BTS432E2中文资料
bts432e2针脚定义
bts432e2针脚定义BTS432E2是一种用于电子设备控制的特殊元件,它的针脚定义和功能对于正确使用和操作设备至关重要。
本文将详细介绍BTS432E2的针脚定义,以帮助读者更好地了解和使用这一元件。
1. 针脚1(Vcc):供电脚针脚1是BTS432E2的供电脚。
在使用BTS432E2之前,我们需要将Vcc引脚连接到适当的电源引脚,以确保元件正常工作。
2. 针脚2(GND):接地脚针脚2是BTS432E2的接地脚。
为了确保元件的正常工作,我们需要将GND引脚连接到系统的地线或适当的接地点。
3. 针脚3(IN):输入脚针脚3是BTS432E2的输入脚。
我们可以通过控制IN引脚的电平来控制元件的开关状态。
4. 针脚4(OUT):输出脚针脚4是BTS432E2的输出脚。
当IN引脚接收到控制信号时,OUT引脚将产生相应的输出信号。
根据BTS432E2的设计,OUT 引脚可以承受一定的电流和电压。
5. 针脚5(PG):过流监测脚针脚5是BTS432E2的过流监测脚。
PG引脚用于监测元件上的电流情况,当电流超过设定的阈值时,PG引脚将产生相应的保护动作,以保证系统的安全运行。
6. 针脚6(EN):使能脚针脚6是BTS432E2的使能脚。
通过使能脚,我们可以控制BTS432E2的工作状态,使其处于开启或关闭状态。
7. 针脚7(FLT):故障指示脚针脚7是BTS432E2的故障指示脚。
当BTS432E2内部出现故障时,FLT引脚将产生相应的故障指示信号,以提示用户进行相应的检修或替换。
通过以上对BTS432E2各个针脚的定义和功能的介绍,我们可以更好地理解这一元件的工作原理和使用方法。
在实际应用中,正确连接和使用BTS432E2的针脚是确保电子设备正常运行的重要步骤。
需要注意的是,在实际的使用中,我们也需要参考BTS432E2的相关规格书和技术资料,以了解更多有关元件的详细信息和限制条件,以便正确设计和操作相关电路。
uc3843中文资料 (2)
UC3843中文资料简介UC3843是一种高性能固定频率电流模式PWM控制器。
它是专为开关电源和DC-DC转换器设计的,可提供快速且精确的响应。
UC3843在广泛的电源和应用中得到了广泛的应用,具有可靠性高、性能优越等特点。
本文档将详细介绍UC3843的特性、应用领域、电路原理和参数规格等相关信息。
特性1.工作电压范围:8V - 35V2.最大输出频率:500kHz3.可调或固定输出电压4.可调或固定输出电流5.内部电流检测和保护功能6.过温度保护7.低功耗待机模式应用领域UC3843广泛应用于以下领域:1.开关电源2.DC-DC转换器3.逆变器4.电池充电器5.照明系统6.电动机驱动器电路原理UC3843采用了固定频率PWM控制方式,通过周期性的开关MOSFET来控制电源输出。
其基本电路原理如下:UC3843基本电路原理图•Vin为输入电源电压,通常为DC电压•Vref为参考电压,可以通过外部电路调整来控制输出电压或电流•COMP为比较器输入引脚,用于比较反馈信号和参考电压的大小•PWM为PWM信号输出引脚,用于控制开关MOSFET的开关状态•Feedback为反馈信号输入引脚,用于监测输出电压或电流UC3843通过不断比较反馈信号和参考电压的大小,动态调整PWM信号的占空比,以达到稳定输出的目的。
同时,UC3843还具有内部电流检测和保护功能,可以保护电源和负载免受过电流的影响。
参数规格UC3843的主要参数规格如下:参数典型值工作电压范围8V - 35V输出频率范围100kHz - 500kHz输出电压范围0V - 30V输出电流范围0A - 3A参考电压 2.5V最大工作温度125°C待机模式静态功耗(最大)5mA使用注意事项在使用UC3843时,应注意以下事项:1.请严格按照UC3843的电气参数和工作条件进行设计和使用,避免超过其额定数值范围。
2.请注意电路的散热和绝缘设计,确保电路稳定、安全。
uc3843中文资料 (4)
UC3843中文资料1. 简介UC3843是一款集成了PWM控制电路的高性能电源管理芯片。
它能够通过自身的内部反馈环路来实现稳定的输出电压,并且可调节输出电压范围。
这使得UC3843非常适用于开关电源和DC-DC转换应用中。
UC3843具有低启动电流、内部锁死和内部软启动功能,能够有效地降低功耗和延长系统寿命。
此外,它还具有短路保护、过温保护和欠压保护功能,确保了系统的安全性和可靠性。
2. 特点•集成了PWM控制电路,适用于开关电源和DC-DC转换应用。
•可调节的输出电压范围,能够满足不同应用的需求。
•低启动电流,节省功耗,提高系统效率。
•内部锁死和软启动功能,保护系统并延长使用寿命。
•短路保护、过温保护和欠压保护功能,确保系统安全可靠。
3. 参数规格以下是UC3843的主要参数规格:•输入电压范围:5V至25V•输出电压范围:0V至24V•最大输出电流:1A•工作频率:50kHz至500kHz•工作温度范围:-40°C至125°C•封装:DIP-8、SOP-84. 应用示例UC3843广泛应用于各种开关电源和DC-DC转换器设计中。
以下是一些应用示例:4.1 5V至12V降压转换器UC3843可以用于设计一个从5V输入降压到12V输出的DC-DC转换器。
通过调节内部反馈环路,可以使输出电压保持稳定在12V。
此外,UC3843的低启动电流和软启动功能确保了系统的正常启动和运行。
4.2 24V恒流LED驱动器UC3843还可以用于设计一个24V恒流LED驱动器。
通过控制PWM信号的占空比,可以调节LED的亮度,并通过反馈电路实现恒流驱动。
短路保护和过温保护功能能够保护LED和驱动器的安全性。
4.3 太阳能充电控制器由于UC3843具有广泛的输入电压范围和可调节的输出电压范围,因此非常适合用于设计太阳能充电控制器。
通过控制PWM信号,可以实现对充电电流的精确控制,并通过反馈电路实现恒压和恒流充电。
EL4332中文资料
© 1995 Elantec, Inc.EL4332CGeneral DescriptionThe EL4332C is a triple very high speed 2:1 Multiplexer-Amplifier. It is intended primarily for component video multiplexing and is espe-cially suited for pixel switching. The amplifiers have their gain set to 2internally, which reduces the need for many external components. The gain-of-2 facilitates driving back terminated cables. All three amplifi-ers are switched simultaneously from their A to B inputs by the TTL/CMOS compatible, common A/B control pin.A -3 dB bandwidth of 300 MHz together with 3 ns multiplexing time enable the full performance of the fastest component video systems to be realized.The EL4332C runs from standard ±5V supplies, and is available in the narrow 16-pin small outline package.Connection DiagramsFeatures•3 ns A-Bswitching •300 MHz bandwidth•Fixed gain of 2, for cable driving •> 650V/µs slew rate•TTL/CMOS compatible switchApplications•RGB multiplexing •Picture-in-picture •Cabledriving •HDTV processing•Switched gain amplifiers •ADC input multiplexerDemo Board A demo PCB is available for this prod-uct. Request “EL4332/1 Demo Board.”Ordering InformationPart No.Temp. Range Package Outline #EL4332CS-40°C to 85°CSO16MDP0027EL4332CTriple 2:1 300 MHz Mux-Amp AV =2November 12, 19992EL4332CTriple 2:1 300 MHz Mux-Amp AV =2E L 4332CAbsolute Maximum Ratings (T A= 25 °C)V CC to V EE14V V CC to any GND 12V V EE to any GND12V Continuous Output Current 45 mAAny Input V EE - 0.3V to V CC + 0.3V Input Current, Any Input 5 mA Power Dissipation See Curves Operating Temperature -40°C to 85°CJunction Temperature 170°CStorage Temperature -60°C to +150°CImportant Note:All parameters having Min/Max specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality inspection. Elantec performs most electrical tests using modern high-speed automatic test equipment, specifically the LTX77 Series system. Unless otherwise noted, all tests are pulsed tests, therefor T J = T C = T A .Test LevelTest ProcedureI 100% production tested and QA sample tested per QA test plan QCX0002.II 100% production tested at T A = 25°C and QA sample tested at T A = 25°C, T MAX and T MIN per QA test plan QCX0002.III QA sample tested per QA test plan QCX0002.IV Parameter is guaranteed (but not tested) by Design and Characterization Data.VParameter is typical value at T A = 25°C for information purposes only.DC Electrical CharacteristicsV CC = +5V, V EE = -5V, Temperature = 25°C, R L = ×Parameter DescriptionMin Typ Max Test LevelUnits V OS Input Referred Offset V oltage 820II mV dV OS Input Referred Offset V oltage Delta [1]28II mV R IN Input Resistance 30V k ΩI B Input Bias Current -7-30II µA dI B Input Bias Current Delta [1]0.54.0II µA A V Gain 1.94 2.00 2.06II V/V dA V Gain Delta [1]0.5 2.5II %C IN Input Capacitance3.3V pF PSRR Power Supply Rejection Ratio 5070II dB V O Output V oltage Swing into 500Ω load ±2.7±3.6II V Output V oltage Swing into 150Ω load +3/-2.7V V I OUT Current Output, Measured with 75W Load [2]3040II mA Xtalk AB Crosstalk from Non-selected Input (at DC)-70-100III dB Xtalk CH-CH Crosstalk from one Amplifier to another Amplifier -70-100V dB V IH Input Logic High Level 2.0IIV V IL Input Logic Low Level0.8II V I IL Logic Low Input Current (V IN = 0V)-0.3-40-80II µA I IH Logic High Input Current (V IN = 0V)-303II µA I STotal Supply Current384860IImA1.Each channel ’s A-input to its B-input.2.There is no short circuit protection on any output.EL4332CTriple 2:1 300 MHz Mux-Amp AV =2EL4332C AC Electrical CharacteristicsV CC = +5V, V EE = -5V, Temperature = 25°C, R L = 150Ω, C L = 3 pF.Parameter Description Min Typ Max Test Level UnitsBW-3 dB Bandwidth300V MHzBW 0.1dB±0.1 dB Bandwidth105V MHzDG Differential Gain at 3.58 MHz0.04V%DP Differential Phase at 3.58 MHz0.08V°Pkg Peaking with Nominal Load0.2V dBSR Slew Rate (4V Square Wave, Measured 25%–75%)650V V/µst s Settling Time to 0.1% of Final Value13V nsT SW Time to Switch Inputs3V nsOS Overshoot, V OUT = 4 V P-P8V%I SO ab10M Input to Input Isolation at 10 MHz60V dB100M Input to Input Isolation at 100 MHz40V dBI SO ch-ch10M Channel to Channel Isolation at 10 MHz61V dB100M Channel to Channel Isolation at 100 MHz50V dBPin DescriptionsPin Name FunctionA1, A2, A3“A” inputs to amplifiers 1, 2 and 3 respectivelyB1, B2, B3“B” inputs to amplifiers 1, 2 and 3 respectivelyGND1, GND2, GND3These are the individual ground pins for each