值. 解:(1)由已知得,f ′(x )=ln x +1,且y =f (x )在x =e 处的切线与直线l 平行, 所以f ′(e)=ln e +1=2=k -3,解得k =5.(2)因为至少存在一个x 0∈[1,e]使f (x 0)<g (x 0)成立,所以至少存在一个x 使x ln x <ax 22成立,即至少存在一个x 使a >2ln x x成立.令h (x )=2ln x x ,当x ∈[1,e]时,h ′(x )=21-ln xx 2≥0恒成立,因此h (x )=2ln x x在[1,e]上单调递增.故当x =1时,h (x )min =0,所以实数a 的取值范围为(0,+∞).(3)由已知得,x ln x >(k -3)x -k +2在x >1时恒成立,即k <x ln x +3x -2x -1.令F (x )=x ln x +3x -2x -1,则F ′(x )=x -ln x -2x -12.令m (x )=x -ln x -2,则m ′(x )=1-1x =x -1x>0在x >1时恒成立.所以m (x )在(1,+∞)上单调递增,且m (3)=1-ln 3<0,m (4)=2-ln 4>0, 所以在(1,+∞)上存在唯一实数x 0(x 0∈(3,4))使m (x 0)=0,即x 0-ln x 0-2=0. 当1<x <x 0时,m (x )<0,即F ′(x )<0,当x >x 0时,m (x )>0,即F ′(x )>0, 所以F (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增. 故F (x )min =F (x 0)=x 0ln x 0+3x 0-2x 0-1=x 0x 0-2+3x 0-2x 0-1=x 0+2∈(5,6).故k <x 0+2(k ∈Z),所以k 的最大值为5. [总结升华]函数与导数压轴题堪称“庞然大物”,所以征服它需要一定的胆量和勇气,可以参变量分离、可把复杂函数分离为基本函数、可把题目分解成几个小题、也可把解题步骤分解为几个小步,也可从逻辑上重新换叙.注重分步解答,这样,即使解答不完整,也要做到尽可能多拿步骤分.同时要注意分类思想、数形结合思想、化归与转化等数学思想的运用.[专题过关检测] 1.(2018·武汉调研)已知函数f (x )=ln x +a x(a ∈R). (1)讨论函数f (x )的单调性; (2)当a >0时,证明:f (x )≥2a -1a.解:(1)f ′(x )=1x -a x 2=x -ax2(x >0).当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当a >0时,若x >a ,则f ′(x )>0,函数f (x )在(a ,+∞)上单调递增; 若0<x <a ,则f ′(x )<0,函数f (x )在(0,a )上单调递减. (2)证明:由(1)知,当a >0时,f (x )min =f (a )=ln a +1. 要证f (x )≥2a -1a ,只需证ln a +1≥2a -1a,即证ln a +1a-1≥0.令函数g (a )=ln a +1a-1,则g ′(a )=1a -1a 2=a -1a2(a >0),当0<a <1时,g ′(a )<0,当a >1时,g ′(a )>0,所以g (a )在(0,1)上单调递减,在(1,+∞)上单调递增, 所以g (a )min =g (1)=0. 所以ln a +1a-1≥0恒成立,所以f (x )≥2a -1a.2.(2018·全国卷Ⅱ)已知函数f (x )=e x-ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .解:(1)证明:当a =1时,f (x )≥1等价于(x 2+1)e -x-1≤0. 设函数g (x )=(x 2+1)e -x-1,则g ′(x )=-(x 2-2x +1)e -x=-(x -1)2e -x. 当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1. (2)设函数h (x )=1-ax 2e -x.f (x )在(0,+∞)上只有一个零点等价于h (x )在(0,+∞)上只有一个零点.(ⅰ)当a ≤0时,h (x )>0,h (x )没有零点; (ⅱ)当a >0时,h ′(x )=ax (x -2)e -x. 当x ∈(0,2)时,h ′(x )<0; 当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)上单调递减, 在(2,+∞)上单调递增.故h (2)=1-4ae 2是h (x )在(0,+∞)上的最小值.①当h (2)>0,即a <e24时,h (x )在(0,+∞)上没有零点.②当h (2)=0,即a =e24时,h (x )在(0,+∞)上只有一个零点.③当h (2)<0,即a >e24时,因为h (0)=1,所以h (x )在(0,2)上有一个零点.由(1)知,当x >0时,e x>x 2,所以h (4a )=1-16a 3e 4a =1-16a3e2a2>1-16a32a4=1-1a>0,故h (x )在(2,4a )上有一个零点.因此h (x )在(0,+∞)上有两个零点.综上,当f (x )在(0,+∞)上只有一个零点时,a =e24.3.(2018·西安质检)设函数f (x )=ln x +k x(k ∈R).(1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围. 解:(1)由条件得f ′(x )=1x -kx2(x >0),∵曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,∴f ′(e)=0,即1e -ke 2=0,得k =e ,∴f ′(x )=1x -e x 2=x -ex2(x >0).由f ′(x )<0,得0<x <e ;由f ′(x )>0,得x >e , ∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增, 当x =e 时,f (x )取得极小值,且f (e)=ln e +ee =2.∴f (x )的极小值为2.(2)由题意知对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立, 设h (x )=f (x )-x =ln x +k x-x (x >0), 则h (x )在(0,+∞)上单调递减,∴h ′(x )=1x -kx2-1≤0在(0,+∞)上恒成立,即当x >0时,k ≥-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14恒成立,∴k ≥14.故k 的取值范围是⎣⎢⎡⎭⎪⎫14,+∞. 4.(2018·全国卷Ⅲ)已知函数f (x )=(2+x +ax 2)·ln(1+x )-2x . (1)若a =0,证明:当-1<x <0时,f (x )<0;当x >0时,f (x )>0; (2)若x =0是f (x )的极大值点,求a .解:(1)证明:当a =0时,f (x )=(2+x )ln(1+x )-2x ,f ′(x )=ln(1+x )-x1+x. 设函数g (x )=ln(1+x )-x1+x ,则g ′(x )=x1+x2.当-1<x <0时,g ′(x )<0;当x >0时,g ′(x )>0, 故当x >-1时,g (x )≥g (0)=0, 且仅当x =0时,g (x )=0,从而f ′(x )≥0,且仅当x =0时,f ′(x )=0. 所以f (x )在(-1,+∞)上单调递增. 又f (0)=0,故当-1<x <0时,f (x )<0;当x >0时,f (x )>0.(2)①若a ≥0,由(1)知,当x >0时,f (x )≥(2+x )ln(1+x )-2x >0=f (0), 这与x =0是f (x )的极大值点矛盾. ②若a <0, 设函数h (x )=f x 2+x +ax 2=ln(1+x )-2x2+x +ax2.由于当|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,2+x +ax 2>0, 故h (x )与f (x )符号相同. 又h (0)=f (0)=0, 故x =0是f (x )的极大值点, 当且仅当x =0是h (x )的极大值点. h ′(x )=11+x-22+x +ax 2-2x 1+2ax2+x +ax22=x 2a 2x 2+4ax +6a +1x +1ax 2+x +22.若6a +1>0,则当0<x <-6a +14a,且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )>0, 故x =0不是h (x )的极大值点.若6a +1<0,则a 2x 2+4ax +6a +1=0存在根x 1<0,故当x ∈(x 1,0),且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )<0, 所以x =0不是h (x )的极大值点.若6a +1=0,则h ′(x )=x 3x -24x +1x 2-6x -122,则当x ∈(-1,0)时,h ′(x )>0; 当x ∈(0,1)时,h ′(x )<0. 所以x =0是h (x )的极大值点, 从而x =0是f (x )的极大值点. 综上,a =-16.。
【高中数学】高考数学选择题答题技巧
【高中数学】高考数学选择题答题技巧数学选择题是知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法尽显威力。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。
由于选择题的特殊性,由此提出解选择题要求快、准、巧,忌讳小题大做。
选择题应做到准确而且快速,应多一点想的,少一点算的,不算就不会算错因此,在解答时应该突出一个选字,尽量减少书写解题过程,在对照选择支的同时,多方考虑间接解法,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取。
我们不要给任何方法做出限定,重要的是这种解答的思想方式。
一、按部就班的解题方法。
二、解题技巧。
选择题只管结果,不管中间过程,因此在解题过程中可以大胆的精简中间过程,但精简毕竟就是精简,数学就是一门具备高度高精度逻辑性的细致的科学,没充份的依据,所有的条件反射都就是错误的,只有找出对的依据、逻辑思维过程、检验,答案才可以确认,做题不可以凭印象去,凡差不多就是的都就是错误的,并无十足把握的都就是错误的。
选择题毕竟是简单的甚至可以口算的,思路也是简单的,如果没思路、做不下去或觉得复杂,或者发现做的时候需要大量计算的时候,可以明确的告诉自己,你的方向错了,可以换一种思路了。
1.轻易法当选择题是由计算题、应用题、证明题、判断题改编成的时,可直接按计算题、应用题、证明题、判断题来做,确定答案之后,从选项里找即可。
2.筛选法(排除法)去伪存真,筛除一些较易判定的的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案。
如筛去不合题意的以后,结论只有一个,则为应选项。
3.特定值法根据答案中所提供的信息,选择某些特殊情况进行分析,或某些特殊值进行计算,或将字母参数换成具体数值代入,或将比例数看成具体数带人,总之,把一般形式变为特殊形式,再进行判断往往十分简单。
4.验证法(代入法)将各选项逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。
高三数学题型专题--选择题的解法
选择题的解法1.内容概要:选择题注重考查基础知识、基本技能、基本方法、逻辑思维与直觉思维能力,以及观察、分析、比较、选择简捷运算方法的能力.解答选择题的基本原则是小题不能大做,小题需小做、繁题会简做、难题要巧做。
求解选择题的基本方法是以直接思路肯定为主,间接思路否定为辅,即求解时除了用直接计算方法之外还可以用逆向化策略、特殊化策略、图形化策略、整体化策略等方法求解.解选择题要注意选择题的特殊性,充分利用题干和选择支两方面提供的信息,灵活、巧妙、快速求解.2.典例精析一、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法.运用此种方法解题需要扎实的数学基础。
