奥数专题
六年级趣味奥数专题
六年级趣味奥数专题六年级趣味奥数专题有:1. 工程问题:如甲乙两个水管单独开,注满一池水,分别需要20小时和16小时。
丙水管单独开,排一池水要10小时。
若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2. 巧分食盐水:有30毫升、70毫升、100毫升的量杯各1个,用这三个量杯把水槽中的100毫升食盐水平均分成两份,但分的时候不准看量杯的刻度。
3. 一壶酒:朱世杰著的数学书《四元玉鉴》中的一道诗歌形式的数学题。
题目描述为:我带着一壶酒去春游,途中每逢酒店必定掏钱,把壶中的酒增添1倍;每遇朋友必定倒酒小酌,喝掉1斗。
一路上,共有三次遇酒店、见朋友,结果壶里的酒全没有了。
请问,这把壶里原来有多少酒呢?4. 百数连乘:一百个数连乘,这些数都是带分数。
如带分数做乘法,先化成假分数后,发现每个假分数的分子都恰好和后面一个相邻分数的分母相同,可以约掉。
5. 环形跑道问题:甲、乙、丙三人参加环形跑道比赛,甲跑一圈需要6分钟,乙需要8分钟,丙需要10分钟。
请问:如果三人同时出发,何时三人再次相遇?6. 最大公约数和最小公倍数:两个数的最大公约数和最小公倍数的求解方法。
7. 完全数:一个自然数,它的所有真因子(即除自身外的因子)之和等于它本身,这样的数称为完全数。
如6、28、49等。
8. 勾股定理:直角三角形斜边平方等于两直角边平方和。
9. 数轴上的问题:如一个数轴上有10个点,从中任选两个点组成一条线段,问有多少种不同的组合?10. 排列组合:如从5个苹果、4个橙子、3个香蕉中任选若干个,问有多少种不同的组合?这些趣味奥数题目可以帮助六年级的学生巩固数学知识,提高思维能力和解决问题的技巧。
5,6年级奥数专题
1.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B 地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?2.有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3.某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3 +3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4.一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.5.甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6.有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?7.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?8.甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.9.甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?10.今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?11.师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?12.一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.13.一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?14.黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?15.一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地需要多长时间?16.甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?17.甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?18.一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?19.某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?20.甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?21.圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?22.某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?23.从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?24.师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/ 10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?25.六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?26.甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?27.有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7 /8还低2厘米.容器的高度是多少厘米?28.有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.29.师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?30.奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?31.某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?32.王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?33.妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?34.一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?35.小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?36.有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?37.爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?38.B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?39.甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?40.甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?41.某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?42.甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?43.大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?44.某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?45.已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚1 0分钟比小明多走420米,那么小明在20分钟里比小强少走几米?46.加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?47.甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?48.小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4 /5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?49.甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?50.加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?51.自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?52.两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?53.甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?54.一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.55.甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.56.某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?57.甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?58.A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?59.一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.60.有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.61.有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?62.小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?63.同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?64.一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.65.有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?66.甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?67.A、B、C、D、E五名学生站成一横排,他们的手****拿着20面小旗.现知道,站在C 右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?68.小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?69.小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.70.小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?71.数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?72.一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?73.少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?74.某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A城多少千米?75.甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.76.一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?77.某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?78.一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?79.甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?80.一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4.5倍,问共有几名女生参赛?女生共得几分?81.有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?82.某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?83.小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?84.甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.85.二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?86.一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.87.某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?88.钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根?89.有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?90.小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?91.甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是109岁,分别求出甲、乙、丙的年龄.92.快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车以40千米/小时的速度从乙站行甲站开出,.两车相遇时,相遇点离两站的中点70千米.甲、乙两站相距多少千米?93.甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的距离是乙车与学校距离的2倍,求甲车离开学校的时间.94.有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可生产一批零件,如果交换工人甲、乙的岗位,其他人不变,那么可提前1小时,完成这批零件,如果交换工人丙、丁的岗位,其他人不变,也可提前1小时,问如果同时交换甲与乙、丙与丁的岗位,其他人不变,那么完成这批零件需多长的时间.95.用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?96.公圆只售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上的团体票的可优惠10%.(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?(2)乙单位208人逛公园,按以上的规定买票,最少应付多少钱?97.甲、乙、丙三人,参加一次考试,共得260分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少?98.一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30.甲、乙单独做这项工程各需要几天?99.有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3.点燃前长蜡烛有多长?100.一批苹果平均分装在20个筐中,如果每筐多装1/9,可省下几只筐?。
小学一年级奥数16个专题
第一讲速算与巧算(一)一、凑十法:同学们已经知道,下面的五组成对的数相加之和都等于10:1+9=102+8=103+7=104+6=105+5=10巧用这些结果,可以使计算又快又准。
例1 计算1+2+3+4+5+6+7+8+9+10解:对于这道题,当然可以从左往右逐步相加:1+2=3 3+3=66+4=10 10+5=1515+6=21 21+7=2828+8=36 36+9=4545+10=55这种逐步相加的方法,好处是可以得到每一步的结果,但缺点是麻烦、容易出错;而且一步出错,以后步步都错。
若是利用凑十法,就能克服这种缺点。
二、凑整法同学们还知道,有些数相加之和是整十、整百的数,如:1+19=20 11+9=302+18=20 12+28=403+17=20 13+37=504+16=20 14+46=605+15=20 15+55=706+14=20 16+64=807+13=20 17+73=908+12=20 18+82=1009+11=20又如:15+85=100 14+86=10025+75=100 24+76=10035+65=100 34+66=10045+55=100 44+56=100等等巧用这些结果,可以使那些较大的数相加又快又准。
像10、20、30、40、50、60、70、80、90、100等等这些整十、整百的数就是凑整的目标。
例2 计算1+3+5+7+9+11+13+15+17+19解:这是求1到19共10个单数之和,用凑整法做:例3 计算2+4+6+8+10+12+14+16+18+20解:这是求2到20共10个双数之和,用凑整法做:例4 计算2+13+25+44+18+37+56+75解:用凑整法:三、用已知求未知利用已经获得较简单的知识来解决面临的更复杂的难题这是人们认识事物的一般过程,凑十法、凑整法的实质就是这个道理,可见把这种认识规律用于计算方面,可使计算更快更准。
小学奥数思维训练17个专题
一高斯算法总和=(首项+末项)×项数÷2末项=首项+公差×(项数-1)项数=(末项-首项) ÷公差+1练习题:1、1+2+3-4+5+6+7-8+9+10+…+25+26+27-282、67+65+63+…+5+3+13、1000-3-6-9-…-51-544、1-2+3-4+5-6+…+97-98+995、103+99+103+96+105+102+98+98+101+1026、0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+…+0.997、在所有的两位数中,十位上的数字比个位上的数字大的共有多少个?8、有8个小朋友聚会,每两个人握一次手,一共要握多少次手?9、一把钥匙只能打开一把锁。
现在有关10把锁和可以打开它们的确10把钥匙,但全部放乱了。
最多试多少次可以打开所有的锁?10、从“19”开始每隔4个数写出一个数,得到:19、24、29、34、……一直写到1999。
一共写了多少个数?这些数的总和是多少?11、试求200到300之间7的倍数之和。
12、在自然数中,有多少个三位数,求它们的和。
13、用1、2、3、5、7、8、10、13、17和19这十个数能组成多少个最简真分数?14、在三位数中,有多少个是7的倍数,求它们的和。
15、求偶数中前100个偶数的和。
16、一个剧场设置了20排座位,第一排有38个座位,以后每一排都比前一排多2个座位,这个剧场一共有多少个座位?17、一堆钢管,最底层是10根,倒数第二层是9根,以后每上一层,钢管减少1根,问10层共有多少根钢管?18、计算1~100每个数各数位上的数字之和是多少?19、有一列数;19、22、25、28……请问,这列数的前99个数(从19开始算起)的总和是多少?二整除问题1、能被2整除的数的特征:个位数上是0、2、4、6、8的整数,都能被2整除。
2、能被5整除的数的特征:个位数上是0或5的整数,都能被5整除。
奥数算式专题
奥数算式专题精选15句奥数算式专题1.下列各式中不同字母代表不同的数字,求出它们使得等式成立的值:(1)abcd×9=dcba(2)abcd×4=dcba2.用1~3几个数码组成三个三位数,要求第二个数、第三个数分别是第一个数的2倍和3倍。