channel.Out1, Out2, Out3Amplifier outputs. Note: there is no short circuit protection on any output.V CC Positive power supply. Typically +5V.V EE Negative power supply. Typically -5V.A/B Common input select pin, a logic high selects the “A” inputs, logic low selects the “B” inputs. CMOS/TTL compatible.34EL4332CTriple 2:1 300 MHz Mux-Amp AV =2E L 4332CBurn In Schematic5EL4332CTriple 2:1 300 MHz Mux-Amp AV =2EL4332CTypical Performance CurvesSmall Signal Transient ResponseLarge Signal Transient ResponseSwitching to Ground from a Large Signal Uncorrelated Sine Wave Switching from Ground to a Large Signal Uncorrelated Sine WaveSwitching to Ground from a Small Signal Uncorrelated Sine Wave Switching from Ground to a Small Signal Uncorrelated Sine WaveEL4332CTriple 2:1 300 MHz Mux-Amp AV =2EL4332CSwitching Glitch(Inputs at Ground)Switching from a Family of DCLevels to GroundSwitching from Ground to aFamily of DC Levels Channel A/B Switching DelayGain vs Frequency Gain vs Frequency67EL4332CTriple 2:1 300 MHz Mux-Amp AV =2EL4332C-3 dB BW vs Supply Voltage Bandwidth vs Die TemperatureInput Voltage Noise over FrequencyFrequency Response with Capacitive LoadsA-Input to B–Input Isolation Channel-Channel Isolation8EL4332CTriple 2:1 300 MHz Mux-Amp AV =2E L 4332COutput Swing vs Supply Voltage Supply Current vs Supply Voltage A-Input to B –Input IsolationMaximum Power DissipationSlew Rate vs Die TemperatureSlew Rate vs Supply Voltage9EL4332CTriple 2:1 300 MHz Mux-Amp AV =2EL4332CApplicationsFigure 1 shows a typical use for the EL4332C. The cir-cui t i s a component video (R,G,B or Y,U,V)multiplexer. Since the gain of the internal amplifiers has been set to 2, the only extra components needed are thesupply decoupling capacitors and the back terminating resistors, if transmission lines are to be driven. The EL4332 can drive backmatched 50Ω or 75Ω loads.Figure 1. Typical Connection for a 2:1 Component Video Multiplexer10EL4332CTriple 2:1 300 MHz Mux-Amp AV =2E L 4332CGroundsIt will be noticed that each mux-amp channel has its own separate ground pin. These ground pins have been kept separate to keep the channel separation inside the chip as large as possible. The feedback resistors use these ground pins as their reference. The resistors total 400Ω,so there is a significant signal current flowing from these pins to ground.The ground pins should all be connected together, to a ground plane underneath the chip. 1 oz. copper for the ground plane is highly recommended.Further notes and recommended practices for high speed printed circuit board layout can be found in the tutorials in the Elantec databooks.SuppliesSupply bypassing should be as physically near the power pins as possible. Chip capacitors should be used to mini-mize lead inductance. Note that larger values of capacitor tend to have larger internal inductances. So when designing for 3 transmission lines or similar mod-erate loads, a 0.1 µF ceramic capacitor right next to the power pin in parallel with a 22 µF tantalum capacitor placed as close to the 0.1 µF is recommended. For lighter loadings, or if not all the channels are being used, a sin-gle 4.7 µF capacitor has been found quite adequate.Note that component video signals do tend to have a high level of signal correlation. This is especially true if the video signal has been derived from 3 synchronously clocked DACs. This corresponds to all three channels drawing large slew currents simultaneously from the supplies. Thus, proper bypassing is critical.Logic InputsThe A/B select, logic input, is internally referenced to ground. It is set at 2 diode drops above ground, to give a threshold of about 1.4V (see Figure 2). The PNP input transistor requires that the driving gate be able to sinkcurrent, typically < 30 µA, for a logic “low ”. If left to float, it will be a logic “high ”.The input PNP transistors have sufficient gain that a simple level shift circuit (see Figure 3) can be used to provide a simple interface with Emitter Coupled Logic.Typically, 200 mV is enough to switch from a solid logic “low ” to a “high.”The capacitor Cff is only in the network to prevent the A/B pin ’s capacitance from slowing the control signal.The network shown level shifts the ECL levels, -0.7V to -1.5V to +1.6V and +1.1V respectively. The terminating resistor, Rtt, is required since the open emitter of the ECL gate can not sink current. If a -2V rail is not beingFigure 2. Simplified Logic Input StageFigure 3. Adapting the Select Pinfor ECL Logic Levels11EL4332CTriple 2:1 300 MHz Mux-Amp AV =2EL4332Cused, a 220Ω to 330Ω resistor to the -5.2V rail would have the same effect.Expanding the MultiplexerIn Figure 4, a 3:1 multiplexer circuit is shown. The expansion to more inputs is very straight forward. Since the EL4332C has a fixed gain of 2, interstage attenuators may be required as shown in Figure 3. The truth table for the 3:1 multiplexer select lines is:When interstage attenuators are used, the values should be kept down in the region of 50Ω–300Ω. This is to pre-vent a combination of circuit board stray capacitance and the EL4332C ’s input capacitance forming a signifi-cant pole. For example, if instead of 100Ω as shown,resistors of 1 k Ω had been used, and assuming 3pF of stray and 3pF of input capacitance, a pole would be formed at about 53 MHz.X Y MuxOutput 00R3, G3, B301R2, G2, B21XR1, G1, B1Figure 4. Typical Connection for a 3:1 Component Video Multiplexer12EL4332CTriple 2:1 300 MHz Mux-Amp AV =2E L 4332CA Bandwidth Selectable CircuitIn Figure 5, a circuit is shown that allows three signals to be either low pass filtered or full bandwidth.This could be useful where an input signal is frequently noisy. The component values showngive a Butterworth LPF response, with a -3 dB fre-quency of 50 MHz. Note again, the resistor values are low, so that stray capacitance does not affect the desired cut-off frequency.Figure 5. Switched 50 MHz Low Pass Filter for High/Low Resolution MonitorsEL4332CTriple 2:1 300 MHz Mux-Amp AV =2EL4332CEL4332 Macromodel* EL4332 Macromodel* Revision A, April 1996*****************************************************************************Applications Hints. The EL4332 has two V CC pins, one V EE pin, and three ground*pins. The V CC pins (pins 14 and 15 are internally shorted together in the model,*but the ground pins (GND1, GND2, and GND3 (nodes 2, 7, and 10, respectively)*must be connected to ground (node 0) using a le-6W resistor. Alternatively,* nodes 2, 7, and 10 may be connected to ground through a 25Ω resistor in parallel* with a 4 nH inductor to simulate package and PCB parasitics.