例1.(08某某)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( )(A )3(B )5(C )3 (D )5【解析】∵双曲线的准线为2a xc ,∴22():()3:2a a c c c c+-=,解得225c a =,∴5cea故选D.例2.设,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,则()2a b b c =+是2A B=的( )(A )充要条件(B )充分而不必要条件(C )必要而充分条件(D )既不充分又不必要条件【解析】设,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若()2a b b c =+,则2sin sin (sin sin )A B B C =+,则1cos 21cos 2sin sin 22a BB C --=+, ∴1(cos 2cos 2)sin sin 2B A BC -=,sin()sin()sin sin B A A B B C +-=, 又sin()sin A B C +=,∴sin()sin A B B -=,∴A B B -=,2A B =, 若ABC ∆中,2A B =,由上可知,每一步都可以逆推回去,得到()2a b b c =+,所以()2a b b c =+是2A B =的充要条件,选A.二、特例法:就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法.用特例法解选择题时,特例取得愈简单、愈特殊愈好.特例法主要包括:特殊值法、特殊函数法、特殊方程法、特殊数列法、特殊位置法、特殊点法等.①特殊值法例3.(08全国Ⅱ)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <c B .c <a <b C . b <a <c D . b <c <a【解析】令12xe ,则11,1,28a b c =-=-=-,故选C.例4.(08某某)若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是( )A .1122a b a b +B .1212a a b b +C .1221a b a b +D .12【解析】令114a ,234a ,113b ,223b ,然后代入要比较大小的几个式子中计算即可,答案为A.【点评】从上面这些例子及其解答来看,2008年高考试题特别喜欢把大小比较与函数、三角等知识结合进行考查,这是2008年大小比较考题的一大亮点.②特殊函数法例5.如果奇函数()f x 在[3,7]上是增函数且最小值为5,那么()f x 在区间[-7,-3]上是 ( )A. 增函数且最小值为-5B. 减函数且最小值是-5C. 增函数且最大值为-5D. 减函数且最大值是-5【解析】构造特殊函数5()3f x x ,显然满足题设条件,并易知()f x 在区间[-7,-3]上是增函数,且最大值为(3)5f ,故选C.③特殊数列法例6. 已知等差数列{}n a 满足121010a a a ++⋅⋅⋅+=,则有( ) A.11010a a +> B.21020a a +< C.3990a a += D.5151a = 解析:取满足题意的特殊数列0n a =,则3990a a +=,故选C. ④特殊方程法例7.曲线222222b xa y ab (0ab )的渐近线夹角为,离心率为e ,则cos2等于( )A .eB .2e C .1e D .21e【解析】本题是考查双曲线渐近线夹角与离心率的一个关系式,故可用特殊方程来考察.取双曲线方程为2214x y ,易得离心率52e,2cos 25,故选C . ⑤特殊位置法例8.过)0(2>=a ax y 的焦点F 作直线交抛物线与P 、Q 两点,若PF 与FQ 的长分别是p 、q ,则=+qp 11() A 、a 2 B 、a 21 C 、a 4 D 、a4 【解析】此抛物线开口向上,过焦点且斜率为k 的直线与抛物线均有两个交点P 、Q ,当k 变化时PF 、FQ 的长均变化,但从题设可以得到这样的信息:尽管PF 、FQ 长度不定,但其倒数和应为定值,所以可以针对直线的某一特定位置进行求解,而不失一般性.考虑直线PQ OF 时,1||||2PF FQ a==,所以11224a a a p q +=+=,故选C.⑥特殊点法例9.(08全国Ⅰ)若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( )A .21x e-B .2xeC .21x e+D .22x e+【解析】因为点(1,1)在1y =的图象上,它关于y x 对称的点(1,1)一定在其反函数(1)y f x =-的图象上,即点(0,1)在函数()f x 的图象上,将其代入四个选择支逐一检验,可以直接排除A 、C 、D ,故选B .【点评】本题主要考查反函数的概念、函数与其反函数图象之间的关系、函数图象的平移.常规解法是先求出函数1y =的反函数,然后再将函数图象平移即可得到正确解答.而本法抓住以下特征:函数图象上的点关于y x 对称的点一定在其反函数的图象上,由此选定特殊点(1,1),从而得出点(1,1)在(1)y f x =-的图象上,进一步得出点(0,1)在()f x 的图象上.于是快速求解.三、图解法:就是利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值X 围等)与某些图形结合起来,利用几何图形的直观几性,再辅以简单计算,确定正确答案的方法。
2023年高考数学二轮复习第二部分方法探究探究二少失分同,保住基本分才能得高分
探究二少失分,保住基本分才能得高分选择、填空在高考中属于保分题目,只有“保住基本分,才能得高分”.在平时的训练中,针对选择、填空题,要做到两个方面:一是练准度:高考中遗憾的不是难题做不出来,而是简单题和中档题做错,会做的题目没做对,平时训练一定要重视选择、填空的正确率.二是练速度:提高选择、填空题的答题速度,能为攻克后面的解答题赢得充足时间.方法一直接法(1)直接法是直接从题设出发,抓住命题的特征,利用定义、性质、定理、公式等,经过变形、推理、计算、判断而得出结果.(2)拿到一个选择题应根据其所提供信息,迅速确定最佳解法.而高考卷中大部分选择题需要用直接法求解.(3)直接法的解题过程与常规解法基本相同,不同的是解选择题时可利用选项的暗示性,同时应注意:在计算和论证时应尽量简化步骤,合理跳步,以提高解题速度,注意一些形成结论的应用,如球的性质、正方体的性质,等差、等比数列的性质.例1(1)[2022·新高考Ⅱ卷]已知正三棱台的高为1,上、下底面边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为()A.100π B.128πC.144π D.192π(2)[2021·新高考Ⅰ卷]已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP,若|FQ|=6,则C的准线方程为____________.听课笔记:对接训练1.[2022·新高考Ⅱ卷](多选)已知函数f(x)=sin (2x+φ)(0<φ<π)的图象关于点(2π3,0)中心对称,则()A.f(x)在区间(0,5π12)单调递减B.f(x)在区间(-π12,11π12)有两个极值点C.直线x=7π6是曲线y=f(x)的对称轴D.直线y=√32-x是曲线y=f(x)的切线2.[2022·全国甲卷]设向量a ,b 的夹角的余弦值为13,且|a |=1,|b |=3,则(2a +b )·b =________.方法二 排除法排除法也叫淘汰法,就是充分运用单项选择题的特征,即有且只有一个正确选项这一信息,从选项入手,根据题设条件与各选项的关系,通过分析、推理、计算、判断,对选项进行筛选,将其中与题设相矛盾的干扰项逐一排除,从而获得正确结论的方法.使用该法的前提是“答案唯一”,即四个选项中有且只有一个正确.例2(1)[2022·全国甲卷]函数y =(3x -3-x )cos x 在区间[−π2,π2]的图象大致为( )(2)[2021·新高考Ⅰ卷]下列区间中,函数f (x )=7sin (x −π6)单调递增的区间是( ) A .(0,π2) B .(π2,π)C .(π,3π2) D .(3π2,2π) 听课笔记:对 接 训 练 3.设函数f (x )={2−x ,x ≤0−x +1,x >0,则满足f (x )+f (x -12)>1的x 的取值范围是( )A .(-∞,14) B .(14,34) C .(-∞,34) D .(34,+∞)4.[2022·全国乙卷]如图是下列四个函数中的某个函数在区间[-3,3]的大致图象,则该函数是( )A .y =−x 3+3x x 2+1B .y =x 3−xx 2+1C .y =2x cos x x 2+1D .y =2sin xx 2+1方法三 特值、特例法(1)特值、特例法是解答单项选择题的最佳方法之一,适用于解答“对某一集合的所有元素、某种关系恒成立”,这样以全称判断形式出现的题目,其原理是“结论若在某种特殊情况下不真,则它在一般情况下也不真”,利用“小题小做”或“小题巧做”的解题策略.(2)当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数、特殊角、特殊数列、图形特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出探求的结论.这样可大大地简化推理、论证的过程.例3(1)[2022·广东华南师大附中三模](多选)如果a <b <0,c <d <0,那么下面一定成立的是( ) A .a +d <b +c B .ac >bd C .ac 2>bc 2D .d a <ca(2)如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P ,Q 满足A 1P =BQ ,过P ,Q ,C 三点的截面把棱柱分成两部分,则其体积之比为( )A .3∶1B .2∶1C .4∶1D .√3∶1 听课笔记:对 接 训 练5.已知E 为△ABC 的重心,AD 为BC 边上的中线,令AB ⃗⃗⃗⃗⃗ =a ,AC ⃗⃗⃗⃗⃗ =b ,若过点E 的直线分别交AB ,AC 于P ,Q 两点,且AP ⃗⃗⃗⃗⃗ =m a ,AQ⃗⃗⃗⃗⃗ =n b ,则1m +1n=( ) A.3 B .4 C .5D .136.已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则a1+a3+a9a2+a4+a10的值是________.方法四数形结合法(1)“数”与“形”是数学这座高楼大厦的两块最重要的基石,二者在内容上互相联系,在方法上互相渗透,在一定条件下可以互相转化.在解答选择题的过程中,可以先根据题意,做出草图,然后参照图形的做法、形状、位置、性质,综合图象的特征,得出结论.(2)对于一些含有几何背景的填空题,若能根据题目条件的特点,作出符合题意的图形,做到数中思形,以形助数,并通过对图形的直观分析、判断,往往可以简捷地得出正确的结果.例4(1)[2021·新高考Ⅱ卷](多选)如图,下列各正方体中,O为下底面的中心,M,N为顶点,P为所在棱的中点,则满足MN⊥OP的是()A BC D(2)[2022·全国甲卷]设函数f(x)=sin (ωx+π3)在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A.[53,136)B.[53,196)C.(136,83]D.(136,196]听课笔记:对接训练7.(多选)已知定义在R上的奇函数f(x),满足f(x-2)=-f(x),且在区间[0,1]上是增函数,若方程f(x)=m在区间[-4,4]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4的取值可能为()A .0B .2C .4D .-48.[2022·新高考Ⅰ卷]已知椭圆C :x 2a2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE |=6,则△ADE 的周长是________.