你能给出几组解?3.下列各式中不同的字母代表不同的`数码,求出它们使等式成立的值:(1)AA×BB=BBCC(2)AA×BB=CCDD(3)AA×BB=CAAC(4)AA×BB=ACCA4.将1~9这九个数字分别填入下列各式的□中(每小题填入的数字不得重复),使等式成立:(1)□□÷□=□□÷□=□□÷□(2)□÷□=□÷□=□□□÷□□(3)□□□×□□=□□×□□=55685.将0,1,…,6这七个数字填入下式的□中,每个数字恰好出现一次,组成只有一位和两位数的整数算式:□×□=□=□÷□6.将0,1,…,9这十个数字填入□中,组成三道算术等式:□+□=□□-□=□□×□=□□7.在下列等式的□内填入一个自然数(每个等式的几个□应填入相同的数),使等式成立:(1)□÷24×4+(24×□-□×15)÷6-16=4(2)[(18×□-□×15)÷5+□×3÷2]÷3+3=□22.在下式中的○和□内分别填入两个自然数,使等式成立:(○+□)+(○-□)+(○×□)+(○÷□)=1008.在下列各式的□内填入1~9中的适当数字,使得等式成立(每个数字在每个等式中只能出现一次):(1)□2=□2+□2(2)□2=□2+□2+□2+□2(3)□3=□3+□3+□39.在下列各式的□内填入适当数字,使得等式成立且数字对于等号左右对称:(1)12×23□=□32×21(2)12×46□=□64×21(3)□8×891=198×8□(4)24×2□1=1□2×42(5)□3×6528=8256×3□10.在被除数小于100的情况下,给下列各式的□内填入适当的数,使算式成立:11.在下列各式的每个□内填入一个大于1的一位数,使等式成立:(1)[□×(□3+□)]2=8□□9(2)[(1□5-3□)+□]2=4□□613.从1~9这九个数码中选出八个填入下式的八个□内,使得算式的结果尽可能大:[□÷□×(□+□)]-[□×□+□-□]14.将1~9分别填入下式的九个□内,使算式取得最大值:□□□×□□□×□□□15.将1~8分别填入下式的八个□内,使算式取得最小值:□□×□□×□□×□□。
奥数计算专题
第一讲简便计算知识点概要1、四则计算包括:,,,。
其中和是互逆计算,和是互逆计算。
2、四则运算的顺序是:有括号的先计算,然后计算,再计算。
只有加减法或只有乘除法,要计算。
3、运算定律加法交换律:加法结合律:乘法交换律:乘法结合律:乘法分配律:4、加减法之间的关系:和-其中一个加数= ,差+减数=被减数-差=乘除法之间的关系:积÷其中一个因数= ,商×除数=被除数÷商= ,商×除数+余数=5、四则运算的性质(1)减法运算的性质一个数减去两个数的和,等于这个数依次减去这两个数,用字母表示为-+-)(a-=cbacb一个数减去两个数的差,就等于先从这个数里面减去被减数,再加上减数,用字母表示为-=-a+(-)cbabc(2)除法运算的性质一个数除以两个数的积,等于这个数依次除以这两个数,用字母表示为cab(,c÷÷)c÷÷±)(==a÷±ba⨯b÷÷cacb=a÷⨯bac÷)(,另外我们还可以得到:cb例1.计算63+294+37+54+6小结:加减运算的时候,要记住数字也是有感情的,要让那些关系好的站在一起,也就是我们所说的互补数先运算!随堂练习(1)27+42+63 (2)33+87+67+13(3)527+439+173+261 (4)2365+6807+7635+3193例2.计算718-162-238小结:在运算中,如果发现有的数字是互补的,可偏偏符号是减号,没有关系,往往可以利用加括号的方式把他们房子括号里,不过这是要记住,减号后面添括号,括号里面要变号!随堂练习:(1)659-487-113 (2)908-296-304(3)5498-1928-387-1072-1613 (4)8709-1473-295-527-391-105-409 例3.计算185-(85+17)小结:有括号的计算,往往不能心急,心急吃不了热豆腐!要先冷静观察,看看括号里的数和括号外面的数的关系。
三年级奥数专题教案
三年级奥数专题教案一、第一章:数的规律1. 教学目标:(1)让学生理解并掌握数的基本规律。
(2)培养学生观察、分析、解决问题的能力。
2. 教学内容:(1)奇数与偶数的性质。
(2)数的排列规律。
(3)数字变换。
3. 教学活动:(1)通过实例讲解奇数与偶数的性质,让学生学会判断一个数是奇数还是偶数。
(2)引导学生发现数的排列规律,如:连续的五个数中,一定有一个数是5的倍数。
(3)开展数字变换游戏,让学生在游戏中掌握数字变换的技巧。
二、第二章:几何图形1. 教学目标:(1)让学生认识并理解常见几何图形的性质。
(2)培养学生空间想象能力。
2. 教学内容:(1)平面几何图形(如:三角形、矩形、圆形等)。
(2)立体几何图形(如:正方体、长方体等)。
(3)图形的面积和体积计算。
3. 教学活动:(1)通过实物和模型,让学生认识并了解各种平面和立体几何图形的特征。
(2)引导学生掌握几何图形的面积和体积计算方法。
(3)开展几何图形拼接和变换活动,培养学生的空间想象能力。
三、第三章:逻辑思维1. 教学目标:(1)让学生掌握基本的逻辑思维方法。
(2)培养学生分析问题、解决问题的能力。
2. 教学内容:(1)分类与归纳。
(2)比较与判断。
(3)因果关系。
3. 教学活动:(1)通过实例,让学生学会分类与归纳,如:将物品按照用途进行分类。
(2)引导学生进行比较与判断,如:比较两个数的大小。
(3)培养学生运用因果关系分析问题,如:找出问题的原因和解决方法。
四、第四章:算式谜题1. 教学目标:(1)让学生掌握算式谜题的基本解题方法。
(2)培养学生观察、分析、计算的能力。
2. 教学内容:(1)数字谜题。
(2)算式谜题。
(3)算式填空。
3. 教学活动:(1)让学生通过观察、计算,解决数字谜题。
(2)引导学生分析算式谜题的规律,如:某一位上的数字等于其他位上数字之和。
(3)开展算式填空活动,锻炼学生的计算能力。
五、第五章:时间与日期1. 教学目标:(1)让学生理解并掌握时间与日期的基本知识。
小学数学奥数35个专题题型分类及解题技巧
小学奥数辅导35个专题汇总1.和差倍问题2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
三年级奥数专题
三年级奥数训练题奥数习题(一)倍数问题11. 草地上有27只鸡,鸭的只数是鸡的4倍,草地上有鸭多少只?2. 三年级同学扎花120朵,四年级同学扎的花是三年级的3倍。
四年级同学扎花多少朵?3. 一头小牛重130千克,一头大象的重量是小牛的11倍。
一头大象重多少千克?4. 明明今年18岁,爷爷的年龄是明明的4倍。
爷爷今年多大年纪?5. 商店运来24筐苹果,运来的橘子是苹果的7倍。
商店运来橘子多少筐?6. 徒弟每天生产68个零件,师傅每天生产的是徒弟的6倍。
师傅每天生产多少个零件?7. 一只虎体重180千克,一只熊的体重是虎的2倍。
这只熊的体重是多少千克?8.王老师买排球用了40元,买篮球用的钱数是买排球的3倍。
王老师买篮球用了多少元?9.玩具生产组原来每天做玩具40件,现在每天的产量是原来的10倍。
现在每天做玩具多少件?10.公园的养鱼池放养红金鱼290条,放养的花金鱼是红金鱼的4倍。
放养花金鱼多少条?11.荷花村的池塘里去年放养了鱼苗2940尾,今年放养的鱼苗是去年的3倍。
今年放养鱼苗多少尾?12. (1)15的21倍是多少?(2)6的30倍是多少?(3)28的50倍是多少?倍数问题21. 甲数是84,乙数比甲数的5倍还多6。