***************************************************************************** Connections:* OUT1* | GND1* | | A1* | | | B1* | | | | B2* | | | | | A2* | | | | | | GND2* | | | | | | | OUT2* | | | | | | | |* | | | | | | | |* 1 2 3 4 5 6 7 8** OUT3* | GND3* | | B3* | | | A3* | | | | V EE* | | | | | V CC* | | | | | | V CC* | | | | | | | A/B* | | | | | | | |* | | | | | | | |* 9 10 11 12 13 14 15 16************A B Switch ***************Rshort 14 15 le-12rshort1 15 0 100 MegIsw 14 110 1.5 mAvref 111 0 1.6Vq1 101 16 110 qpq2 102 111 110 qpR1 101 13 500R2 102 13 500Rd1 107 0 100Esw 107 0 table {v(102, 101)*100} (0,0) (1,1)*************Amplifier #1 *************q131 103 3 112 qpq141 104 114 113 qpq151 105 4 115 qpq161 106 117 116 qpIa11 14 112 1 mAIa21 14 113 1 mAIb11 14 115 1 mAIb21 14 116 1 mARga1 112 113 275Rgb1 115 116 275R31 103 13 275R41 104 13 275R51 105 13 275R61 106 13 275R71 1 114 4001314EL4332CTriple 2:1 300 MHz Mux-Amp AV =2E L 4332CR81 114 2 400R911 117 400R110 117 2 400Ediff1 108 0 value {(v(104,103)*v(107))+(v(106,105)*(1-v(107)))}rdiff1 108 0 1K **Compensation Section *ga1 0 134 108 0 1m rh1 134 0 5 Meg cc1 134 0 0.6 pF **Poles *ep1 141 0 134 0 1.0rpa1 141 142 200cpa1 142 0 0.75 pF rpb1 142 143 200cpb1 143 0 0.75 pF **Output Stage *i011 15 150 1.0 mA i021 151 13 1.0 mA q71 13 143 150 qp q81 15 143 151 qn q91 15 150 152 qn q101 13 151 153 qp ros11 152 1 2ros21 153 1 2*************Amplifier #2***********q231 203 6 212 qp q241 204 214 213 qp q251 205 5 215 qp q261 206 217 216 qp Ia12 14 212 1 mA Ia22 14 213 1 mA Ib12 14 215 1 mA Ib22 14 216 1 mA Rga2 212 213 275Rgb2 215 216 275R231 203 13 275R241 204 13 275R251 205 13 275R261 206 13 275R271 8 214 400R281 214 7 400R291 8 217 400R210 217 7 400Ediff2 208 0 value {(v(204,203)*v(107))+(v(206,205)*(1-v(107)))}rdiff2 208 0 1K ** Compensation Section *ga2 0 234 208 0 1m rh2 234 0 5 Meg cc2 234 0 0.6 pF ** Poles *ep2 241 0 234 0 1.0rpa2 241 242 200cpa2 242 0 0.75 pFEL4332CTriple 2:1 300 MHz Mux-Amp AV =2EL4332Crpb2 242 243 200cpb2 243 0 0.75 pF**Output Stage*i0 12 15 250 1.0 mAi022 251 13 1.0 mAq271 13 243 250 qpq281 15 243 251 qnq291 15 250 252 qnq201 13 251 253 qpros12 252 8 2ros22 253 8 2*************Amplifier #3 ************q331 303 12 312 qpq341 304 314 313 qpq351 305 11 315 qpq361 306 317 316 qpIa13 14 312 1 mAIa23 14 313 1 mAIb13 14 315 1 mAIb23 14 316 1 mARga3 312 313 275Rgb3 315 316 275R331 303 13 275R341 304 13 275R351 305 13 275R361 306 13 275R371 9 314 400R381 314 10 400R391 9 317 400R310 317 10 400Ediff3 308 0 value {( v(304,303)*(v(107))+(v(306,305)*(1-v(107)))}rdiff3 308 0 1K** Compensation*ga3 0 334 308 01mrh3 334 0 5 Megcc3 334 0 0.6 pF** Poles*ep3 341 0 3340 1.0rpa3 341 342 200cpa3 342 0 0.75 pFrpb3 342 343 200cpb3 343 0 0.75 pF** Output Stage*i013 15 350 1.0 mAi023 351 13 1.0 mAq371 13 343 350 qpq381 15 343 351 qnq391 15 350 352 qnq301 13 351 353 qpros13 352 9 2ros23 353 9 2** Power Supply Current*ips 15 13 22 mA15E**Models*.model qp pnp(is=1.5e-16 bf=300 tf=0.01 ns).model qn npn(is=0.8e-18 bf=300 tf=0.01 ns).ends1617E General DisclaimerSpecifications contained in this data sheet are in effect as of the publication date shown. Elantec, Inc. reserves the right to make changes in the cir-cuitry or specifications contained herein at any time without notice. Elantec, Inc. assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.W ARNING - Life Support PolicyElantec, Inc. products are not authorized for and should not be used within Life Support Systems without the specific written consent of Elantec, Inc. Life Support systems are equipment intended to sup-port or sustain life and whose failure to perform when properly used in accordance with instructions provided can be reasonably expected to result in significant personal injury or death. Users con-templating application of Elantec, Inc. Products in Life Support Systems are requested to contact Elantec, Inc. factory headquarters to establish suitable terms & conditions for these applications. Elan-tec, Inc.’s warranty is limited to replacement of defective components and does not cover injury to persons or property or other consequential damages.Elantec, Inc.1996 Tarob Court Milpitas, CA 95035Telephone:(408) 945-1323(800) 333-6314Fax:(408) 945-9305European Office:44-71-482-4596N o v e m b e r 12, 1999Printed in U.S.A.。
BTS462T中文资料
Limit for unclamped ind. loads
OUT
Temperature sensor Load
ESD
Logic
GND
miniPROFET
Signal GND
Load GND
Pin 1 2 3 4 5 TAB
Symbol GND IN Vbb NC OUT Vbb
Function Logic ground Input, activates the power switch in case of logic high signal Positive power supply voltage not connected Output to the load Positive power supply voltage
Page 1
2004-01-27
元器件交易网
BTS 462 T
Block Diagram
+ V bb
Voltage source V Logic
Overvoltage protection
Current limitLeabharlann Gate protection
Charge pump Level shifter Rectifier
Pin configuration
Top view
Tab = VBB
1
2
(3)
4
5
GND IN
NC OUT
Page 2
2004-01-27
元器件交易网
BTS 462 T Maximum Ratings at Tj = 25°C, unless otherwise specified Parameter Supply voltage Supply voltage for full short circuit protection Tj = -40...+150 °C Continuous input voltage Load current (Short - circuit current, see page 5) Current through input pin (DC) Operating temperature Storage temperature Power dissipation 1) Inductive load switch-off energy dissipation 1)2) single pulse, (see page 8) Tj =150 °C, Vbb = 13.5 V, IL = 1 A Load dump protection 2) VLoadDump3)= VA + VS RI=2Ω, td=400ms, VIN= low or high, VA=13,5V RL = 13.5 Ω Electrostatic discharge voltage (Human Body Model) VESD according to ANSI EOS/ESD - S5.1 - 1993 ESD STM5.1 - 1998 Input pin all other pins Thermal Characteristics junction - case: Thermal resistance @ min. footprint Thermal resistance @ 6 cm 2 cooling area 1) RthJC Rth(JA) Rth(JA) 80 45 3 60 K/W K/W ±1 ±5 75 kV VLoaddump V VIN IL I IN Tj T stg Ptot EAS -10 ... +16 self limited ±5 -40 ...+150 -55 ... +150 41.6 4.4 W J A mA °C Symbol Vbb Vbb(SC) Value 40 32 Unit V
BTS442E2中文资料
2
IN
Temperature sensor
5
Load
4
ST
Short circuit detection
GND
® PROFET
Load GND
1
Signal GND
1) 2)
No external components required, reverse load current limited by connected load. Additional external diode required for charged inductive loads
Semiconductor Group
1
04.96
元器件交易网
BTS 442 E2
Pin 1 2 3 4 5 Symbol GND IN Vbb ST OUT (Load, L) I + S O Function Logic ground Input, activates the power switch in case of logical high signal Positive power supply voltage, the tab is shorted to this pin Diagnostic feedback, low on failure Output to the load
Semiconductor Group
3
元器件交易网
BTS 442 E2
Parameter and Conditions
at Tj = 25 °C, Vbb = 12 V unless otherwise specified
Tj=25 °C: RON Tj=150 °C: IL(ISO) IL(GNDhigh)
STK4142中文资料
Operating Characteristics at Ta = 25°C, VCC = ±26V, RL = 8Ω, Rg = 600Ω, VG = 40dB, RL : non-inductive load
Parameter Quiescent current
Output power
Total harmonic distortion Frequency response Input impedance Output noise voltage Neutral voltage Muting voltage
TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN
70397HA (ID) / O138YT / 9068MO, TS No. 2665—1/8
元器件交易网
STK4142II
Decoupling capacitor • Used to eliminate the ripple components that mix into the input side from the power line (+VCC).
Bootstrap capacitors • When the capacitor value is decreased, the distortion is liable to be higher at low frequencies.