方法五 构造法构造法就是利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决.例5(1)[2022·全国甲卷]已知a =3132,b =cos 14,c =4sin 14,则( ) A .c >b >a B .b >a >c C .a >b >c D .a >c >b (2)如图,已知球O 的面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =√2,则球O 的体积等于________.听课笔记:对 接 训 练9.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(−1,0)D .(0,1)∪(1,+∞) 10.已知正四面体ABCD 的外接球的体积为8√6π,则这个正四面体的表面积为________.方法六 估值法有些问题(主要针对单项选择题),由于条件限制,无法(有时也没有必要)进行精确的运算和判断,而只能依赖于估算.估算实质上是一种粗略的算法,它以正确的算理为基础,通过合理观察、比较、推理、判断,从而做出正确的判断;也即把有关的数值扩大或缩小,从而对运算结果确定出一个范围或做出一个估计.例6(1)[2022·河北保定一模]已知a =√233,b =log 37,c =ln 27,则a ,b ,c 的大小关系为( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b (2)[2019·全国卷Ⅰ]古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cm 听课笔记:对 接 训 练11.做一个面积为1 m 2,形状为直角三角形的铁架框,用下列四种长度的铁管,最合理(够用,且浪费最少)的是( )A .4.6 mB .4.8 mC .5 mD .5.2 m 12.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =32,EF 与平面ABCD 的距离为2,则该多面体的体积为( )A .92 B .5C .6D .152探究二 少失分,保住基本分才能得高分方法一 直接法[例1] 解析:(1)设三棱台上底面A 1B 1C 1、下底面ABC 的外接圆半径分别为r 1,r 2,外接圆圆心分别为O 1,O 2,三棱台的外接球半径为R ,球心为O .令|OO 1|=t ,则|OO 2|=|t -1|.由题意及正弦定理,得2r 1=3√3sin 60°=6,2r 2=4√3sin 60°=8,所以r 1=3,r 2=4,所以R 2=r 12+t 2=r 22+(t -1)2,即R 2=9+t 2=16+(t -1)2,解得{t =4,R 2=25.所以三棱台外接球的表面积为4πR 2=100π.故选A.(2)不妨设P (p 2,p ),∴Q (6+p2,0),PQ⃗⃗⃗⃗⃗ =(6,-p ),因为PQ ⊥OP ,所以p 2×6-p 2=0,∵p >0,∴p =3,∴C 的准线方程为x =-32.答案:(1)A (2)x =-32对接训练1.解析:由题意,得f (2π3)=sin (4π3+φ)=0,所以4π3+φ=k π,k ∈Z ,解得φ=-4π3+k π,k ∈Z .又0<φ<π,所以φ=2π3.故f (x )=sin (2x +2π3).选项A ,当x ∈(0,5π12)时,2x +2π3∈(2π3,3π2).由y =sin u 的图象,知y =f (x )在区间(0,5π12)上单调递减,故正确.选项B ,当x ∈(-π12,11π12)时,2x +2π3∈(π2,5π2).由y =sin u 的图象,知y =f (x )在区间(-π12,11π12)内只有1个极值点,故错误.选项C ,当x =7π6时,2x +2π3=3π,则f (7π6)=0,所以直线x =7π6不是曲线y =f (x )的对称轴,故错误.选项D ,令f ′(x )=2cos (2x +2π3)=-1,得cos (2x +2π3)=-12,则2x +2π3=2π3+2k π,k ∈Z 或2x +2π3=4π3+2k π,k ∈Z ,解得x =k π,k ∈Z 或x =π3+k π,k ∈Z .所以函数y=f (x )的图象在点(0,√32)处的切线斜率为f ′(0)=2cos2π3=-1,切线方程为y -√32=-(x -0),即y =√32-x ,故正确.选AD.答案:AD2.解析:因为cos 〈a ,b 〉=13,|a |=1,|b |=3,所以a ·b =|a ||b |cos 〈a ,b 〉=1×3×13=1,所以(2a +b )·b =2a ·b +b 2=2×1+32=11.答案:11方法二 排除法[例2] 解析:(1)设函数f (x )=(3x -3-x )cos x ,则对任意x ∈[-π2,π2],都有f (-x )=(3-x-3x)cos (-x )=-(3x-3-x)cos x =-f (x ),所以函数f (x )是奇函数,因此排除B ,D 选项.又f (1)=(3-3-1)cos 1=83cos 1>0,所以排除C 选项.故选A.(2)因为函数y =sin x 的单调递增区间为(2k π-π2,2k π+π2)(k ∈Z ), 对于函数f (x )=7sin (x −π6),由2k π-π2<x -π6<2k π+π2(k ∈Z ), 解得2k π-π3<x <2k π+2π3(k ∈Z ),取k =0,可得函数f (x )的一个单调递增区间为(−π3,2π3),则(0,π2)⊆(−π3,2π3),(π2,π)⊄(−π3,2π3),A 选项满足条件,B 不满足条件;取k =1,可得函数f (x )的一个单调递增区间为(5π3,8π3),(π,3π2)⊄(−π3,2π3)且(π,3π2)⊄(5π3,8π3),(3π2,2π)⊄(5π3,8π3),CD 选项均不满足条件.故选A.答案:(1)A (2)A对接训练3.解析:当x =1时,f (1)+f (12)=0+12=12<1,由此排除D 选项.当x =0时,f (0)+f (-12)=1+√2>1,由此排除B 选项.当x =12时,f (12)+f (0)=12+1=32>1,由此排除A 选项.综上所述,选C.答案:C4.解析:对于B 选项,当x =1时,y =0,与图象不符,故B 不符合题意.对于C 选项,当x =3时,y =6cos 310=35cos 3.因为cos 3>-1,所以35cos 3>-35,与图象不符,故C 不符合题意.对于D 选项,当x =3时,y =2sin 310>0,与图象不符,故D 不符合题意.综上,用排除法选A.答案:A方法三 特值、特例法[例3] 解析:(1)取a =c =-2,b =d =-1,则a +d =b +c =-3,ac 2=-8,bc 2=-4,故AC 不正确;因为-a >-b >0,-c >-d >0,所以ac >bd ,故B 正确; 因为c <d ,1a <0,所以d a <ca ,故D 正确. 故选BD(2)将P ,Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有V C -AA 1B=V A 1-ABC =V ABC−A 1B 1C 13,故过P ,Q ,C 三点的截面把棱柱分成的两部分的体积之比为2∶1.答案:(1)BD (2)B对接训练5.解析:由于题中直线PQ 的条件是过点E ,所以该直线是一条“动”直线,所以最后的结果必然是一个定值.故可利用特殊直线确定所求值.方法一 如图1,PQ ∥BC ,则AP ⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ ,AQ ⃗⃗⃗⃗⃗ =23AC ⃗⃗⃗⃗⃗ ,此时m =n =23,故1m +1n=3.故选A.方法二 如图2,取直线BE 作为直线PQ ,显然,此时AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,AQ ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ ,故m =1,n =12,所以1m +1n =3.故选A.答案:A 6.解析:a 1,a 3,a 9的下标成等比数列,故可令a n =n ,又易知它满足题设条件,于是a 1+a 3+a9a 2+a 4+a 10=1316.答案:1316方法四 数形结合法[例4] 解析:(1)设正方体的棱长为2, 如图(1)所示,连接AC ,则MN ∥AC ,故∠POC (或其补角)为异面直线OP ,MN 所成的角,在直角三角形OPC 中,OC =√2,CP =1,故tan ∠POC =√2=√22,故MN ⊥OP 不成立,故A 错误.如图(2)所示,取NT 的中点为Q ,连接PQ ,OQ ,则OQ ⊥NT ,PQ ⊥MN ,由正方体SBCM NADT 可得SN ⊥平面ANTD ,而OQ ⊂平面ANDT , 故SN ⊥OQ ,而SN ∩MN =N ,故OQ ⊥平面SNTM , 又MN ⊂平面SNTM ,OQ ⊥MN ,而OQ ∩PQ =Q ,所以MN ⊥平面OPQ ,而PO ⊂平面OPQ ,故MN ⊥OP ,故B 正确. 如图(3),连接BD ,则BD ∥MN ,由B 的判断可得OP ⊥BD ,故OP ⊥MN ,故C 正确.如图(4),取AD 的中点Q ,AB 的中点K ,连接AC ,PQ ,OQ ,PK ,OK ,则AC ∥MN ,因为DP =PC ,故PQ ∥AC ,故PQ ∥MN ,所以∠QPO 或其补角为异面直线PO ,MN 所成的角,因为正方体的棱长为2,故PQ =12AC =√2,OQ =√AO 2+AQ 2=√1+2=√3, PO =√PK 2+OK 2=√4+1=√5,QO 2<PQ 2+OP 2,故∠QPO 不是直角,故PO ,MN 不垂直,故D 错误.故选BC.(2)因为f (x )=sin (ωx +π3),结合选项,只考虑ω>0.当ωx +π3=π2+k π(k ∈Z ),即x =π6ω+kπω(k ∈Z )时,f (x )取得极值.又因为f (x )在区间(0,π)上恰有三个极值点,所以{π6ω+2πω<π,π6ω+3πω≥π,解得136<ω≤196.当ωx +π3=k π(k ∈Z ),即x =-π3ω+kπω(k ∈Z )时,f (x )=0.又因为f (x )在区间(0,π)上恰有两个零点,所以{−π3ω+2πω<π,−π3ω+3πω≥π,解得53<ω≤83.综上可得,ω的取值范围是(136,83].故选C.答案:(1)BC (2)C对接训练7.解析:根据题意,函数f (x )满足f (x -2)=-f (x ),则f (x -4)=-f (x -2)=f (x ),即函数f (x )是周期为4的周期函数,且f (x -2)=-f (x )=f (-x ),则函数f (x )的对称轴为x =-1.又由f (x )是奇函数,则x =1也是函数f (x )的对称轴,x ∈[0,1]时,函数f (x )是增函数,据此作出函数f (x )的简图,若方程f (x )=m 在区间[-4,4]上有四个不同的根,必有m ≠0,分2种情况讨论:①当m >0时,方程f (x )=m (m >0)在区间[-4,4]上的四个不同的根,两两分别关于x =-3和x =1对称,不妨设x 1<x 2<x 3<x 4,则x 1+x 2=-6,x 3+x 4=2,则x 1+x 2+x 3+x 4=-6+2=-4;②当m <0时,同理可得x 1+x 2+x 3+x 4=4.故选CD.答案:CD8.解析:由题意知e =ca =12,所以a =2c ,b =√3c ,所以△AF 1F 2是等边三角形,所以DE 垂直平分AF 2,所以|AD |=|DF 2|,|AE |=|EF 2|,所以△ADE 的周长为|DE |+|AD |+|AE |=|DE |+|DF 2|+|EF 2|.由椭圆的定义,可知|DE |+|DF 2|+|EF 2|=4a =8c .因为直线DE 的斜率k =tan 30°=√33,所以直线DE 的方程为y =√33(x +c ),即x =√3y -c .由椭圆方程x 24c 2+y 23c 2=1,得3x 2+4y 2=12c 2.将x =√3y -c 代入并整理,得13y 2-6√3cy -9c 2=0.