乙数是多少?2. 某班有男生19人,女生人数比男生的2倍少1人。
这个班有女生多少人?3. 小明储蓄66元,小刚储蓄的钱数比小明的4倍少10元。
小刚储蓄多少元?4. 甲仓库存放化肥137袋,乙仓库放的化肥比甲仓库的9倍还多2袋。
乙仓库存放化肥多少袋?5. 体育组有篮球41个,排球的个数比篮球的3倍少12个。
体育组有排球多少个?6. 妈妈买来大米24千克,买来的面粉比大米的2倍多5千克。
妈妈买来面粉多少千克?7. 甲书架上放书126本,乙书架上放的书是甲书架的7倍还多25本。
乙书架上放书多少本?8. 一捆电线,用去82米,剩下的长度是用去的6倍少13米。
这捆电线还剩多少米?9. 饲养场养鹅75只,养的鸡比鹅的8倍还多4只。
小学奥数:计算专题《加减法的巧算》练习题
小学奥数:计算专题《加减法的巧算》练习题一.填空题(共15小题)1.计算:(1+3+5+…+2019)-(2+4+6+…+2018)=10102.计算:3-5+7-9+11-13+…+1995-1997+1999=-10003.计算200-(16+17+18+…+23+24)=844.a=4,b=25,则a+b=29,a×b=100,a÷b=4/255.计算:1+2+3+4+5+6+7+8+9=456.1+3+5+7+…+97+99-10-12-14…-96-98=507.计算:13+75-37+427+85-23=5608.计算:(2017-1)+(2016-2)+…+(2011-7)=9.计算:-+-+-+-+-=7010.计算1000-257-84-43-16=60011.计算:2+3+5-6+7+1-10=212.193-191+189-187+……+93-91=5113.算式(1+3+5+…+89)-(1+2+3+…+63)的计算结果是72714.计算:1+2+4+5+7+8+10+11+13+14+16+17+19+20=12015.算式1+3+4+6+7+9+10+12的计算结果是52二.计算题(共15小题)16.计算:30-29-28+27+26-25-24+23+22-21-20+19=-217.计算:xxxxxxxx+XXX999+99+9=xxxxxxxx18.计算:1-2+3-4+5-6+7-8+9-10+11-12+…+991-992+993-994+995-996+997-998+999=-49919.直接写出得数。
5.43+1.47=6.94.5×0.4=1.820.计算:(2004-1)+(2003-2)+(2002-3)+…+(1003-1002)=100121.计算:1+2+3+……+50+49+……+2+1=255022.计算:1+2+3+…+1999=xxxxxxx5-3.28=1.72,0.46÷4.6=0.1,4×0.25=19.58×101-9.58=957,85÷(1-0.9)=850,3÷0.3=10,0.63÷0.7=0.9,1.8×0.4=0.7223.计算2+4+6+8+…+1990的和=24.用简便方法计算:略。
奥数_高三作文
奥数八.比例问题1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?快快快答案:甲收8元,乙收2元。
解:“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。
又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。
而甲乙两人吃了的价值都是10元,所以甲还可以收回18-10=8元乙还可以收回12-10=2元刚好就是客人出的钱。
2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?答案22/25最好画线段图思考:把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。
增加的成本2份刚好是下降利润的2份。
售价都是25份。
所以,今年的成本占售价的22/25。
3.甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米?解:原来甲.乙的速度比是5:4现在的甲:5×(1-20%)=4现在的乙:4×(1+20%)4.8甲到B后,乙离A还有:5-4.8=0.2总路程:10÷0.2×(4+5)=450千米4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?答案为64:27解:根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。
根据“体积增加1/3”,可知体积是原来的4/3。
体积÷底面积=高现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27或者现在的高:原来的高=64/27:1=64:275.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。
小学奥数35个专题汇总
小学奥数35个专题汇总②一次不足,另一次有余数;③两次都有余数;④两次都不足;基本公式:①总量=(A×B)÷(A-C)=(B×C)÷(A-C);②总量=(A×B)÷(B-C)=(A×C)÷(B-C);③总量=(A×B)÷(A+B-C);④总量=(A×B)÷(C-B)=(A×C)÷(B-C);关键问题:根据题目给出的条件,确定分组的标准和分配方案,从而求出对象的总量。
7.分桃问题基本概念:分桃问题是一种典型的递归问题,即把一个问题分解成若干个相同或相似的子问题,然后把子问题分解成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并.基本思路:先假设有n个桃子,从而确定第一天分得的桃子数,然后根据第二天剩下的桃子数,确定第二天分得的桃子数,以此类推,直到最后一天分得的桃子数可以直接计算出来,从而求出总共分了几天.基本公式:设第n天分得的桃子数为x,则第n-1天剩下的桃子数为(x+1)×2,第n-2天剩下的桃子数为((x+1)×2+1)×2,以此类推,设第一天分得的桃子数为y,则有:x=y-1y-1+1)×2=x+1y-1+1)×2+1)×2+1)×2=(y-1+1)×2关键问题:确定第一天分得的桃子数,从而递推出每天分得的桃子数,直到最后一天分得的桃子数可以直接计算出来,从而求出总共分了几天.8.数位问题基本概念:数位问题是指对一个数的各个数位进行分析、计算的问题,主要涉及到数位的个数、各数位上数字的性质、各数位上数字之间的关系等.基本思路:先把问题中给出的数按位分解,然后根据题目要求,对各数位上的数字进行操作,最后把结果合并起来.基本题型:①给出一个数的各数位上的数字,求这个数;②给出一个数和它的各数位上的数字,求这个数的某个性质;③给出一个数和它的某些数位上的数字,求这些数位上的数字;④给出一个数和它的各数位上的数字,求这个数的某种变形;基本公式:①一个n位数的各数位上的数字之和为S,则有S=an×10n-1+an-1×10n-2+…+a1×10^0;②一个n位数的各数位上的数字之积为P,则有P=an×an-1×…×a1;③一个n位数的各数位上的数字之和为S,则有S=(a1+an)×n÷2;④一个n位数的各数位上的数字之和为S,则有S=(a1+an)×n÷2+(a2+an-1)×(n-2)÷2+…;关键问题:根据题目要求,确定对各数位上的数字进行何种操作,从而求出所需的结果.抽屉原理是一种基本的数学原理,可以用来解决许多问题。