NF capacitors • These capacitors fix the low cutoff frequency as shown below.
fL = 2----π----⋅---C--1--5---⋅---R----5- [Hz]
uc3842中文资料 (2)
UC3842中文资料1. 简介UC3842是一款常用的PWM(脉宽调制)控制器,广泛应用于开关模式电源控制电路中。
它具有高效率、低功耗和高性能特点,适用于多种应用领域,如电源适配器、LED驱动和开关模式电源等。
2. 特性及优势•采用当前模式的回路架构设计,可实现快速的动态响应和高精度的电压调整。
•内置PWM比较器,能够实现精确的脉宽调制,并且具有可调的占空比和频率。
•内置错误保护功能,包括过流保护、过热保护和欠压保护等,有利于提高系统的可靠性和稳定性。
•采用高精度的参考电压源,能够提供稳定的工作电压,并降低温度对电压的影响。
3. 电气参数UC3842的电气参数如下表所示:参数描述输入电压范围7V - 30V工作温度范围-40°C - 85°C输出电流100mA频率范围100kHz - 500kHzPWM比较器电流200nA4. 典型应用电路以下是一个基于UC3842的典型应用电路示意图:![UC3842应用电路](uc3842_circuit.png)5. 使用说明在使用UC3842之前,请先仔细阅读UC3842的中文资料以了解其功能和特性。
然后按照以下步骤进行操作:1.将UC3842正确地焊接到电路板上,确保引脚与电路板正确连接。
2.根据实际需求,调整UC3842的占空比和频率。
可以通过调整电阻或电容进行设置。
3.连接输入电源,并确保输入电压在规定范围内。
4.连接输出负载,确保负载的电流符合UC3842的额定输出电流。
5.检查保护功能是否正常工作。
可以通过引入错误信号或调整输入电压来测试保护功能。
6.监测输出电压和输出电流,确保其稳定在预期的范围内。
7.如果需要,可以对UC3842进行温度测试,并检查其工作温度是否符合规格要求。
6. 注意事项在使用UC3842时,请注意以下事项:•严禁超过UC3842的额定电压、电流和温度范围,否则可能会导致不可逆的损坏。
•在操作电路时,注意安全措施,避免触电和短路等危险。
MKP3384X2中文资料
• 15 to 55 mm lead pitch • Supplied loose in box • Consists of a low-inductive wound cell of metallized polypropylene film, potted in a flame-retardant case • Fixed and insulated leads.
BCcomponents
DATA SHEET
MKP 338 4 X2 Interference suppression film capacitors
Product Specification NEW File under BCcomponents, BC05 2001 Jun 22
BCcomponents
MKP 338 4 X2
MULTIPLIER (nF) 1 10 100 1000 3 4 5 6
X2
Example: 104 = 10 x 10 = 100 nF
2222
338
4.
XX X
TYPE 338 4
PACKAGING loose in box taped
LEAD CONFIGURATION lead length 3.5 mm lead length 5.0 mm lead length 25.0 mm 15.0 mm bent back to 7.5 mm insulated leads stranded Cu-wire 0.5 mm2 for 37.5 and 55 mm pitch lead length 3.5 mm
• For X2 electromagnetic interference suppression • Specially designed to meet the requirements of the “IEC 60384-14 2nd edition and EN 132400”, requiring a 2.5 kV peak pulse voltage test, and the UL1283 specifications.
BTS442E2_99中文资料
Symbol
Values min typ max
Unit
Load Switching Capabilities and Characteristics On-state resistance (pin 3 to 5)
IL = 5 A
Nominal load current (pin 3 to 5) ISO Proposal: VON = 0.5 V, TC = 85 °C Output current (pin 5) while GND disconnected or GND pulled up, VIN= 0, see diagram page 7, Tj =-40...+150°C Turn-on time to 90% VOUT: Turn-off time to 10% VOUT: RL = 12 Ω, Tj =-40...+150°C Slew rate on 10 to 30% VOUT, RL = 12 Ω, Tj =-40...+150°C Slew rate off 70 to 40% VOUT, RL = 12 Ω, Tj =-40...+150°C
see internal circuit diagrams page 6...
Symbol Vbb VLoad dump3)
Values 63 80 self-limited -40 ...+150 -55 ...+150 167 2.1 2.0 -0.5 ... +6 ±5.0 ±5.0 ≤ 0.75 ≤ 75 ≤ tbd
元器件交易网 PROFET® BTS 442 E2
Smart Highside Power Switch
Features
uc3842中文资料
UC3842中文资料简介UC3842是一款广泛应用于开关电源控制器的集成电路。
它采用PWM(脉冲宽度调制)技术,通过控制开关管的导通和关断时间来控制输出电压。
UC3842具有高效率、稳定性好、可靠性高的特点,被广泛应用于各种类型的开关电源设计中。
功能特点•提供电压反馈回路控制功能,确保输出电压稳定;•集成了过载保护功能,可保护电路免受过大电流的损害;•支持上电软启动功能,以减少开关电源启动时的电流冲击;•支持电流限制功能,可确保输出电流不超过额定值;•支持频率调节功能,可根据需要调整开关频率;•支持自动关断功能,以降低功耗和热损耗。
电气参数UC3842的电气参数如下:•输入电压范围:3V至30V;•输出电压范围:0.1V至29.5V;•最大输出电流:1A;•工作温度范围:-40°C至125°C;•输出电压精度:±1%;•频率范围:50kHz至500kHz。
引脚功能UC3842的引脚功能如下:•VIN:输入电压;•GND:地;•FB:电压反馈;•COMP:比较器输入;•CS:电流限制;•RT/CT:外部频率调节;•VREF:参考电压;•OUT:开关输出。
应用领域由于UC3842具有高性能和多功能特点,使其在许多领域中得到广泛应用,包括:1.电源供应器:UC3842可用于设计各种类型的开关电源供应器,包括电视机、电脑、手机等的电源适配器;2.LED驱动器:UC3842可用于设计LED驱动器,使LED的亮度和稳定性得到有效控制;3.电动机控制器:UC3842可用于设计电动机控制器,使电动机的运行更加平稳;4.太阳能控制器:UC3842可用于设计太阳能控制器,提高太阳能的利用效率。
设计注意事项在设计中,需要注意以下几点:1.输入电压范围应在规定的3V至30V之间,超过此范围可能导致芯片损坏;2.输出电压和电流应在规定范围内,以确保正常工作;3.对于不同应用场景,频率和功率等参数需要根据具体情况进行调整;4.在使用过程中,应注意散热问题,避免芯片过热。
[原创]YW-UTC3842中文资料概述与特点
3842可替换型号UC3842 YD3842 KIA3842 GP3842 S3842
概述
YW-UTC3842采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;③脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(RT×CT);⑤脚为公共地端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A;⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;⑧脚为5V 基准电压输出端,有50mA的负载能力。
特点
UTC3842是开关电源用电流控制方式的脉宽调制集成电路。
与电压控制方式相比在负载响应和线性调整度等方面有很多优越之处。
该电路主要特点有:
内含欠电压锁定电路
低起动电流(典型值为0.12mA)
稳定的内部基准电压源
大电流推挽输出(驱动电流达1A)
工作频率可到500kHz
自动负反馈补偿电路
双脉冲抑制
较强的负载响应特性。
BTS412B2-E3043中文资料
PROFET ® BTS 412B2Smart Highside Power SwitchFeatures• Overload protection • Current limitation• Short circuit protection • Thermal shutdown• Overvoltage protection (including load dump)• Fast demagnetization of inductive loads • Reverse battery protection 1)• Undervoltage and overvoltage shutdown with auto-restart and hysteresis • CMOS diagnostic output• Open load detection in OFF-state • CMOS compatible input• Loss of ground and loss of V bb protection • E lectro s tatic d ischarge (ESD ) protectionApplication• µC compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads • All types of resistive, inductive and capacitve loads• Replaces electromechanical relays, fuses and discrete circuitsGeneral DescriptionN channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS ® technology. Fully protected by embedded protection functions.1)With external current limit (e.g. resistor R GND =150 Ω) in GND connection, resistor in series with STconnection, reverse load current limited by connected load.Product Summary 5Standard 15Straight leadsMaximum Ratings at T j = 25 °C unless otherwise specified2)Supply voltages higher than V bb(AZ) require an external current limit for the GND and status pins, e.g. with a150 Ω resistor in the GND connection and a 15 kΩ resistor in series with the status pin. A resistor for the protection of the input is integrated.3)RI = internal resistance of the load dump test pulse generator4)V Load dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 408395)Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for V bbconnection. PCB is vertical without blown air.Electrical CharacteristicsOperating Parameters6)At supply voltage increase up to V bb= 5.6 V typ without charge pump, V OUT≈V bb - 2 V7)Meassured without load. See also V ON(CL) in table of protection functions and circuit diagram page 7.8)Add I ST, if I ST > 0, add I IN, if V IN>5.5 V9)Short circuit current limit for max. duration of t d(SC) max=450 µs, prior to shutdown10)Requires 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-sourcediode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 2 and circuit page 7).11) Input turn-on threshold voltageL = "Low" Level X = don't care Z = high impedance, potential depends on external circuitH = "High" Level Status signal after the time delay shown in the diagrams (see fig 5. page 11...12)14)Power Transistor off, high