设D (x 1,y 1),E (x 2,y 2),则y 1+y 2=6√3c 13,y 1y 2=-9c 213,所以|DE |=√1+1k 2√(y 1+y 2)2−4y 1y 2=√1+3·√108c 2169+36c 213=1213√3c 2+13c 2=4813c =6,解得c =138.所以△ADE 的周长是8c =13. 答案:13方法五 构造法[例5] 解析:(1)a -c =3132-4sin 14=1-12×(14)2-sin1414.不妨设f (x )=1-12x 2-sin x x=x−12x 3−sin xx.令h (x )=x -12x 3-sin x ,则h ′(x )=1-32x 2-cos x .令g (x )=1-32x 2-cos x ,则g ′(x )=-3x +sin x .当x ∈(0,14]时,sin x <3x ,所以当x ∈(0,14]时,g ′(x )<0,所以g (x )在(0,14]上单调递减,所以当x ∈(0,14]时,g (x )<g (0)=0,所以当x ∈(0,14]时,h ′(x )<0,所以h (x )在(0,14]上单调递减.所以当x ∈(0,14]时,h (x )<h (0)=0,所以当x ∈(0,14]时,f (x )<0,所以f (14)<0,即a <c .结合四个选项,排除B ,C ,D.故选A.(2)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =√(√2)2+(√2)2+(√2)2=2R ,所以R =√62,故球O 的体积V =4πR 33=√6π. 答案:(1)A (2)√6π对接训练9.解析:构造函数g (x )=f (x )x,则g ′(x )=xf ′(x )−f (x )x 2,由题意知,当x >0时,g ′(x )<0, ∴g (x )在(0,+∞)上是减函数.∵f (x )是奇函数,f (-1)=0,∴f (1)=-f (-1)=0. ∴g (1)=f (1)1=0,∴当x ∈(0,1)时,g (x )>0,从而f (x )>0;当x ∈(1,+∞)时,g (x )<0,从而f (x )<0. 又∵g (-x )=f (−x )−x=−f (x )−x=f (x )x=g (x ),(x ≠0)∴g (x )是偶函数,∴当x ∈(-∞,-1)时,g (x )<0,从而f (x )>0; 当x ∈(-1,0)时,g (x )>0,从而f (x )<0.综上,所求x 的取值范围是(-∞,-1)∪(0,1). 答案:A 10.解析:将正四面体ABCD 放在一个正方体内,设正方体的棱长为a ,如图所示.设正四面体ABCD的外接球的半径为R ,则43πR 3=8√6π,得R =√6.∵正四面体的外接球和正方体的外接球是同一个球,∴√3a =2R =2√6,∴a =2√2,∵正四面体ABCD 的每条棱长均等于正方体的面对角线长,∴正四面体ABCD 的棱长为√2a =4,因此,这个正四面体的表面积为4×12×42×sinπ3=16√3.答案:16√3方法六 估值法[例6] 解析:(1)因为2=√83<a =√233<√273=3,b =log 37<log 39=2,c =ln 27>ln e 3=3,所以b <a <c ,故选B.(2)26+26÷0.618+(26+26÷0.618)÷0.618≈178 (cm),故其身高可能是175 cm ,故选B. 答案:(1)B (2)B对接训练 11.解析:设两直角边分别为a ,b ,则12ab =1,∴ab =2.∴a +b +√a 2+b 2≥2√ab +√2ab ,当且仅当a =b =√2时,等号成立. ∵2√2+2≈4.828,∴钢管长度选5 m 最合理. 故选C. 答案:C12.解析:连接BE ,CE ,四棱锥E -ABCD 的体积为V E -ABCD =13×3×3×2=6,又多面体ABCDEF 的体积大于四棱锥E -ABCD 的体积,即所求几何体的体积V >V E -ABCD =6,而四个选项里面大于6的只有152,故选D.答案:D。
2021新高考数学二轮总复习学案:第1讲 选择题、填空题的解法含解析
第1讲选择题、填空题的解法方法思路概述高考选择题、填空题注重多个知识点的小型综合,渗透各种数学思想和方法,体现利用基础知识深度考基础、考能力的导向;使作为中低档题的选择题、填空题成为具备较佳区分度的基本题型.因此能否在选择题、填空题上获取高分,对高考数学成绩影响重大.解答选择题、填空题的基本策略是准确、迅速.(1)解题策略:小题巧解,不需“小题大做”,在准确、迅速、合理、简洁的原则下,充分利用题设和选择支这两方面提供的信息作出判断.先定性后定量,先特殊后一般,先间接后直接,多种思路选最简.对于选择题可先排除后求解,既熟悉通法又结合选项支中的暗示及知识能力,运用特例法、筛选法、图解法等技巧求解.(2)解决方法:主要分直接法和间接法两大类,具体方法为直接法,特值、特例法,筛选法,数形结合法,等价转化法,构造法,代入法等.解法分类指导方法一直接法直接法,就是直接从题设的条件出发,运用有关的概念、性质、公理、定理、法则和公式等,通过严密的推理和准确的计算,然后对照题目所给出的选择支“对号入座”作出相应的选择.多用于涉及概念、性质的辨析或运算较简单的定性题目.【例1】(1)(2020山东泰安一模,2)已知复数=1-b i,其中a,b∈R,i是虚数单位,则|a+b i|=()A.-1+2iB.1C.5D.(2)(多选)(2020山东济宁模拟,11)已知函数f(x)=cos-2sin cos(x∈R),现给出下列四个命题,其中正确的是()A.函数f(x)的最小正周期为2πB.函数f(x)的最大值为1C.函数f(x)在上单调递增D.将函数f(x)的图象向左平移个单位长度,得到的函数解析式为g(x)=sin 2x【对点训练1】(1)(2020福建福州模拟,理6)已知数列{a n}为等差数列,若a1,a6为函数f(x)=x2-9x+14的两个零点,则a3a4=()A.-14B.9C.14D.20(2)(2020浙江,17)已知平面单位向量e1,e2满足|2e1-e2|≤,设a=e1+e2,b=3e1+e2,向量a,b的夹角为θ,则cos2θ的最小值是.方法二特值、特例法特值、特例法是在题设普遍条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,从而“小题小做”或“小题巧做”.当题目已知条件中含有某些不确定的量时,可将题目中变化的不定量选取一些符合条件的特殊值(或特殊函数,特殊角,特殊数列,特殊图形,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论.这样可大大地简化推理、论证的过程.【例2】(1)(2020山东模考卷,8)若a>b>c>1,且ac<b2,则()A.log a b>log b c>log c aB.log c b>log b a>log a cC.log c b>log a b>log c aD.log b a>log c b>log a c(2)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,=4,=-1,则=.【对点训练2】(1)(2020浙江高考压轴卷,8)已知a,b∈R,且a>b,则()A. B.sin a>sin bC. D.a2>b2(2)在平面直角坐标系中,设A,B,C是曲线y=上三个不同的点,且D,E,F分别为BC,CA,AB的中点,则过D,E,F三点的圆一定经过定点.方法三等价转化法在应用等价转化法解决问题时,没有一个统一的模式去进行.可以在数与数、形与形之间进行转换;可以在宏观上进行等价转换;也可以在函数、方程、不等式之间进行等价转化.但都需要保持命题的真假不变.等价转化法的转化原则是将陌生的问题转化为熟悉的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为直观的问题,比如从超越式到代数式、从无理式到有理式,从分式到整式.【例3】(1)函数f(x)=有且只有一个零点的充分不必要条件是()A.a<0B.0<a<C.<a<1D.a≤0或a>1(2)已知f(x)与函数y=-a sin x关于点,0对称,g(x)与函数y=e x关于直线y=x对称,若对任意x1∈(0,1],存在x2∈,2,使g(x1)-x1≤f(x2)成立,则实数a的取值范围是()A.-∞,B.,+∞C.-∞,D.,+∞【对点训练3】(1)在四面体P-ABC中,△ABC为等边三角形,边长为3,PA=3,PB=4,PC=5,则四面体P-ABC的体积为()A.3B.2C. D.(2)(2020福建福州模拟,16)已知函数f(x)=ax-ln x-1,g(x)=,用max{m,n}表示m,n中的最大值,设φ(x)=max{f(x),g(x)}.若φ(x)≥在(0,+∞)上恒成立,则实数a的取值范围为.方法四数形结合法数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.每个几何图形中蕴含着一定的数量关系,而数量关系常常又通过图形的直观性作出反映和描述,数与形之间可以相互转化,将问题化难为易,化抽象为具体.数形结合的思想方法通过借数解形、以形助数,能使某些较复杂的数学问题迎刃而解.【例4】(1)(2020山东模考卷,6)已知点A为曲线y=x+(x>0)上的动点,B为圆(x-2)2+y2=1上的动点,则|AB|的最小值是()A.3B.4C.3D.4(2)(2020山东,5)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%(2)(2020山东,5)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%【对点训练4】(1)已知函数f(x)=若存在实数a,b,c,满足f(a)=f(b)=f(c),其中c>b>a,则(a+b)f(c)的取值范围是()A.(24,36)B.(48,54)C.(24,27)D.(48,+∞)(2)(多选)(2020山东济南一模,12)已知函数f(x)=(sin x+cos x)|sin x-cos x|,下列说法正确的是()A.f(x)是周期函数B.f(x)在区间上是增函数C.若|f(x1)|+|f(x2)|=2,则x1+x2=(k∈Z)D.函数g(x)=f(x)+1在区间[0,2π]上有且仅有1个零点方法五构造法利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决.构造法是建立在观察联想、分析综合的基础之上的,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题得到快速解决.【例5】(1)(2020全国Ⅱ,理11)若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<0(2)(2020山东烟台模拟,16)设定义域为R的函数f(x)满足f'(x)>f(x),则不等式e x-1f(x)<f(2x-1)的解集为.【对点训练5】(1)(2020天津和平区一模,7)函数f(x)是定义在R上的奇函数,对任意两个正数x1,x2(x1<x2),都有,记a=25f(0.22),b=f(1),c=-log53(lo5),则a,b,c大小关系为()A.c>b>aB.b>c>aC.a>b>cD.a>c>b(2)(2020浙江,9)已知a,b∈R且ab≠0,对于任意x≥0均有(x-a)(x-b)(x-2a-b)≥0,则()A.a<0B.a>0C.b<0D.b>0方法六排除法(针对选择题)数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.排除法(又叫筛选法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项逐一剔除,从而获得正确的结论.【例6】(1)(2020全国Ⅱ,文5)已知单位向量a,b的夹角为60°,则在下列向量中,与b垂直的是()A.a+2bB.2a+bC.a-2bD.2a-b(2)(2020浙江高考压轴卷,7)函数f(x)=(其中e为自然对数的底数)的图象大致为()【对点训练6】(1)(多选)(2020山东联考,9)在下列函数中,最小值是2的是()A.y=x+B.y=2x+2-xC.y=sin x+,x∈D.y=x2-2x+3(2)(2020浙江,4)函数y=x cos x+sin x在区间[-π,π]上的图象可能是()方法七估算法选择题提供了正确的选择支,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次.