学而思奥数八大专题
学而思奥数八大专题
在当今的教育领域,奥数教育一直备受关注。
作为国内知名的教育机构,学而思在奥数教育方面拥有着丰富的经验和优秀的教学资源。
最近,学而思推出了“八大专题”奥数课程,旨在为学生提供更加系统、专业的奥数学习体验。
首先,我们来了解一下什么是学而思的“八大专题”奥数课程。
这八个专题分别是:数论、组合数学、图论、几何、排列组合、概率统计、数列与数学归纳法和数学建模。
每个专题都由资深的数学教师团队进行精心设计,确保学生能够深入理解数学原理和方法,提高数学思维能力。
学而思的“八大专题”奥数课程具有以下特点:
1.系统性:这八个专题涵盖了奥数的主要领域,让学生在学习过程中能够全面了解奥数的知识体系。
2.专业化:每个专题都由资深的数学教师团队进行设计,确保课程内容的专业性和准确性。
3.互动性:课程采用线上教学方式,学生可以通过实时互动与教师和其他学生进行交流,提高学习效果。
4.实践性:课程注重实践应用,通过解决实际问题来提高学生的数学应用能力。
对于想要提高数学思维能力、准备参加数学竞赛或者对数学有浓厚兴趣的学生来说,学而思的“八大专题”奥数课程是一个非常不错
的选择。
通过学习这门课程,学生可以深入了解奥数的知识体系,提高数学思维能力,为未来的学习和职业发展打下坚实的基础。
总之,学而思的“八大专题”奥数课程为学生提供了一个系统、专业的学习平台,有助于提高学生的数学思维能力与实践应用能力。
相信在这门课程的帮助下,学生们一定能够在数学领域取得更好的成绩和发展。
奥数竞赛专题
专题一——计算技巧1.110+111+112+ (126)2.40264223⨯+⨯=3.)(90254500⨯÷=4.=+++399629718105.3334333322229999⨯+⨯=6.=⨯⨯1537-51137.=⨯⨯200720072008-2008200820078.=⨯⨯⨯⨯162162162-1731731739.下面的算式中,每个汉字代表一个数字(0~9),不同汉字代表不同数字,美+妙+数+学+花+园= 。
美 妙 数 学× 花 园数 学 真 美 妙 4 2 3 8 05 好 好 好 美 妙10. □ □ 8× 8 □□ 8 □ □□ 8 □ □8 □ □ □ □专题二——路程与分配问题1.甲、乙二人在一圆形跑到上分别从A、B两点同时出发,相向而行,5分钟后相遇,又过7分钟后甲到B点,甲到B点后再过8分钟两人第二次相遇,甲环行一周需要多少分钟?2.冬季的一天早上,天下着雪,小明从家出发去上学,由于下雪的缘故,小明留在雪地里的脚印会慢慢消失,小明出发12分钟后,爸爸发现小明忘带作业本了,便出追小明,又过了5分钟,爸爸开始在路上发现了小明留下的脚印,再过了7分钟后,爸爸追上了小明,小明的脚印从刚踩下到消失需要花几分钟?3.早上,小张骑车从甲地出发去乙地,下午1点,小王开车也从甲地出发,前往乙地,下午2点两人之间距离为15千米,下午3点两人之间的距离还是15千米,下午4点时小王到达乙地,晚上7点小张到达乙地,小张是早上几点出发的?4.奶糖每千克24元,水果糖每千克18元,买两种糖花了同样多的钱,但水果糖比奶糖多4千克,水果糖多少千克?奶糖多少千克?5.猴王带领一群猴子去摘桃子,下午收工后,猴王开始分配,若大猴分5个,小猴分3个,猴王可留下10个,若大、小猴都分4个,猴王能留下20个,在这群猴中,大猴(不包括猴王)比小猴多几只?6.一堆废料,用小车运7车刚好运完,用大车运5车刚好运完,大车比小车多运2吨,这堆废料有多少吨?练习:1.甲、乙二人同时从A地出发,以相同的速度向B地前进,甲每行5分钟休息2分钟,乙每行210米休息3分钟,甲出发后50分钟到达B,乙到达B地比甲迟了10分钟,两人最后一次休息地点相距35米,两人的速度为每分钟走多少米?***2.以为旅客去杭州旅游,车子开了全程的一半时,他睡觉了;当他醒来时,剩下的路程是他睡觉中开过的路程的32,他睡觉中行的路程是全程的几分之几?(补充:列方程解应用题)例 10箱苹果比6箱梨重54千克,每箱梨重16千克,每箱苹果重多少千克? 10箱苹果的重量-6箱梨的重量=54千克列方程 54616=⨯-x 10专题三:几何问题与猜想1.由六个边长为1的小正方体拼成如图所示立体,它的表面积为多少?2.用6张边长为3厘米的正方形纸片拼成一个长方形,这个长方形的周长是多少厘米?3.正方形ABCD与等腰三角形BEF叠放在一起,M,N点为正方形的边的中点,阴影部分的面积为14平方厘米,三角形BEF的面积是多少平方厘米?4.如图所示,大长方形恰被分割为几个互不重叠的正方形,已知最小的两个正方形的边长分别为2厘米和5厘米,那么大长方形的周长为多少厘米?5.把一个边长为6厘米的正方形纸片,分成两个大小一样的长方形纸片,每一个长方形纸片的面积为多少平方厘米?周长为多少厘米?6.利用数字0,1,2,3,4,5,6,7,8,9(每个数字可重复)构造一个6位数,满足要求:前k位数被k整除(k=1,2,3,4,5,6)。
初中一年级奥数16个专题
初中一年级奥数16个专题1. 整数和小数在初中一年级的奥数中,整数和小数是最基本的数学概念之一。
学生需要学会整数的加减乘除运算,以及小数的概念和计算。
这个专题对于建立数学基础非常重要。
2. 分数在初中一年级的奥数中,分数也是一个重要的专题。
学生需要研究分数的概念、分数的加减乘除运算,以及分数与整数的转换。
3. 百分数百分数也是初中一年级奥数的一个重要内容。
学生需要学会百分数的概念,以及百分数的转换和计算。
4. 几何基础在初中一年级的奥数中,学生需要掌握一些几何基础知识,如平面图形的认知、图形的分类与性质等。
这些知识有助于培养学生的几何思维能力。
5. 平方与平方根平方与平方根也是初中一年级奥数的一个专题。
学生需要了解平方与平方根的概念,以及对应的运算和计算方法。
6. 三角形三角形是初中一年级奥数的一个重要内容。
学生需要研究三角形的定义、分类和性质,以及三角形的面积和周长计算等知识。
7. 比例与比例方程在初中一年级的奥数中,学生需要研究比例与比例方程的概念与运算,以及应用比例解决实际问题的能力。
8. 数据统计数据统计也是初中一年级奥数的一个专题。
学生需要学会收集、整理和表示数据的方法,以及数据分析和解读。
9. 平移、旋转与翻转平移、旋转与翻转是初中一年级奥数的一个内容。
学生需要研究平移、旋转和翻转的概念,以及应用几何变换解决问题的能力。
10. 连分数在初中一年级奥数中,连分数是一个比较高级的专题。
学生需要研究连分数的概念,以及连分数的运算和转换。
11. 概率概率也是初中一年级奥数的一个重要内容。
学生需要学会计算概率、应用概率解决问题,了解随机事件和概率的基本概念。
12. 图论基础图论基础是初中一年级奥数的一个专题。