impedance, versions BTS 410H, BTS 412B: internal pull up current source foropen load detection.15)Low resistance short Vbbto output may be detected in ON-state by the no-load-detection16)No current sink capability during undervoltage shutdownTermsInput circuit (ESD protection)ESD zener diodes are not to be used as voltage clampat DC conditions. Operation in this mode may result ina drift of the zener voltage (increase of up to 1 V).Status outputZener diode: 6 V typ., max 5.0 mA, V Logic 5 V typ,ESD zener diodes are not to be used as voltage clampat DC conditions. Operation in this mode may result ina drift of the zener voltage (increase of up to 1 V).Short circuit detectionFault Condition: V ON > 8.5 V typ.; IN highunitInductive and overvoltage output clampGNDPROFETV ON clamped to 68 V typ.Overvolt. and reverse batt. protectionV Z1 = 6.2 V typ., V Z2 = 70 V typ., R GND = 150 Ω,R ST = 15 k Ω, R I = 9 k Ω typ.Open-load detectionOFF-state diagnostic condition: V OUT > 3 V typ.; IN lowGND disconnectAny kind of load. In case of Input=high is V OUT ≈ V IN - V IN(T+) .Due to V GND >0, no V ST = low signal available.GND disconnect with GND pull upAny kind of load. If V GND > V IN - V IN(T+) device stays off Due to V GND >0, no V ST = low signal available.V bb disconnect with energized inductive loadNormal load current can be handled by the PROFET itself.V bb disconnect with charged external inductive loadIf other external inductive loads L are connected to the PROFET,additional elements like D are necessary.Inductive Load switch-off energy dissipationEnergy stored in load inductance:E L = 1/2·L ·I 2LWhile demagnetizing load inductance, the energy dissipated in PROFET isE AS = E bb + E L - E R = ∫ V ON(CL)·i L (t) dt,with an approximate solution for R L > 0 Ω:E AS = I L ·L 2·R L·(V bb + |V OUT(CL)|)·ln (1+ I L ·R L|V OUT(CL)| )Maximum allowable load inductance for a single switch offL = f (I L ); T j,start = 150°C,T C = 150°C const., V bb = 12 V, R L = 0 ΩL [mH]110100100010000123456I L [A]Typ. transient thermal impedance chip case Z thJC = f (t p , D), D=t p /T Z thJC [K/W]0.010.11101E-51E-41E-31E-21E-11E01E1t p [s]Options Overviewall versions: High-side switch, Input protection, ESD protection, load dump and reverse battery protection with 150 Ω in GND connection, protection against loss of17)Latch except when V bb-V OUT < V ON(SC)after shutdown. In most cases V OUT = 0 V after shutdown (V OUT ≠0 V only if forced externally). So the device remains latched unless V bb < V ON(SC) (see page 4). No latchbetween turn on and t d(SC).18)With latch function. Reseted by a) Input low, b) Undervoltage19)No auto restart after overvoltage in case of short circuit20)Low resistance short Vto output may be detected in ON-state by the no-load-detectionbbTiming diagramsFigure 1a: V bb turn on:in case of too early V IN =high the device may not turn on (curve A)t d(bb IN) approx. 150 µsFigure 2a: Switching a lamp,INSTOUTLtV IFigure 2b: Switching an inductive loadINSTLtVIOUTFigure 3a: Turn on into short circuit,t d(SC) approx. -- µs if V bb - V OUT > 8.5 V typ.Figure 3b: Turn on into overload,Heating up may require several seconds,V bb - V OUT < 8.5 V typ.Figure 3c: Short circuit while on:INSTOUTLtV I **)**) current peak approx. 20 µsFigure 4a: Overtemperature,Reset if (IN=low) and (T j <T jt )*) ST goes high , when V IN =low and T j <T jtFigure 5a: Open load: detection in OFF-state, turn on/off to open loadin case of external capacity t d(ST,OL3) may be higher due to high impedance *) I L = 30 µA typFigure 5b: Open load: detection in OFF-state, openload occurs in off-state*) I L = 30 µA typFigure 6a: Undervoltage:Figure 6b: Undervoltage restart of charge pumpcharge pump starts at V bb(ucp) =5.6 V typ.Figure 7a: Overvoltage:if V bb > V bb(AZ) increase of V ST due to GND resistor voltage.Figure 9a: Overvoltage at short circuit shutdown:Overvoltage due to power line inductance. No overvoltage auto-restart of PROFET after short circuit shutdown.BTS 412B2。
uc3843中文资料
UC3843中文资料1. 引言UC3843是一种通用型的PWM控制器,广泛应用在各种开关电源和其他电源应用中。
本文将介绍UC3843的主要特性、工作原理和典型应用。
2. 主要特性•输入电压范围:4.5V至35V•输出电压范围: 0V至30V•输出电流范围:1A至200A•PWM频率范围:30 kHz至400 kHz•内置过压保护和短路保护功能3. 工作原理UC3843主要通过内部误差放大器和PWM比较器实现电压反馈控制和当前模式控制。
其基本工作原理如下: 1. 输入电压通过限流电阻限制电流,并与内部基准电压进行比较。
2.误差放大器将比较结果放大,并通过PWM比较器和锁相环控制产生PWM信号。
3. PWM信号经过漏极极限控制电路保护驱动电路,控制输出电压和输出功率。
4. 典型应用UC3843广泛应用于各种开关电源和其他电源应用中,以下是一些典型应用示例: ### 4.1 开关电源 UC3843作为PWM控制器,可以用于设计各种开关电源,如离线开关电源、DC/DC变换器和AC/DC变换器。
其稳定的工作性能和广泛的输入电压范围使其在电源设计中非常有用。
### 4.2 LED驱动器UC3843可以应用于LED照明领域,用于设计LED驱动器。
LED驱动器通常需要稳定的电流输出,通过控制UC3843的PWM信号,可以实现对LED电流的精确控制。
### 4.3 电动车充电器 UC3843也可以应用于电动车充电器的设计中。
通过控制UC3843的PWM信号和电流反馈回路,可以实现对电池充电的精确控制,提高充电效率和安全性。
5. 优缺点UC3843作为一种通用型PWM控制器,具有以下优点: - 广泛的应用范围,适用于各种电源应用。
- 宽输入电压范围和稳定的工作性能。
- 内置过压和短路保护功能,提高系统的可靠性和安全性。
然而,UC3843也有一些缺点: - 整体芯片成本较高,不适用于低成本应用。
- 对于初次使用者而言,上手难度较大,需要了解一些电源设计的基础知识。
UC3842中文资料电路汇总
UC3842中文资料电路汇总1.上下切换式PWM输出:UC3842使用上下切换的PWM控制技术,可以实现高效率的能量转换,并能够适应不同负载的需求。
2.宽输入电压范围:UC3842工作电压范围广泛,通常为10V至30V,适用于不同的电源设计。
3.可调的频率和占空比:UC3842可以通过外接元件调节频率和占空比,以满足不同应用的要求。
4.内置反馈和误差放大器:UC3842具有内置的反馈和误差放大器,能够监测电压和电流,并进行精确的控制。
5.具有保护功能:UC3842具有过电流保护、过温保护和短路保护等功能,能够保护电源和负载免受损坏。
UC3842的应用主要包括开关电源和电源控制电路。
在开关电源中,UC3842可实现高效率的能量转换,通过精确的PWM控制,实现稳定的输出电压和电流。
在电源控制电路中,UC3842可用于控制电压和电流的调节、限制和保护,提高系统的稳定性和可靠性。
[电路图]该电路使用UC3842作为PWM控制器,R1和R2控制频率和占空比,R3和C1控制斜升沿和斜降沿,L1和C2构成滤波网络,C3用于反馈稳定。
D1和D2是脉冲变压器,用于提供输入电源,T1是功率开关管,用于控制电流。
此外,UC3842还可以与其他外围电路和器件配合使用,实现更多的功能和保护。
例如,可以通过使用外部电压反馈网络,实现电压调节和稳定;可以通过使用外部过流保护电路,实现过流保护和电流限制等。
总之,UC3842是一款功能强大的PWM控制器芯片,具有广泛的应用领域和灵活的设计特点。
无论是在开关电源还是电源控制电路中,UC3842都能够提供高效率、高可靠性和安全性的电源解决方案。
UC3842ANG4中文资料