【例7】(2019全国Ⅰ,文4,理4)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是()A.165 cmB.175 cmC.185 cmD.190 cm【对点训练7】已知正数x,y满足2x+y<4,则的取值范围是()A.B.C.∪(5,+∞)D.∪[5,+∞)专题方法归纳1.解选择题、填空题的基本方法比较多,但大部分选择题、填空题的解法是直接法,在解题时要根据题意灵活运用上述一种或几种方法“巧解”,在“小题小做”“小题巧做”上做文章,切忌盲目地采用直接法.2.由于选择题供选选项多、信息量大、正误混杂、迷惑性强,稍不留心就会误入“陷阱”,应该从正反两个方向肯定、否定、筛选、验证,既谨慎选择,又大胆跳跃.3.解填空题不要求求解过程,从而结论是判断正确的唯一标准,因此解填空题时要注意以下几个方面:(1)要认真审题,明确要求,思维严谨、周密,计算要准确;(2)要尽量利用已知的定理、性质及已有的结论;(3)要重视对所求结果的检验.4.作为平时训练,解完一道题后,还应考虑一下能不能用其他方法进行“巧算”,并注意及时总结,这样才能有效地提高解题能力.第1讲选择题、填空题的解法解法分类指导【例1】(1)D(2)BD解析(1)由=1-b i,得2-a i=i(1-b i)=b+i,∴a=-1,b=2,则a+b i=-1+2i,∴|a+b i|=|-1+2i|=,故选D.(2)由题得,f(x)=cos-sin sin2x-cos2x=sin,∴函数f(x)的最小正周期为π,最大值为1,故A不正确,B正确;当x时,2x-,函数f(x)在上先单调递减后单调递增,故C错误;将函数f(x)的图象向左平移个单位长度,得到的函数解析式为g(x)=f=sin2x,故D正确.对点训练1(1)D(2)解析(1)令f(x)=0,则方程x2-9x+14=0,解得方程的两个根为2,7.∵等差数列{a n}中,a1,a6为函数f(x)=x2-9x+14的两个零点,∴a1=2,a6=7,或a1=7,a6=2,当a1=2,a6=7时,d==1,则a3=4,a4=5,所以a3a4=20;当a1=7,a6=2时,d==-1,则a3=5,a4=4,所以a3a4=20.故选D.(2)|2e1-e2|2,解得e1·e2又e1·e2≤1,所以e1·e2≤1.cosθ==,设e1·e2=x,则x≤1.cos2θ=,得cos2,所以cos2θ的最小值是【例2】(1)B(2)解析(1)因为a>b>c>1,且ac<b2,令a=16,b=8,c=2,则log c a=4>1>log a b,故A,C错;log c b=3>log b a=,故D错,B正确.(2)所求的问题是个定值问题,“在△ABC中”和在特殊△ABC中所求的值相等,所以将所给条件“在△ABC中”特殊化为“在等边△ABC中”.如下图,=(x,3y)·(-x,3y)=-x2+9y2=4;=(x,y)·(-x,y)=-x2+y2=-1;解得x2=,y2=则=(x,2y)(-x,2y)=-x2+4y2=对点训练2(1)C(2)(1,0)解析(1)对于A,取a=1,b=-1,则a>b成立,但,故A 错误;对于B,取a=π,b=0,则a>b 成立,但sin π=sin0,故B 错误; 对于C,因y=在R 上单调递减,若a>b ,则,故C 正确;对于D,取a=1,b=-2,则a>b 成立,但a 2<b 2,故D 错误. (2)曲线y=的对称中心为(1,0),设过对称中心的直线与曲线交于A ,B 两点,则A ,B 的中点为对称中心(1,0),所以过D ,E ,F 三点的圆一定经过定点(1,0). 【例3】(1)A (2)C 解析(1)当x>0时,函数f (x )过点(1,0),又函数f (x )有且只有一个零点,可推出,当x ≤0时,函数y=-2x +a 没有零点,即在(-∞,0]内,函数y=2x 与直线y=a 无公共点.由数形结合,可得a ≤0或a>1.又因{a|a<0}⫋{a|a ≤0或a>1},故选A .(2)依题意得f (x )=a sin(1-x ),g (x )=ln x ,设h (x )=g (x )-x=ln x-x ,x ∈(0,1],∵h'(x )=-1≥0,∴h (x )在(0,1]上单调递增, ∴h (x )max =h (1)=ln1-1=-1. 故原题等价于存在x ∈,2,使得a sin(1-x )≥-1,∵sin(1-x )≤0,∴a 故只需a 而y=在x ∈,2上单调递减,而,∴a 故选C .对点训练3(1)C (2) 解析(1)如图,延长CA 至D ,使得AD=3,连接DB ,PD ,因为AD=AB=3,故△ADB 为等腰三角形.又∠DAB=180°-∠CAB=120°,故∠ADB=(180°-120°)=30°,所以∠ADB+∠DCB=90°,即∠DBC=90°,故CB ⊥DB.因为PB=4,PC=5,BC=3,所以PC 2=PB 2+BC 2,所以CB ⊥PB.因为DB ∩PB=B ,DB ⊂平面PBD ,PB ⊂平面PBD ,所以CB ⊥平面PBD.所以V 三棱锥P-CBD=V 三棱锥C-PBD =CB×S △PBD .因为A 为DC 的中点,所以V 三棱锥P-ABC =V 三棱锥P-CBD =3×S △PBD =S △PBD .因为DA=AC=AP=3,故△PDC 为直角三角形,所以PD=又DB=AD=3,而PB=4,故DB 2=PD 2+PB 2,即△PBD 为直角三角形,所以S △PBD =4=2,所以V 三棱锥P-ABC =故选C .(2)当x ∈(0,3)时,g (x )=,当x ∈[3,+∞)时,g (x )=,所以φ(x )在[3,+∞)必成立,问题转化为φ(x )在(0,3)恒成立,由ax-ln x-1恒成立,可得a 在x ∈(0,3)恒成立,设h (x )=,x ∈(0,3),则h'(x )=,当0<x<1时,h'(x )>0,当1<x<3时,h'(x )<0,所以h (x )在(0,1)内单调递增,在(1,3)内单调递减,所以h (x )max =h (1)=,所以a,故实数a 的取值范围为【例4】(1)A (2)C 解析(1)作出对勾函数y=x+(x>0)的图象如图,由图象知函数的最低点坐标为A (2,4),圆心坐标为C (2,0),半径R=1,则由图象知当A ,B ,C 三点共线时,|AB|最小,此时最小值为4-1=3,故选A .(2)设既喜欢足球又喜欢游泳的学生比例数为x.由维恩图可知,82%-x+60%=96%,解得x=46%,故选C.对点训练4(1)B(2)AC解析(1)画出f(x)=的图象,如图所示.∵a<b<c,∴由二次函数的性质可得a+b=6.由图可知,4<c<log29+1,∴f(4)<f(c)<f(log29+1),f(4)=8,f(log29+1)==9,∴8<f(c)<9,48<6f(c)<54,即(a+b)f(c)的取值范围是(48,54),故选B.(2)由题得,f(x)=(sin x+cos x)|sin x-cos x|==图象如图所示,由图可知,f(x)是周期为2π的周期函数,故A正确;f(x)在区间上不是单调函数,故B错误;若|f(x1)|+|f(x2)|=2,则x1+x2=(k∈Z),故C正确;函数g(x)=f(x)+1在区间[0,2π]上有且仅有2个零点,故D错误.故选AC.【例5】(1)A(2)(1,+∞)解析(1)∵2x-2y<3-x-3-y,∴2x-3-x<2y-3-y.∵f(t)=2t-3-t在R上为增函数,且f(x)<f(y),∴x<y,∴y-x>0,∴y-x+1>1,∴ln(y-x+1)>ln1=0.故选A.(2)设F(x)=,则F'(x)=f'(x)>f(x),∴F'(x)>0,即函数F(x)在定义域上单调递增.∵e x-1f(x)<f(2x-1),,即F(x)<F(2x-1),∴x<2x-1,即x>1,∴不等式e x-1f(x)<f(2x-1)的解集为(1,+∞).对点训练5(1)C(2)C解析(1)构造函数g(x)=,则函数在(0,+∞)内单调递减,∵0.22<1<log35,则f(0.22)>f(1)>f(log35)=-f(lo5),∵a=25f(0.22),b=f(1),c=-log53×f(lo5),∴25f(0.22)>f(1)>-log53×f(lo5),∴a>b>c.(2)当a<0时,在x≥0上,x-a≥0恒成立,所以只需满足(x-b)(x-2a-b)≥0恒成立,此时2a+b<b,由二次函数的图象可知,只有b<0时,满足(x-b)(x-2a-b)≥0,b>0不满足条件;当b<0时,在[0,+∞)上,x-b≥0恒成立,所以只需满足(x-a)(x-2a-b)≥0恒成立,此时两根分别为x=a和x=2a+b,①当a+b>0时,此时0<a<2a+b,当x≥0时,(x-a)·(x-2a-b)≥0不恒成立;②当a+b<0时,此时2a+b<a,若满足(x-a)(x-2a-b)≥0恒成立,只需满足a<0;③当a+b=0时,此时2a+b=a>0,满足(x-a)(x-2a-b)≥0恒成立.综上可知,满足(x-a)(x-b)(x-2a-b)≥0在x≥0恒成立时,只有b<0.故选C.【例6】(1)D(2)A解析(1)由题意可知,a·b=|a|·|b|cos60°=对于A,(a+2b)·b=a·b+2b2=0,不符合题意;对于B,(2a+b)·b=2a·b+b2=2≠0,不符合题意;对于C,(a-2b)·b=a·b-2b2=-0,不符合题意;对于D,(2a-b)·b=2a·b-b2=0,故2a-b与b垂直.故选D.(2)∵f(-x)==f(x),∴f(x)是偶函数,故f(x)图象关于y轴对称,排除C,D;又x=1时,f(1)=<0,排除B,故选A.对点训练6(1)BD(2)A解析(1)对于A,若x<0,则最小值不为2,故A错误;对于B,y=2x+2-x≥2,当且仅当x=0时等号成立,故B正确;对于C,对x,y=sin x+2,但等号成立需sin x=,方程无解,故C错误;对于D,y=x2-2x+3=(x-1)2+2≥2,当x=1时取等号,故D正确.故选BD.(2)因为f(-x)=(-x)cos(-x)+sin(-x)=-(x cos x+sin x)=-f(x),x∈[-π,π],所以函数f(x)是奇函数,故排除C,D,当x时,x cos x+sin x>0,所以排除B.故选A.【例7】B解析设人体脖子下端至肚脐长为x cm,则,得x≈42.07,又其腿长为105cm,所以其身高约为42.07+105+26=173.07(cm),接近175cm.故选B.对点训练7A解析作出表示的可行域如图所示,直线2x+y=4与坐标轴的交点为B(2,0),C(0,4).设z=,∵A(0,0), ∴z A=1;∵B(2,0),∴z B=;∵C(0,4),∴z C=5.由题知,无法取到B,C两点,的取值范围是。
高考数学选择题答题技巧总结(十大速解方法)
高考数学选择题答题技巧总结(十大速解方法)一、特殊值检验法在解题的过程中,考生们可以将问题特殊化,利用问题在某一种特殊情况下不真,那么在一般情况下也不真的这个原因,达到辨别正确与否的目的,这种办法常常和下文提到的排除法同时使用。
二、极端性原则很简单,就是遇到问题时,将所要研究的问题向极端进行分析,因为在极端状态下,因果关系会更加明显,这样可以达到迅速解决问题的目的。
这种办法适用于求极值、取值范围、解析几何、立体几何上面,很多计算步骤繁琐、计算量大的题也可以采用这种极端性去分析解决。
三、逆推验证法简单来说,就是将答案代入题目去验证的办法。
选择题总共也就4个选项,实在不行的情况下,是可以一一代入进行验证的。
四、反证法从否定结论出发,经过逻辑推理推导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的,它的依据是原命题与逆否命题同真假。
这种办法经常在排列组合或者是概率问题的时候用到。
五、排除法利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