学生需要研究图的基本概念和性质,以及应用图论解决问题的能力。
13. 立体几何立体几何也是初中一年级奥数的一个重点内容。
学生需要研究立体几何的基本概念,如体积、表面积等,并能应用于实际问题求解。
小学一年级奥数个专题
小学一年级奥数个专题 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】第一讲速算与巧算(一)一、凑十法:同学们已经知道,下面的五组成对的数相加之和都等于10:1+9=102+8=103+7=104+6=105+5=10巧用这些结果,可以使计算又快又准。
例1 计算1+2+3+4+5+6+7+8+9+10解:对于这道题,当然可以从左往右逐步相加:1+2=3 3+3=66+4=10 10+5=1515+6=21 21+7=2828+8=36 36+9=4545+10=55这种逐步相加的方法,好处是可以得到每一步的结果,但缺点是麻烦、容易出错;而且一步出错,以后步步都错。
若是利用凑十法,就能克服这种缺点。
二、凑整法同学们还知道,有些数相加之和是整十、整百的数,如:1+19=20 11+9=302+18=20 12+28=403+17=20 13+37=504+16=20 14+46=605+15=20 15+55=706+14=20 16+64=807+13=20 17+73=908+12=20 18+82=1009+11=20又如:15+85=100 14+86=10025+75=100 24+76=10035+65=100 34+66=10045+55=100 44+56=100等等巧用这些结果,可以使那些较大的数相加又快又准。
像10、20、 30、40、50、60、70、80、90、100等等这些整十、整百的数就是凑整的目标。
例2 计算1+3+5+7+9+11+13+15+17+19解:这是求1到19共10个单数之和,用凑整法做:例3 计算2+4+6+8+10+12+14+16+18+20解:这是求2到20共10个双数之和,用凑整法做:例4 计算2+13+25+44+18+37+56+75解:用凑整法:三、用已知求未知利用已经获得较简单的知识来解决面临的更复杂的难题这是人们认识事物的一般过程,凑十法、凑整法的实质就是这个道理,可见把这种认识规律用于计算方面,可使计算更快更准。
小学奥数专题-小学 奥数
小学奥数专题-小学奥数行程问题基础一、关于速度、时间、路程的基本关系速度×时间=路程,可简记为:s = vt路程÷速度=时间,可简记为:t = s÷v路程÷时间=速度,可简记为:v = s÷t二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度×总时间。
板块一、简单行程公式解题例1】XXX的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么XXX几点就可到校?巩固】甲、乙两地相距100千米。
下午3点,一辆马车从甲地出发前往乙地,每小时走10千米;晚上9点,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少要行驶多少千米?巩固】两辆汽车都从北京出发到某地,货车每小时行60千米,15小时可到达。
客车每小时行50千米,如果客车想与货车同时到达某地,它要比货车提前开出几小时?巩固】甲、乙两辆汽车分别从A、B两地出发相向而行,甲车先行三小时后乙车从B地出发,乙车出发5小时后两车还相距15千米。
甲车每小时行48千米,乙车每小时行50千米。
求A、B两地间相距多少千米?巩固】一天,梨和桃约好在天安门见面,梨每小时走200千米,桃每小时走150千米,他们同时出发2小时后还相距500千米,则梨和桃之间的距离是多少千米?巩固】两列火车从相距480千米的两城相向而行,甲列车每小时行40千米,乙列车每小时行42千米,5小时后,甲、乙两车还相距多少千米?巩固】XXX从家骑车去学校,每小时15千米,用时2小时,回来以每小时10千米的速度行驶,需要多少时间?1.一列火车长400米,整列火车完全通过一条长800米的隧道需要20秒,如果以相同的速度整列火车完全通过一座大桥需要30秒,那么这座大桥长多少米?2.火车通过1000米的大桥用了50秒,以同样的速度通过1500米的隧道用了70秒。
小学常见奥数专题28个
小学常见奥数专题28个1.和差倍问题和差问题和倍问题差倍问题都是常见的奥数题型。
当已知几个数的和与差或几个数的和与倍数或几个数的差与倍数时,我们可以使用差倍公式来解决问题。
其中,公式①(和-差)÷2=较小数,较小数+差=较大数,和-较小数=较大数,公式②(和+差)÷2=较大数,较大数-差=较小数,和-较大数=较小数,和÷(倍数+1)=小数,小数×倍数=大数,和-小数=大数,差÷(倍数-1)=小数,小数×倍数=大数,小数+差=大数。
关键问题在于求出同一条件下的和与差或和与倍数或差与倍数。
2.年龄问题的三个基本特征年龄问题是奥数中常见的题型之一,其三个基本特征为:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的。
3.归一问题的基本特点归一问题的基本特点是问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”等词语来表示。
关键问题在于根据题目中的条件确定并求出单一量。
4.植树问题植树问题是奥数中的常见题型之一,其基本类型包括在直线或者不封闭的曲线上植树、两端都植树在直线或者不封闭的曲线上植树、两端都不植树在直线或者不封闭的曲线上植树、只有一端植树封闭曲线上植树。
其基本公式为棵数=段数+1,棵距×段数=总长,棵数=段数-1,棵距×段数=总长,棵数=段数,棵距×段数=总长。
关键问题在于确定所属类型,从而确定棵数与段数的关系。
5.鸡兔同笼问题鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来。
其基本思路包括假设、找出差、找出原因、调整。
其基本公式为把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数),把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)。
关键问题在于找出总量的差与单位量的差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥赛专题-- 称球问题〔专题介绍〕称球问题是一类传统的趣味数学问题,它锻炼着一代又一代人的智力,历久不衰。
下面几道称球趣题,请你先仔细考虑一番,然后再阅读解答,想来你一定会有所收获。
〔经典例题〕例1 有4堆外表上一样的球,每堆4个。
已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。
解:依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。
例2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。