UC1842A/3A/4A/5A UC2842A/3A/4A/5A UC3842A/3A/4A/5A•Optimized for Off-line and DC to DC Converters•Low Start Up Current (<0.5mA)•Trimmed Oscillator Discharge Current •Automatic Feed Forward Compensation •Pulse-by-Pulse Current Limiting•Enhanced Load Response Characteristics •Under-Voltage Lockout With Hysteresis •Double Pulse Suppression •High Current Totem Pole Output •Internally Trimmed Bandgap Reference •500kHz Operation •Low R O Error AmpCurrent Mode PWM ControllerThe UC1842A/3A/4A/5A family of control ICs is a pin for pin compati-ble improved version of the UC3842/3/4/5family.Providing the nec-essary features to control current mode switched mode power supplies,this family has the following improved features.Start up cur-rent is guaranteed to be less than 0.5mA.Oscillator discharge is trimmed to 8.3mA.During under voltage lockout,the output stage can sink at least 10mA at less than 1.2V for V CC over 5V .The difference between members of this family are shown in the table below.FEATURESDESCRIPTIONPart #UVLO On UVLO Off Maximum DutyCycleUC1842A 16.0V 10.0V <100%UC1843A 8.5V 7.9V <100%UC1844A 16.0V 10.0V <50%UC1845A8.5V7.9V<50%UC1842A/3A/4A/5A UC2842A/3A/4A/5AUC3842A/3A/4A/5ACONNECTION DIAGRAMSABSOLUTE MAXIMUM RATINGS (Note 1)Note 1.All voltages are with respect to Ground, Pin 5.Currents are positive into, negative out of the specified terminal.Consult Packaging Section of Databook for thermal limitations and con-siderations of packages.Pin numbers refer to DIL package only.Supply Voltage (Low Impedance Source). . . . . . . . . . . . . .30V Supply Voltage (I CC mA). . . . . . . . . . . . . . . . . . . .Self Limiting Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±1A Output Energy (Capacitive Load). . . . . . . . . . . . . . . . . . . . .5µJ Analog Inputs (Pins 2, 3). . . . . . . . . . . . . . . . . . .-0.3V to +6.3V Error Amp Output Sink Current . . . . . . . . . . . . . . . . . . . .10mA Power Dissipation at T A ≤25°C (DIL-8). . . . . . . . . . . . . . . .1W Storage Temperature Range. . . . . . . . . . . . . .-65°C to +150°C Lead Temperature (Soldering, 10 Seconds). . . . . . . . . .300°C N/C VREF VCC OUTPUT VCC GND 12345678161514131211N/C N/C N/CRT/CT N/C COMP VFB ISENSE PWRGND N/C109SOIC-WIDE16(TOP VIEW)DW PackagePARAMETERTEST CONDITIONSUC184xA\UC284xA UC384xAUNITSMIN.TYP.MAX.MIN.TYP.MAX.Reference Section Output Voltage T J = 25°C, I O = 1mA 4.955.00 5.05 4.905.00 5.10V Line Regulation 12≤V IN 25V 620620mV Load Regulation 1≤I O ≤20mA 625625mV Temp. Stability(Note 2, Note 7)0.20.40.20.4mV/°C Total Output Variation Line, Load, Temp. 4.95.14.825.18V Output Noise Voltage 10Hz ≤f ≤10kHz T J = 25°C (Note 2)5050µV Long Term Stability T A = 125°C, 1000Hrs. (Note 2)525525mV Output Short Circuit -30-100-180-30-100-180mA Oscillator Section Initial Accuracy T J = 25°C (Note 6)475257475257kHz Voltage Stability 12≤V CC ≤25V0.210.21%Temp. Stability T MIN ≤T A ≤T MAX (Note 2)55%AmplitudeV PIN 4peak to peak (Note 2) 1.7 1.7V Discharge Current T J = 25°C,V PIN 4= 2V (Note 8)7.88.38.87.88.38.8mA V PIN 4= 2V (Note 8)7.58.87.68.8mA Error Amp Section Input VoltageV PIN 1= 2.5V2.45 2.50 2.55 2.42 2.50 2.58V Input Bias Current -0.3-1-0.3-2µA A VOL2≤V O ≤4V65906590dB Unity Gain Bandwidth T J = 25°C (Note 2)0.710.71MHz PSRR12≤V CC ≤25V60706070dB Output Sink Current V PIN 2= 2.7V,V PIN 1= 1.1V 2626mA Output Source Current V PIN 2= 2.3V,V PIN 1= 5V-0.5-0.8-0.5-0.8mA V OUT High V PIN 2= 2.3V,R L = 15k to ground 5656V V OUT LowV PIN 2= 2.7V,R L = 15k to Pin 80.7 1.10.7 1.1V Current Sense Section Gain(Note 3, Note 4) 2.853 3.15 2.853 3.15V/V Maximum Input Signal V PIN 1= 5V (Note 3)0.91 1.10.91 1.1V PSRR12≤V CC ≤25V (Note 3)7070dB Input Bias Current -2-10-2-10µA Delay to Output V PIN 3= 0 to 2V (Note 2)150300150300ns Output Section Output Low Level I SINK = 20mA 0.10.40.10.4V I SINK = 200mA 15 2.215 2.2V Output High Level I SOURCE = 20mA 1313.51313.5V I SOURCE = 200mA1213.51213.5V Rise Time T J = 25°C, C L = 1nF (Note 2)5015050150ns Fall TimeT J = 25°C, C L = 1nF (Note 2)5015050150ns UVLO SaturationV CC = 5V,I SINK = 10mA0.71.20.71.2VELECTRICAL CHARACTERISTICS Unless otherwise stated,these specifications apply for –55°C ≤T A ≤125°C for theUC184xA;–40°C ≤T A ≤125°C for the UC284xAQ;–40°C ≤T A ≤85°C for the UC284xA;0≤T A ≤70°C for the UC384xA;V CC =15V (Note 5);R T =10k;C T =3.3nF;T A =T J ;Pin numbers refer to DIL-8.PARAMETERTEST CONDITIONSUC184xA\UC284xA UC384xAUNITSMIN.TYP.MAX.MIN.TYP.MAX.Under-Voltage Lockout Section Start Threshold x842A/4A 15161714.51617.5V x843A/5A 7.88.49.07.88.49.0V Min. Operation Voltage After x842A/4A 910118.51011.5V Turn On x843A/5A 7.07.68.27.07.68.2V PWM SectionMaximum Duty Cycle x842A/3A 94961009496100%x844A/5A474850474850%Minimum Duty Cycle 00%Total Standby Current Start-Up Current0.30.50.30.5mA Operating Supply Current V PIN 2=V PIN 3= 0V 11171117mA V CC Zener VoltageI CC = 25mA30343034VNote 2:Ensured by design, but not 100% production tested.Note 3:Parameter measured at trip point of latch with V PIN2= 0.Note 4:Gain defined as:A VPIN VPIN =∆∆13;0V PIN 30.8V .Note 5:Adjust V CC above the start threshold before setting at 15V .Note 6:Output frequency equals oscillator frequency for the UC1842A and UC1843A.Output frequency is one half oscillator fre-quency for the UC1844A and UC1845A.Note 7:“Temperature stability, sometimes referred to as average temperature coefficient, is described by the equation:Temp Stability VREF max VREF min TJ max TJ min =−−()()()().V REF (max) and V REF (min) are the maximum & minimum reference volt-age measured over the appropriate temperature range.Note that the extremes in voltage do not necessarily occur at the extremes in temperature.”Note 8:This parameter is measured with R T = 10k to V REF .This contributes approximately 300 A of current to the measurement.The total current flowing into the R T /C pin will be approximately 300 A higher than the measured value.ELECTRICAL CHARACTERISTICS Unless otherwise stated,these specifications apply for –55°C ≤T A ≤125°C for theUC184xA;–40°C ≤T A ≤125°C for the UC284xAQ;–40°C ≤T A ≤85°C for the UC284xA;0≤T A ≤70°C for the UC384xA;V CC =15V (Note 5);R T =10k;C T =3.3nF;T A =T J ;Pin numbers refer to DIL-8.Error Amplifier Open-Loop Frequency ResponseOutput Saturation CharacteristicsUC2842A/3A/4A/5AAPPLICATIONS DATA (cont.)UC2842A/3A/4A/5AUC3842A/3A/4A/5AAPPLICATIONS DATA (cont.)PACKAGING INFORMATIONOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)5962-8670405PA ACTIVE CDIP JG81None A42SNPB Level-NC-NC-NC 5962-8670405VPA ACTIVE CDIP JG81None Call TI Level-NC-NC-NC 5962-8670405VXA ACTIVE LCCC FK201None Call TI Level-NC-NC-NC 5962-8670405XA ACTIVE LCCC FK201None POST-PLATE Level-NC-NC-NC 5962-8670406PA ACTIVE CDIP JG81None A42SNPB Level-NC-NC-NC 5962-8670406VPA ACTIVE CDIP JG81None Call TI Level-NC-NC-NC 5962-8670406VXA ACTIVE LCCC FK201None Call TI Level-NC-NC-NC 5962-8670406XA ACTIVE LCCC FK201None POST-PLATE Level-NC-NC-NC 5962-8670407PA ACTIVE CDIP JG81None A42SNPB Level-NC-NC-NC 5962-8670407VPA ACTIVE CDIP JG81None Call TI Level-NC-NC-NC 5962-8670407VXA ACTIVE LCCC FK201None Call TI Level-NC-NC-NC 5962-8670407XA ACTIVE LCCC FK201None POST-PLATE Level-NC-NC-NC 5962-8670408PA ACTIVE CDIP JG81None A42SNPB