六、估算法有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从而得出正确判断的方法。
七、递推归纳法通过已知的条件进行推理,寻找到规律,进而归纳出正确答案。
八、特征分析法对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。
九、数形结合法由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
十、顺推破解法利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
如下题,根据题意,依次将点代入函数及其反函数即可。
高考数学选择题的解题技巧归纳
高考数学选择题的解题技巧归纳高考数学选择题蒙题技巧数量原则理想状态:15道题,每题5个选项,A、B、C、D、E平均每个选项共出现3次。
答案排列:3、3、3、3、3实际状态:每个选项在2——4的范围内。
选项排列:3、3、3、2、4(此种状态略多呈现)或3、2、4、2、4。
即某一个选项为2个,某一个选项为4个三不相同原则即连续三个问题不会连续出现相同答案答案排列不会出现ABCDE的英文字母排列顺序中庸之道即数值优先选择“中间量”选项,选项优先考虑BCD。
在同一道题中优先考虑数值的“中间量”后考虑选项BCD。
(如E选项对应数值为中间量时,优先从数值入手考虑)出现诸如“以上结果都不对”的选项不予考虑由提干给定信息入手,通过选项特征排除错误选项选项基本特征如下:单值与多值(例如提干出现“偶次方、绝对值、对称性”等结果出现多值) 正值与负值(考前冲刺P12/25题根据提干排除负值)有零与无零区间的开与闭(看极端情况能否取等号)正无穷与负无穷(通过极限考虑)整数与小数(分数)质数与合数大于与小于整除与不能整除带符号与不带符号(例如根号、平方号等等)少数服从多数原则即看选项特征,具有同一特征多的选项优先考虑。
复杂表达式化简题一般情况下选项出现1、2、0、-1、-2的情况比较多前后无定位,连续几道题均不会都需猜蒙答案的情况观察已做完的选项情况,哪个选项少就将这几道题全写成这个选项。
答案往往出现在互为相反数、互为倒数、相加为一(概率题)的几个选项。
高考数学选择题解题技巧高考数学选择题解题技巧一、排除法所谓排除法,就是经过判断推理,将四个备选答案中的三个迷惑答案一一排除,剩下一个正确答案.排除法也叫筛选法.例1 若a b,且c为实数,则下列各式中正确的是( ).A.ac bcB.acbc2 D.ac2≥bc2解析:由于c为实数,所以c可能大于0、小于0、也可能等于0.当c=0时,显然A、B、C均不成立,故应排除A、B、C.对于D来说,当c 0,c 0,c=0时,ac2≥bc2都成立,故应选D.例2 在Rt△ABC中,∠C=90°,AC=15,BC=8,则sinA+sinB+sinC=( ). A. B. C. D.解析:由∠C=90°可得 sinC=1. 又因为∠A、∠B均为锐角,所以sinA、sinB均为正数,从而 sinA+sinB+sinC 1.而A、B、C三个选项中的值均小于1,于是排除A、B、C ,故选 D.高考数学选择题解题技巧二、特殊值法当某些题目比较抽象,难以对其作出判断时,我们可以在符合题目条件的`范围内,用某些特殊值代替题目中的字母,然后作出判断.我们将这种解题的方法称为特殊值法.例3 若二次方程x2+2px+2q=0有实数根,其中p,q为奇数,那么它的根一定为( ).A.奇数B.偶数C.分数D.无理数解析:此题关于x的方程的系数为字母p、q,虽然知道p、q为奇数,但仍比较抽象,我们可以根据题设条件赋予未知字母特定的值,然后再去解这个一元二次方程,它的根的情况便一目了然了.不妨设p=3,q=1,则原方程变为x2+6x+2=0解得x=± -3,显然这是一个无理数,故应选择D.例4 若a、b、c都不为零,但a+b+c=0,则 + + 的值( ).A.正数B.零C.负数D.不能确定解析:此题若按传统方法进行通分将非常麻烦且不易求解,若采用特殊值法,则能化繁为简.令a=1、b=1、c=-2,代入原式得 + + = + - =0,故选B. 高考数学选择题解题技巧三、代入检验法当某些问题(如方程、函数等)解起来比较麻烦时,可以换一个角度进行分析判断,即把给出的根、给出的点或给出的值代入方程或函数式中进行验证,从而使问题得以简化.这类处理问题的方法被称为代入法,又叫验证法.例5 若最简根式和是同类根式,则a、b的值为( ).A.a=1 b=1B.a=1 b=-1C.a=-1 b=-1D.a=-1 b=1解析:由同类根式的定义可知根指数相同,被开方数也相同,这样便可列出一个二元一次方程组,再解这个二元一次方程组,用求出的解去检验给出的a、b的值,显然比较麻烦,如采用将给出的a、b的值分别代入最简根式中,再作出判断便容易多了.当把a=1、b=1代入根式后分别得出和,显然它们为同类根式,故应选A. 例6 若△ABC的三边长分别为整数,周长为11,且一边长为4,则这个三角形的最大边长为( ).A.7B.6C.5D.4解析:(1)若最大边为7,7+4=11,两边长就等于周长显然不行;(2)若最大边为6,则另一边只能为1,1、4、6无法构成三角形;(3)若最大边为5,且一边长为4.则第三边为2,因此5为最大边,无需再考虑4的情况.故选C.高考数学选择题解题技巧四、估算法估算法是一种粗略的计算方法,实质上是一种快速的近似计算方法,即对题目所给条件或信息作适当的变形与整理,从而对结果确定出一个范围或作出一个估计.例7 已知地球的表面积约等于5.1亿平方千米,其中水面面积约等于陆地面积的倍,则陆地面积约等于( )亿平方千米(精确到0.1).数学高考选择答题技巧一、按部就班的解题方法。
高考数学二轮专题复习 选择题与填空题解答策略
选择题与填空题解答策略【考纲解读】1.熟练掌握函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想.2.能够对所学知识进行分类或归纳,能应用数学思想方法分析和解决问题,系统地把握知识间的内在联系.【考点预测】1.近几年来高考数学试题中选择题稳定在14~15道题,分值65分,占总分的43.3%。
高考选择题注重多个知识点的小型综合,渗逶各种数学思想和方法,体现基础知识求深度的考基础考能力的导向;使作为中低档题的选择题成为具备较佳区分度的基本题型.2.填空题是一种传统的题型,也是高考试卷中又一常见题型。
近几年高考,都有一定数量的填空题,且稳定了4个小题左右,每题4分,共16分,越占全卷总分的11%.【要点梳理】1.准确是解答选择题的先决条件。
选择题不设中间分,一步失误,造成错选,全题无分。
所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
迅速是赢得时间获取高分的必要条件。
高考中考生不适应能力型的考试,致使“超时失分”是造成低分的一大因素。
对于选择题的答题时间,应该控制在不超过50分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。
2.选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面,是否达到《考试说明》中的“了解、理解、掌握”三个层次的要求。
历年高考的选择题都采用的是“四选一”型,即选择项中只有一个是正确的。
它包括两个部分:题干,由一个不完整的陈述句或疑问句构成;备选答案,通常由四个选项A、B、C、D组成。
3.一般地,解答选择题的策略是:①熟练掌握各种基本题型的一般解法。
②结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧。
③挖掘题目“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 选择题的解法技巧题型概述选择题考查基础知识、基本技能,侧重于解题的严谨性和快捷性,以“小”“巧”著称.解选择题只要结果,不看过程,更能充分体现学生灵活应用知识的能力.解题策略:充分利用题干和选项提供的信息作出判断,先定性后定量,先特殊后推理,先间接后直接,先排除后求解,一定要小题巧解,避免小题大做. 方法一 直接法直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密地推理和准确地运算,从而得出正确的结论,然后对照题目所给出的选项“对号入座”,作出相应的选择.涉及概念、性质的辨析或运算较简单的题目常用直接法.例1 (1)(2015·课标全国Ⅰ)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝ ⎛⎭⎪⎫-33,33 B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223D.⎝ ⎛⎭⎪⎫-233,233(2)(2015·广雅中学高三一模)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =3,A =π3,cos B =55,则b 等于( )A.855 B.255 C.455 D.1255解析 (1)由题意知a =2,b =1,c =3, ∴F 1(-3,0),F 2(3,0),∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0).∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0, 即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线上,∴x 202-y 20=1,即x 20=2+2y 20,∴2+2y 20-3+y 20<0,∴-33<y 0<33.故选A. (2)由题意可得,△ABC 中,sin B =1-cos 2B =255,再由正弦定理可得a sin A =bsin B ,即3sinπ3=b 255,解得b =455. 答案 (1)A (2)C思维升华 涉及概念、性质的辨析或运算较简单的题目常用直接法.只要推理严谨,运算正确必能得出正确的答案.平时练习中应不断提高用直接法解选择题的能力,不能一味求快导致快中出错.跟踪演练1 (1)数列{a n }的前n 项和为S n ,已知a 1=13,且对任意正整数m 、n ,都有a m +n =a m ·a n ,若S n <a 恒成立,则实数a 的最小值为( )A.12B.23C.32D .2 (2)(2015·四川)执行如图所示的程序框图,输出S 的值为( ) A .-32B. 32C .-12D.12方法二 特例法从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特殊化法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.例2 (1)(2014·上海)设f (x )=⎩⎪⎨⎪⎧x -a 2,x ≤0,x +1x +a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2](2)已知等比数列{a n }满足a n >0,n =1,2,3,…,且a 5·a 2n -5=22n(n ≥3),当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析 (1)若a =-1,则f (x )=⎩⎪⎨⎪⎧x +1 2,x ≤0,x +1x -1,x >0,易知f (-1)是f (x )的最小值,排除A ,B ;若a =0,则f (x )=⎩⎪⎨⎪⎧x 2,x ≤0,x +1x,x >0,易知f (0)是f (x )的最小值,故排除C.D 正确.(2)因为a 5·a 2n -5=22n(n ≥3),所以令n =3,代入得a 5·a 1=26,再令数列为常数列,得每一项为8,则log 2a 1+log 2a 3+log 2a 5=9=32.结合选项可知只有C 符合要求. 答案 (1)D (2)C思维升华 特例法具有简化运算和推理的功效,比较适用于题目中含有字母或具有一般性结论的选择题,但用特例法解选择题时,要注意以下两点: 第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.