解:第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。
若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。
第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。
第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。
例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。
解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。
把A、B两组分别放在天平的两个盘上去称,则(1)若A=B,则A、B中都是正品,再称B、C。
如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。
如B <C,仿照B>C的情况也可得出结论。
(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。
(3)若A<B,类似于A>B的情况,可分析得出结论。
练习有12个外表上一样的球,其中只有一个是次品,用天平只称三次,你能找出次品吗?奥赛专题-- 鸡兔同笼问题[专题介绍]鸡兔同笼问题是指在应用题中给出了鸡和兔子的总头数和总腿数,求鸡和兔子各有多少只的一类问题。
鸡兔同笼问题在解答过程中用到假设的思路,可以假设都是兔子,这样总腿数就比实际腿数要多,多出来的腿数就是把鸡当兔子多算的,因此再除以一只鸡比一只兔子少的腿数就可以求得鸡有多少只。
也可以假设成都是鸡,这样就可以求得兔有多少只。
[经典例题]例1 鸡兔同笼,头共46,足共128,鸡兔各几只?[分析] :如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?(4×6-128)÷(4-2)=(184-128)÷2=56÷2=28(只)②免有多少只?46-28=18(只)答:鸡有28只,免有18只。
[总结]:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?[分析]:这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:鸡与兔分别有80只和20只。
例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?[分析1] 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。
结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?解法1:一班:[135-5+(7-5)]÷3=132÷3=44(人)二班:44+5=49(人)三班:49-7=42(人)答:三年级一班、二班、三班分别有44人、49人和42人。
[分析2] 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)49-5=44(人),49-7=42(人)答:三年级一班、二班、三班分别有44人、49人和42人。
例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?[分析] 我们分步来考虑:①假设租的10条船都是大船,那么船上应该坐6×10= 60(人)。
②假设后的总人数比实际人数多了60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。
③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。
解:[6×10-(41+1)÷(6-4)= 18÷2=9(条)10-9=1(条)答:有9条小船,1条大船。
例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?[分析] 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为6×18=108(条),所差118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).解:①假设蜘蛛也是6条腿,三种动物共有多少条腿?6×18=108(条)②有蜘蛛多少只?(118-108)÷(8-6)=5(只)③蜻蜒、蝉共有多少只?18-5=13(只)④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)⑤蜻蜒多少只?(20-13)÷ 2-1)= 7(只)答:蜻蜒有7只.参考资料:小数专业网过桥问题(1)1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?分析:这道题求的是通过时间。
根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。
路程是用桥长加上车长。
火车的速度是已知条件。
总路程:(米)通过时间:(分钟)答:这列火车通过长江大桥需要17.1分钟。
2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?分析与解答:这是一道求车速的过桥问题。
我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。
可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。
总路程:(米)火车速度:(米)答:这列火车每秒行30米。
3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?分析与解答:火车过山洞和火车过桥的思路是一样的。
火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。
这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。
总路程:山洞长:(米)答:这个山洞长60米。
和倍问题1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)(2)秦奋的年龄:40÷5=8岁(3)妈妈的年龄:8×4=32岁综合:40÷(4+1)=8岁8×4=32岁为了保证此题的正确,验证(1)8+32=40岁(2)32÷8=4(倍)计算结果符合条件,所以解题正确。
2. 甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。
看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。
甲乙飞机的速度分别每小时行800千米、400千米。
3. 弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书。
根据条件需要先求出哥哥剩下多少本课外书。