Level-NC-NC-NC 5962-8670408VPA ACTIVE CDIP JG81None Call TI Level-NC-NC-NC 5962-8670408VXA ACTIVE LCCC FK201None Call TI Level-NC-NC-NC 5962-8670408XA ACTIVE LCCC FK201None POST-PLATE Level-NC-NC-NC UC1842AJ ACTIVE CDIP JG81None A42SNPB Level-NC-NC-NCUC1842AJ883B ACTIVE CDIP JG81None A42SNPB Level-NC-NC-NCUC1842AJQMLV ACTIVE CDIP JG8None Call TI Call TIUC1842AL883B ACTIVE LCCC FK201None POST-PLATE Level-NC-NC-NCUC1842ALQMLV ACTIVE LCCC FK20None Call TI Call TI UC1843AJ ACTIVE CDIP JG81None A42SNPB Level-NC-NC-NCUC1843AJ883B ACTIVE CDIP JG81None A42SNPB Level-NC-NC-NCUC1843AJQMLV ACTIVE CDIP JG8None Call TI Call TIUC1843AL883B ACTIVE LCCC FK201None POST-PLATE Level-NC-NC-NCUC1843ALQMLV ACTIVE LCCC FK20None Call TI Call TI UC1844AJ ACTIVE CDIP JG81None A42SNPB Level-NC-NC-NCUC1844AJ883B ACTIVE CDIP JG81None A42SNPB Level-NC-NC-NCUC1844AJQMLV ACTIVE CDIP JG8None Call TI Call TIUC1844AL883B ACTIVE LCCC FK201None POST-PLATE Level-NC-NC-NCUC1844ALQMLV ACTIVE LCCC FK20None Call TI Call TI UC1845AJ ACTIVE CDIP JG81None A42SNPB Level-NC-NC-NCUC1845AJ883B ACTIVE CDIP JG81None A42SNPB Level-NC-NC-NCUC1845AJQMLV ACTIVE CDIP JG8None Call TI Call TIUC1845AL883B ACTIVE LCCC FK201None POST-PLATE Level-NC-NC-NCUC1845ALQMLV ACTIVE LCCC FK20None Call TI Call TI UC2842AD ACTIVE SOIC D1450None CU NIPDAU Level-1-220C-UNLIM UC2842AD8ACTIVE SOIC D875None CU NIPDAU Level-1-220C-UNLIM UC2842AD8TR ACTIVE SOIC D82500None CU NIPDAU Level-1-220C-UNLIM UC2842AD8TRG4ACTIVE SOIC D82500None Call TI Call TIUC2842ADTR ACTIVE SOIC D142500None CU NIPDAU Level-1-220C-UNLIM UC2842ADW ACTIVE SOIC DW1640None CU NIPDAU Level-2-220C-1YEAROrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)UC2842ADWTR ACTIVE SOIC DW162000None CU NIPDAU Level-2-220C-1YEAR UC2842AJ OBSOLETE CDIP JG8None Call TI Call TIUC2842AN ACTIVE PDIP P850Pb-Free(RoHS)CU SNPB Level-NC-NC-NC UC2843AD ACTIVE SOIC D1450None CU NIPDAU Level-1-220C-UNLIM UC2843AD8ACTIVE SOIC D875None CU NIPDAU Level-1-220C-UNLIM UC2843AD8TR ACTIVE SOIC D82500None CU NIPDAU Level-1-220C-UNLIM UC2843ADTR ACTIVE SOIC D142500None CU NIPDAU Level-1-220C-UNLIM UC2843ADW ACTIVE SOIC DW1640None CU NIPDAU Level-2-220C-1YEAR UC2843ADWTR ACTIVE SOIC DW162000None CU NIPDAU Level-2-220C-1YEAR UC2843AJ OBSOLETE CDIP JG8None Call TI Call TIUC2843AN ACTIVE PDIP P850Pb-Free(RoHS)CU SNPB Level-NC-NC-NC UC2843AQ ACTIVE PLCC FN2046None CU SNPB Level-2-220C-1YEAR UC2844AD ACTIVE SOIC D1450None CU NIPDAU Level-1-220C-UNLIM UC2844AD8ACTIVE SOIC D875None CU NIPDAU Level-1-220C-UNLIM UC2844AD8TR ACTIVE SOIC D82500None CU NIPDAU Level-1-220C-UNLIM UC2844AD8TRG4PREVIEW SOIC D82500None Call TI Call TIUC2844ADTR ACTIVE SOIC D142500None CU NIPDAU Level-1-220C-UNLIM UC2844ADW ACTIVE SOIC DW1640None CU NIPDAU Level-2-220C-1YEAR UC2844ADWTR ACTIVE SOIC DW162000None CU NIPDAU Level-2-220C-1YEAR UC2844AJ ACTIVE CDIP JG81None A42SNPB Level-NC-NC-NC UC2844AN ACTIVE PDIP P850Pb-Free(RoHS)CU SNPB Level-NC-NC-NC UC2844AQD ACTIVE SOIC D1450None Call TI Level-1-220C-UNLIM UC2844AQD8ACTIVE SOIC D875None Call TI Level-1-220C-UNLIM UC2844AQD8R ACTIVE SOIC D82500None Call TI Level-1-220C-UNLIM UC2844AQDR ACTIVE SOIC D142500None Call TI Level-1-220C-UNLIM UC2845AD ACTIVE SOIC D1450None CU NIPDAU Level-1-220C-UNLIM UC2845AD8ACTIVE SOIC D875None CU NIPDAU Level-1-220C-UNLIM UC2845AD8TR ACTIVE SOIC D82500None CU NIPDAU Level-1-220C-UNLIM UC2845AD8TRG4PREVIEW SOIC D82500None Call TI Call TIUC2845ADTR ACTIVE SOIC D142500None CU NIPDAU Level-1-220C-UNLIM UC2845ADW ACTIVE SOIC DW1640None CU NIPDAU Level-2-220C-1YEAR UC2845AN ACTIVE PDIP P850Pb-Free(RoHS)CU SNPB Level-NC-NC-NC UC3842AD ACTIVE SOIC D1450None CU NIPDAU Level-1-220C-UNLIM UC3842AD8ACTIVE SOIC D875None CU NIPDAU Level-1-220C-UNLIM UC3842AD8TR ACTIVE SOIC D82500None CU NIPDAU Level-1-220C-UNLIM UC3842ADTR ACTIVE SOIC D142500None CU NIPDAU Level-1-220C-UNLIM UC3842ADW ACTIVE SOIC DW1640None CU NIPDAU Level-2-220C-1YEAR UC3842ADWTR ACTIVE SOIC DW162000None CU NIPDAU Level-2-220C-1YEAR UC3842AJ ACTIVE CDIP JG81None A42SNPB Level-NC-NC-NC UC3842AN ACTIVE PDIP P850Pb-Free(RoHS)CU SNPB Level-NC-NC-NCOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)UC3842ANG4ACTIVE PDIP P850Green(RoHS&no Sb/Br)CU NIPDAU Level-NA-NA-NAUC3843AD ACTIVE SOIC D1450None CU NIPDAU Level-1-220C-UNLIM UC3843AD8ACTIVE SOIC D875None CU NIPDAU Level-1-220C-UNLIM UC3843AD8G4ACTIVE SOIC D875None Call TI Call TIUC3843AD8TR ACTIVE SOIC D82500None CU NIPDAU Level-1-220C-UNLIM UC3843AD8TRG4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMUC3843ADG4ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM UC3843ADTR ACTIVE SOIC D142500None CU NIPDAU Level-1-220C-UNLIM UC3843AJ ACTIVE CDIP JG81None A42SNPB Level-NC-NC-NCUC3843AN ACTIVE PDIP P850Pb-Free(RoHS)CU SNPB Level-NC-NC-NCUC3843ANG4ACTIVE PDIP P850Green(RoHS&no Sb/Br)CU NIPDAU Level-NA-NA-NA UC3844AD ACTIVE SOIC D1450None CU NIPDAU Level-1-220C-UNLIM UC3844AD8ACTIVE SOIC D875None CU NIPDAU Level-1-220C-UNLIM UC3844AD8TR ACTIVE SOIC D82500None CU NIPDAU Level-1-220C-UNLIM UC3844AD8TRG4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM UC3844ADTR ACTIVE SOIC D142500None CU NIPDAU Level-1-220C-UNLIM UC3844ADW ACTIVE SOIC DW1640None CU NIPDAU Level-2-220C-1YEAR UC3844ADWTR ACTIVE SOIC DW162000None CU NIPDAU Level-2-220C-1YEAR UC3844AN ACTIVE PDIP P850Pb-Free(RoHS)CU SNPB Level-NC-NC-NC UC3845AD ACTIVE SOIC D1450None CU NIPDAU Level-1-220C-UNLIM UC3845AD8ACTIVE SOIC D875None CU NIPDAU Level-1-220C-UNLIM UC3845AD8TR ACTIVE SOIC D82500None CU NIPDAU Level-1-220C-UNLIM UC3845ADTR ACTIVE SOIC D142500None CU NIPDAU Level-1-220C-UNLIM UC3845ADW ACTIVE SOIC DW1640None CU NIPDAU Level-2-220C-1YEAR UC3845ADWTR ACTIVE SOIC DW162000None CU NIPDAU Level-2-220C-1YEAR UC3845AJ ACTIVE CDIP JG81None A42SNPB Level-NC-NC-NCUC3845AN ACTIVE PDIP P850Pb-Free(RoHS)CU SNPB Level-NC-NC-NCUC3845ANG4ACTIVE PDIP P850Green(RoHS&no Sb/Br)CU NIPDAU Level-NA-NA-NA(1)The marketing status values are defined as follows:ACTIVE:Product device recommended for new designs.LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.PREVIEW:Device has been announced but is not in production.Samples may or may not be available.OBSOLETE:TI has discontinued the production of the device.(2)Eco Plan-May not be currently available-please check /productcontent for the latest availability information and additional product content details.None:Not yet available Lead(Pb-Free).Pb-Free(RoHS):TI's terms"Lead-Free"or"Pb-Free"mean semiconductor products that are compatible with the current RoHS requirementsfor all 6substances,including the requirement that lead not exceed 0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.Green (RoHS &no Sb/Br):TI defines "Green"to mean "Pb-Free"and in addition,uses package materials that do not contain halogens,including bromine (Br)or antimony (Sb)above 0.1%of total product weight.(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications,and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and belief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annualbasis.PACKAGE OPTION ADDENDUM 10-Mar-2005Addendum-Page 4元器件交易网。