跟踪演练2 (1)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)等于( ) A .-3 B .-1 C .1 D .3(2)已知O 是锐角△ABC 的外接圆圆心,∠A =60°,cos B sin C ·AB →+cos C sin B ·AC →=2m ·AO →,则m的值为( ) A.32 B. 2 C .1 D.12方法三 排除法排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰项逐一排除,从而获得正确答案.例3 (1)(2015·课标全国Ⅱ)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关(2)(2015·浙江)函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )解析 (1)从2006年,将每年的二氧化硫排放量与前一年作差比较,得到2008年二氧化硫排放量与2007年排放量的差最大,A 选项正确;2007年二氧化硫排放量较2006年降低了很多,B 选项正确;虽然2011年二氧化硫排放量较2010年多一些,但自2006年以来,整体呈递减趋势,即C 选项正确;自2006年以来我国二氧化硫年排放量与年份负相关,D 选项错误,故选D. (2)∵f (x )=(x -1x)cos x ,∴f (-x )=-f (x ),∴f (x )为奇函数,排除A ,B ;当x →π时,f (x )<0,排除C.故选D. 答案 (1)D (2)D思维升华 排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.跟踪演练3 (1)已知f (x )=14x 2+sin(π2+x ),则f ′(x )的图象是( )(2)(2015·北京)设{a n }是等差数列,下列结论中正确的是( ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0 方法四 数形结合法在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来,通过对规范图形或示意图形的观察分析,将数的问题(如解方程、解不等式、判断单调性、求取值范围等)与某些图形结合起来,利用图象的直观性,化抽象为直观,化直观为精确,从而使问题得到解决,这种方法称为数形结合法.例4 设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g x +x +4,x <g x ,g x -x ,x ≥g x , 则f (x )的值域是( )A .[-94,0]∪(1,+∞)B .[0,+∞)C .[-94,+∞)D .[-94,0]∪(2,+∞)解析 由x <g (x )得x <x 2-2,∴x <-1或x >2; 由x ≥g (x )得x ≥x 2-2,∴-1≤x ≤2.∴f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.即f (x )=⎩⎪⎨⎪⎧x +12 2+74,x <-1或x >2, x -12 2-94,-1≤x ≤2.当x <-1时,f (x )>2;当x >2时,f (x )>8.∴当x ∈(-∞,-1)∪(2,+∞)时,函数的值域为(2,+∞). 当-1≤x ≤2时,-94≤f (x )≤0.∴当x ∈[-1,2]时,函数的值域为[-94,0].综上可知,f (x )的值域为[-94,0]∪(2,+∞).答案 D思维升华 数形结合法是依靠图形的直观性进行分析的,用这种方法解题比直接计算求解更能抓住问题的实质,并能迅速地得到结果.使用数形结合法解题时一定要准确把握图形、图象的性质,否则会因为错误的图形、图象得到错误的结论.跟踪演练4 函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|+2cos πx (-2≤x ≤4)的所有零点之和等于( )A .2B .4C .6D .8 方法五 构造法构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模式,揭示问题的本质,从而沟通解题思路的方法.例5 已知函数f (x )是定义在R 上的可导函数,且对于∀x ∈R ,均有f (x )>f ′(x ),则有( ) A .e 2 016f (-2 016)<f (0),f (2 016)>e 2 016f (0) B .e 2 016f (-2 016)<f (0),f (2 016)<e 2 016f (0) C .e 2 016f (-2 016)>f (0),f (2 016)>e 2 016f (0) D .e2 016f (-2 016)>f (0),f (2 016)<e 2 016f (0)解析 构造函数g (x )=f xex,则g ′(x )=f ′ x e x - e x ′f x e x2=f ′ x -f xex,因为∀x ∈R ,均有f (x )>f ′(x ),并且e x>0, 所以g ′(x )<0,故函数g (x )=f xex在R 上单调递减,所以g (-2 016)>g (0),g (2 016)<g (0), 即f -2 016e-2 016>f (0),f 2 016e2 016<f (0),也就是e2 016f (-2 016)>f (0),f (2 016)<e 2 016f (0).答案 D思维升华 构造法求解时需要分析待求问题的结构形式,特别是研究整个问题复杂时,单独摘出其中的部分进行研究或者构造新的情景进行研究.跟踪演练5 (1)(2015·课标全国Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( ) A .(-∞,-1)∪(0,1) B .(-1,0)∪(1,+∞) C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)(2)若四面体ABCD 的三组对棱分别相等,即AB =CD ,AC =BD ,AD =BC ,给出下列五个命题: ①四面体ABCD 每组对棱相互垂直; ②四面体ABCD 每个面的面积相等;③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90°而小于180°; ④连接四面体ABCD 每组对棱中点的线段相互垂直平分;⑤从四面体ABCD 每个顶点出发的三条棱的长可作为一个三角形的三边长. 其中正确命题的个数是( ) A .2 B .3 C .4 D .5 方法六 估算法由于选择题提供了唯一正确的选项,解答又无需过程,因此,有些题目不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次.例6 (1)已知x 1是方程x +lg x =3的根,x 2是方程x +10x=3的根,则x 1+x 2等于( ) A .6 B .3 C .2 D .1(2)如图,在多面体ABCDEF 中,四边形ABCD 是边长为3的正方形,EF ∥AB ,EF =32,EF 与平面ABCD 的距离为2,则该多面体的体积为( )A.92 B .5 C .6 D.152解析 (1)因为x 1是方程x +lg x =3的根,所以2<x 1<3,x 2是方程x +10x =3的根,所以0<x 2<1, 所以2<x 1+x 2<4.(2)该多面体的体积比较难求,可连接BE 、CE ,问题转化为四棱锥E -ABCD 与三棱锥E -BCF 的体积之和, 而V E -ABCD =13S ·h=13×9×2=6,所以只能选D. 答案 (1)B (2)D思维升华 估算法是根据变量变化的趋势或极值的取值情况进行求解的方法.当题目从正面解析比较麻烦,特值法又无法确定正确的选项时(如难度稍大的函数的最值或取值范围、函数图象的变化等问题)常用此种方法确定选项.跟踪演练6 (1)(2015·成都七中测试)设a =log 23,b =232,c =343,则( )A .b <a <cB .c <a <bC .c <b <aD .a <c <b(2)(2015·课标全国Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )知识方法总结 快速破解选择题(一)直接法 (二)特例法 (三)排除法 (四)数形结合法 (五)构造法 (六)估算法选择题突破练 A 组 专题通关1.(2015·温州市联考)已知集合A ={x |x 2-x -2<0},B ={x ||x |<1},则A ∩(∁U B )等于( )A .(1,2)B .(1,2]C .[1,2)D .[1,2]2.(2015·安徽)下列函数中,既是偶函数又存在零点的是( ) A .y =cos x B .y =sin x C .y =ln x D .y =x 2+13.(2015·湖南)执行如图所示的程序框图,如果输入n =3,则输出的S 等于( )A.67B.37C.89D.494.(2015·浙江)存在函数f (x )满足:对任意x ∈R 都有( ) A .f (sin 2x )=sin x B .f (sin 2x )=x 2+x C .f (x 2+1)=|x +1|D .f (x 2+2x )=|x +1|5.已知函数f (x )=⎩⎪⎨⎪⎧|sin x |,x ∈[-π,π],lg x ,x >π,x 1,x 2,x 3,x 4,x 5是方程f (x )=m 的五个不等的实数根,则x 1+x 2+x 3+x 4+x 5的取值范围是( ) A .(0,π) B .(-π,π) C .(lg π,1)D .(π,10)6.如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P 、Q 满足A 1P =BQ ,过P 、Q 、C 三点的截面把棱柱分成两部分,则其体积之比为( )A .3∶1B .2∶1C.4∶1 D.3∶17.(2015·湖北)设x∈R,[x]表示不超过x的最大整数.若存在实数t,使得[t]=1,[t2]=2,…,[t n]=n同时成立,则正整数n的最大值是( )A.3 B.4 C.5 D.68.函数y=x cos x+sin x的图象大致为( )9.(2015·成都新都区高三诊断测试)等差数列{a n}的前n项和为S n,若a1<0,且S2 015=0,则当S n取得最小值时,n的取值为( )A.1 009 B.1 008C.1 007或1 008 D.1 008或1 00910.已知四面体P-ABC的四个顶点都在球O的球面上,若PB⊥平面ABC,AB⊥AC,且AC=1,PB=AB=2,则球O的表面积为( )A.7π B.8π C.9π D.10π11.(2015·浙江省桐乡第一中学高三联考)若a=20.5,b=logπ3,c=log222,则有( )A.a>b>c B.b>a>c C.c>a>b D.b>c>a12.若圆x2+y2=r2(r>0)上恰好有相异两点到直线4x-3y+25=0的距离等于1,则r的取值范围是( )A.[4,6] B.[4,6) C.(4,6] D.(4,6)B组能力提高13.(2015·杭州调研)已知m、n是两条不同的直线,α、β是两个不同的平面,给出下列命题:①若α⊥β,m∥α,则m⊥β;②若m⊥α,n⊥β,且m⊥n,则α⊥β;③若m⊥β,m∥α,α⊥β;④若m∥α,n∥β,且m∥n,则α∥β.其中正确命题的序号是( )A.①④ B.②④ C.②③ D.①③14.(2015·广州联考)已知点P是抛物线x2=4y上的一个动点,则点P到点M(2,0)的距离与点P到抛物线准线的距离之和的最小值为( )A.172B. 5 C.2 2 D.9215.(2015·北京朝阳区测试)设a、b为两个非零的平面向量,下列说法正确的是( )①若a·b=0,则有|a+b|=|a-b|;②|a·b|=|a||b|;③若存在实数λ,使得a=λb,则|a+b|=|a|+|b|;④若|a+b|=|a|-|b|,则存在实数λ,使得a=λb.A.①③ B.①④ C.②③ D.②④16.(2015·浙江省桐乡四校联考)已知函数f(x)=1-|2x-1|,x∈[0,1].定义:f1(x)=f(x),f2(x)=f(f1(x)),…,f n(x)=f(f n-1(x)),n=2,3,4,…,满足f n(x)=x的点x∈[0,1]称为f(x)的n阶不动点,则f(x)的n阶不动点的个数是( )A.2n B.2n2 C.2(2n-1) D.2n学生用书答案精析第二篇 掌握技巧,快速解答客观题 第1讲 选择题的解法技巧 跟踪演练1 (1)A (2)D解析 (1)对任意正整数m 、n ,都有a m +n =a m ·a n ,取m =1,则有a n +1=a n ·a 1⇒a n +1a n =a 1=13,故数列{a n }是以13为首项,以13为公比的等比数列,则S n =13 1-13n 1-13=12(1-13n )<12,由于S n <a 对任意n ∈N *恒成立,故a ≥12,即实数a 的最小值为12,选A.(2)每次循环的结果依次为:k =2,k =3,k =4,k =5>4,∴S =sin 5π6=12.选D.跟踪演练2 (1)C (2)A解析 (1)∵f (x )-g (x )=x 3+x 2+1, ∴f (-x )-g (-x )=-x 3+x 2+1. ∵f (x )是偶函数,g (x )是奇函数, ∴f (-x )=f (x ),g (-x )=-g (x ). ∴f (x )+g (x )=-x 3+x 2+1. ∴f (1)+g (1)=-1+1+1=1.(2)如图,当△ABC 为正三角形时,A =B =C =60°,取D 为BC 的中点, AO →=23AD →,则有13AB →+13AC →=2m ·AO →, ∴13(AB →+AC →)=2m ×23AD →,∴13·2AD →=43mAD →,∴m =32,故选A. 跟踪演练3 (1)A (2)C解析 (1)f (x )=14x 2+sin(π2+x )=14x 2+cos x ,故f ′(x )=(14x 2+cos x )′=12x -sin x ,记g (x )=f ′(x ),其定义域为R ,且g (-x )=12(-x )-sin(-x )=-(12x -sin x )=-g (x ),所以g (x )为奇函数,所以排除B ,D 两项,g ′(x )=12-cos x ,显然当x ∈(0,π3)时,g ′(x )<0,g (x )在(0,π3)上单调递减,故排除C.选A. (2)设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故选项A 错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故选项B 错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,∴a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,∴a 2>a 1a 3,故选项C 正确;若a 1<0,则(a 2-a 1)·(a 2-a 3)=d ·(-d )=-d 2≤0,故选项D 错.跟踪演练4 C [由f (x )=⎝ ⎛⎭⎪⎫12|x -1|+2cos πx =0,得⎝ ⎛⎭⎪⎫12|x -1|=-2cos πx , 令g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-2≤x ≤4),h (x )=-2cos πx (-2≤x ≤4),又因为g (x )=⎝ ⎛⎭⎪⎫12|x -1|=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -1, 1≤x ≤4,2x -1, -2≤x <1.在同一坐标系中分别作出函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-2≤x ≤4)和h (x )=-2cos πx (-2≤x ≤4)的图象(如图),由图象可知,函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|关于x =1对称,又x =1也是函数h (x )=-2cos πx (-2≤x ≤4)的对称轴,所以函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-2≤x ≤4)和h (x )=-2cos πx (-2≤x ≤4)的交点也关于x =1对称,且两函数共有6个交点,所以所有零点之和为6.]跟踪演练5 (1)A (2)C解析 (1)因为f (x )(x ∈R )为奇函数,f (-1)=0,所以f (1)=-f (-1)=0.当x ≠0时,令g (x )=f xx ,则g (x )为偶函数,且g (1)=g (-1)=0.则当x >0时,g ′(x )=⎝⎛⎭⎪⎫f x x ′=xf ′ x -f x x 2<0,故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0⇔f xx>0⇔f (x )>0;在(-∞,0)上,当x <-1时,g (x )<g (-1)=0⇔f xx<0⇔f (x )>0.综上,得使f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),选A.(2)构造长方体,使三组对棱恰好是长方体的三组平行面中异面的对角线,在此背景下,长方体的长、宽、高分别为x ,y ,z . 对于①,需要满足x =y =z ,才能成立;因为各个面都是全等的三角形(由对棱相等易证),则四面体的同一顶点处对应三个角之和一定恒等于180°,故②正确,③显然不成立;对于④,由长方体相对面的中心连线相互垂直平分判断④正确;每个顶点出发的三条棱的长恰好分别等于各个面的三角形的三边长,⑤显然成立.故正确命题有②④⑤.跟踪演练6 (1)B (2)B解析 (1)因为2>a =log 23>1,b =232>2,c =343-<1,所以c <a <b .(2)当点P 沿着边BC 运动,即0≤x ≤π4时,在Rt△POB 中,|PB |=|OB |tan∠POB =tan x ,在Rt△PAB 中,|PA |=|AB |2+|PB |2=4+tan 2x ,则f (x )=|PA |+|PB |=4+tan 2x +tanx ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ;当点P 与点C 重合,即x =π4时,由上得f ⎝ ⎛⎭⎪⎫π4=4+tan2π4+tan π4=5+1, 又当点P 与边CD 的中点重合,即x =π2时,△PAO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝ ⎛⎭⎪⎫π2=|PA |+|PB |=2+2=22,知f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4,故又可排除D.综上,选B.选择题突破练1.C [由已知,A ={x |-1<x <2},B ={x |-1<x <1},∁U B ={x |x ≥1或x ≤-1},所以,A ∩(∁U B )=[1,2),选C.]2.A [由于y =sin x 是奇函数;y =ln x 是非奇非偶函数;y =x 2+1是偶函数但没有零点;只有y =cos x 是偶函数又有零点.] 3.B [第一步运算:S =11×3=13,i =2; 第二步运算:S =13+13×5=25,i =3;第三步运算:S =25+15×7=37,i =4>3;故S =37,故选B.]4.D [排除法,A 中,当x 1=π2,x 2=-π2时,f (sin 2x 1)=f (sin 2x 2)=f (0),而sin x 1≠sin x 2,∴A 不对;B 同上;C 中,当x 1=-1,x 2=1时,f (x 21+1)=f (x 22+1)=f (2),而|x 1+1|≠|x 2+1|,∴C 不对,故选D.]5.D [函数f (x )的图象如图所示,结合图象可得x 1+x 2=-π,x 3+x 4=π, 若f (x )=m 有5个不等的实数根, 需lg π<lg x 5<1,得π<x 5<10, 又由函数f (x )在[-π,π]上对称, 所以x 1+x 2+x 3+x 4=0,故x 1+x 2+x 3+x 4+x 5的取值范围为(π,10).]6.B [将P 、Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有1C AA BV -=1A ABC V -=111ABC A B C V -3,故选B.]7.B [[t ]=1,则1≤t <2;[t 2]=2,则2≤t 2<3……[t n ]=n ,则n ≤t n<n +1. 要使得上述式子同时成立,等价于上述不等式有交集. [t ]=1,则1≤t <2.①[t 2]=2,则2≤t 2<3.②明显不等式组①②有交集,故存在t 使得[t ]=1与[t 2]=2同时成立; [t 3]=3,则3≤t 3<4.则313≤t <413.③因为212<313<413<312,则存在313<t <413使得①②③同时成立; [t 4]=4,则4≤t 4<5,则414≤t <514.④同理,可以求得存在313<t <514使得①②③④同时成立; [t 5]=5,则5≤t 5<6.则515≤t <615.⑤因为615<313,故515≤t <615与313<t <514交集为空集. 所以n 的最大值是4.故选B .]8.D [函数y =x cos x +sin x 为奇函数,排除B ,取x =π2,排除C ;取x =π,排除A ,故选D.]9.C [等差数列中,S n 的表达式为n 的二次函数,且常数项为0,故函数S n 的图象过原点,又a 1<0,且存在n =2 015使得S n =0,可知公差d >0,S n 图象开口向上,对称轴n =2 0152,于是当n =1 007或n =1 008时,S n 取得最小值,选C.]10.C [依题意,记题中的球的半径是R ,可将题中的四面体补形成一个长方体,且该长方体的长、宽、高分别是2,1,2,于是有(2R )2=12+22+22=9,4πR 2=9π,所以球O 的表面积为9π.]11.A [∵32>π,∴log π32>log ππ⇒log π3>12,即12<b <1,而a =20.5=2>1,c =log 222=-12,∴a >b >c .] 12.D [考查选项可知,本题选择的关键是r 能否等于4或6,故可逐一检验,由于圆心到直线4x -3y +25=0的距离为5, 则r =4或6时均不符合题意,故选D.]13.C [当α⊥β,m ∥α时,有m ⊥β,m ∥β,m ⊂β等多种可能情况,所以①不正确;当m ∥α,n ∥β,且m ∥n 时,α∥β或α,β相交,所以④不正确,故选C.] 14.B [∵抛物线x 2=4y 的焦点为F (0,1),作图如下,∵抛物线x 2=4y 的准线方程为y =-1,设点P 到该抛物线准线的距离为d ,由抛物线的定义可知,d =|PF |,∴|PM |+d =|PM |+|PF |≥|FM |(当且仅当F 、P 、M 三点共线时(P 在F ,M 中间)时取等号),∴点P 到点M (2,0)的距离与点P 到该抛物线准线的距离之和的最小值为|FM |,∵F (0,1),M (2,0),△FOM 为直角三角形,∴|FM |=5,故选B.]15.B [若a ·b =0⇔a ⊥b ⇔|a +b |=|a -b |.故①正确,排除C ,D ;若存在实数λ,使得a =λb ,等价于a ∥b ,即a 与b 方向相同或相反,而|a +b |=|a |+|b |表示a 与b 方向相同,故③错,则选B.]16.D [函数f (x )=1-|2x -1|=⎩⎪⎨⎪⎧2x , 0≤x ≤12,2-2x , 12<x ≤1,当x ∈[0,12]时,f 1(x )=2x =x ⇒x =0,当x ∈(12,1]时,f 1(x )=2-2x =x ⇒x =23,∴f 1(x )的1阶不动点的个数为2, 当x ∈[0,14]时,f 1(x )=2x ,f 2(x )=4x =x ⇒x =0,当x ∈(14,12]时,f 1(x )=2x ,f 2(x )=2-4x =x ⇒x =25,当x ∈(12,34]时,f 1(x )=2-2x ,f 2(x )=4x -2=x ⇒x =23,当x ∈(34,1]时,f 1(x )=2-2x ,f 2(x )=4-4x =x ⇒x =45,∴f 2(x )的2阶不动点的个数为22,以此类推,f (x )的n 阶不动点的个数是2n.]。