TI产品MSP430FR2422中文说明书
ProductFolder OrderNowTechnicalDocumentsTools &SoftwareSupport &CommunityMSP430FR2422ZHCSHB5A–JANUARY2018–REVISED AUGUST2018MSP430FR2422混合信号微控制器1器件概述1.1特性•嵌入式微控制器–16位精简指令集(RISC)架构–支持的时钟频率最高可达16MHz– 3.6V至1.8V的宽电源电压范围(最低电源电压受限于SVS电平,请参阅SVS规格)•优化的超低功耗模式–激活模式:120µA/MHz(典型值)–待机:LPM3.5,采用32768Hz晶振的实时时钟(RTC)计数器:710nA(典型值)–关断(LPM4.5):36nA,无SVS•低功耗铁电RAM(FRAM)–高达7.5KB的非易失性存储器–内置错误修正码(ECC)–可配置的写保护–对程序和常量数据统一进行存储–1015写入周期持久性–抗辐射和非磁性–铁电随机存取存储器(FRAM)与静态随机存取存储器(SRAM)之比最高达4:1•高性能模拟–高达8通道10位模数转换器(ADC)– 1.5V内部基准电压–采样与保持200ksps•智能数字外设–两个16位计时器,每个计时器有3个捕捉/比较寄存器(Timer_A3)–一个仅用作计数器的16位RTC–16位循环冗余校验(CRC)•增强型串行通信,支持引脚重映射功能(请参阅器件比较)–一个eUSCI_A接口,支持UART、IrDA和SPI –一个eUSCI_B接口,支持SPI和I2C •时钟系统(CS)–片上32kHz RC振荡器(REFO)–带有锁频环(FLL)的片上16MHz数字控制振荡器(DCO)–室温下的精度为±1%(具有片上基准)–片上超低频10kHz振荡器(VLO)–片上高频调制振荡器(MODOSC)–32kHz外部晶振(LFXT)–可编程MCLK预分频器(1至128)–通过可编程预分频器(1、2、4或8)从MCLK 获得的SMCLK•通用输入/输出和引脚功能–共计15个I/O(采用VQFN-20封装)–15个中断引脚(P1和P2)可以将MCU从低功耗模式下唤醒•开发工具和软件–开发工具–MSP-TS430RHL20目标开发套件•系列成员(另请参阅器件特性)–MSP430FR2422:7.25KB程序FRAM+256B 信息FRAM+2KB RAM•封装选项–20引脚:VQFN(RHL)–16引脚:TSSOP(PW)•有关完整模块说明,请参见《MSP430FR4xx和MSP430FR2xx系列器件用户指南》1.2应用•工业传感器•电池组•便携式设备•电动牙刷•低功耗医疗、健康和健身器材1.3说明MSP430FR2422是MSP430™超值系列微控制器(MCU)产品组合的其中一个器件,该超值系列微控制器是TI成本最低的MCU系列,适用于检测和测量应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Semiconductor Group
3
元器件交易网
BTS 432 E2
Parameter and Conditions
at Tj = 25 °C, Vbb = 12 V unless otherwise specified
Symbol
Values min typ max
General Description
N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, integrated in Smart SIPMOS® chip on chip technology. Fully protected by embedded protection functions.
Semiconductor Group
1
04.96
元器件交易网
BTS 432 E2
Pin 1 2 3 4 5 Symbol GND IN Vbb ST OUT (Load, L) I + S O Function Logic ground Input, activates the power switch in case of logical high signal Positive power supply voltage, the tab is shorted to this pin Diagnostic feedback, low on failure Output to the load
Unit
Protection Functions Initial peak short circuit current limit (pin 3 to 5)8), IL(SCp) ( max 400 µs if VON > VON(SC) ) Tj =-40°C: Tj =25°C: Tj =+150°C: Repetitive short circuit current limit IL(SCr) Tj = Tjt (see timing diagrams, page 10) Short circuit shutdown delay after input pos. slope VON > VON(SC), Tj =-40..+150°C: td(SC)
R bb
+ V bb
3
Voltage source
Overvoltage protection
Current limit
Gate protection
V Logic
Voltage sensor Charge pump Level shifter Rectifier Open load ESD Logic detection Limit for unclamped ind. loads
Maximum Ratings at Tj = 25 °C unless otherwise specified Parameter Supply voltage (overvoltage protection see page 3) Load dump protection VLoadDump = UA + Vs, UA = 13.5 V RI= 2 Ω, RL= 1.1 Ω, td= 200 ms, IN= low or high Load current (Short-circuit current, see page 4) Operating temperature range Storage temperature range Power dissipation (DC) Inductive load switch-off energy dissipation, single pulse Tj=150 °C: Electrostatic discharge capability (ESD) (Human Body Model) Input voltage (DC) Current through input pin (DC) Current through status pin (DC)
see internal circuit diagrams page 6...
Symbol Vbb Vs3)
Values 63 66.5 self-limited -40 ...+150 -55 ...+150 125 1.7 2.0 -0.5 ... +6 ±5.0 ±5.0 ≤1 ≤ 75 ≤ tbd
Vbb(over) Vbb(o rst) ∆Vbb(over) Vbb(AZ) Ibb(off) IL(off) IGND
5) 6) 7)
At supply voltage increase up to Vbb= 6.5 V typ without charge pump, VOUT ≈Vbb - 2 V see also VON(CL) in table of protection functions and circuit diagram page 7. Meassured without load. Add IST, if IST > 0, add IIN, if VIN>5.5 V
Tj=25 °C: RON Tj=150 °C: IL(ISO) IL(GNDhigh)
-9 --
30 55 11 --
38 70 -1
mΩ A mA µs
ton toff
dV /dton -dV/dtoff
50 10 0.4 1
160 ----
300 80 2.5 5
V/µs V/µs
Operating Parameters Tj =-40...+150°C: Operating voltage 5) Tj =-40...+150°C: Undervoltage shutdown Tj =-40...+150°C: Undervoltage restart Undervoltage restart of charge pump Tj =-40...+150°C: see diagram page 12 Undervoltage hysteresis ∆Vbb(under) = Vbb(u rst) - Vbb(under) Tj =-40...+150°C: Overvoltage shutdown Tj =-40...+150°C: Overvoltage restart Tj =-40...+150°C: Overvoltage hysteresis 6) Tj =-40°C: Overvoltage protection Ibb=40 mA Tj =25...+150°C: Tj=-40...+25°C: Standby current (pin 3) Tj=150°C: VIN=0 Leakage output current (included in Ibb(off)) VIN=0 Operating current (Pin 1)7), VIN=5 V
Symbol
Values min typ max
Unit
Load Switching Capabilities and Characteristics On-state resistance (pin 3 to 5) IL = 2 A
Nominal load current (pin 3 to 5) ISO Proposal: VON = 0.5 V, TC = 85 °C Output current (pin 5) while GND disconnected or GND pulled up, VIN= 0, see diagram page 7, Tj =-40...+150°C Turn-on time to 90% VOUT: Turn-off time to 10% VOUT: RL = 12 Ω, Tj =-40...+150°C Slew rate on 10 to 30% VOUT, RL = 12 Ω, Tj =-40...+150°C Slew rate off 70 to 40% VOUT, RL = 12 Ω, Tj =-40...+150°C
RthJC RthJA
K/W
3) 4)
VS is setup without DUT connected to the generator per ISO 7637-1 and DIN 40839 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for Vbb connection. PCB is vertical without blown air.
Product Summary
80 Clamp 58 4.5 ... 42 -32 38 44 35 11
V V Vation
• µC compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads • All types of resistive, inductive and capacitve loads • Replaces electromechanical relays and discrete circuits
元器件交易网
PROFET® BTS 432 E2
Smart Highside Power Switch
Features
• Load dump and reverse battery protection1) VLoad dump • Clamp of negative voltage at output Vbb-VOUT Avalanche • Short-circuit protection Vbb (operation) • Current limitation Vbb (reverse) • Thermal shutdown RON • Diagnostic feedback IL(SCp) • Open load detection in ON-state IL(SCr) • CMOS compatible input IL(ISO) • Electrostatic discharge (ESD) protection • Loss of ground and loss of Vbb protection2) • Overvoltage protection • Undervoltage and overvoltage shutdown with auto-restart and hysteresis