TDM帧结构
多路复用和多址技术

式中, xi,yi(1,1) i = 1, 2, …, N
互相关系数定义:
(x,
Байду номын сангаас
y)
1 N
N i1
xi
yi
两码组正交的必要和充分条件:
(x,y)0
例:
s1 ( 1, 1, 1, 1)
s s
2 3
( 1, 1, 1, 1) ( 1, 1, 1, 1)
s 4 ( 1, 1, 整1理,课件1)
整理课件
2
9.2 频分复用(FDM)
➢ 方法:采用SSB调制搬移频谱,以节省频带。
➢ 3路频分复用电话通信系统原理
话音输入1
300 ~ 3400 Hz
低通
相乘
4.3 ~ 7.4 kHz
带通
话音输入2
300 ~ 3,400 Hz
低通
4 kHz
f1
8.3 ~ 11.4 kHz
相乘
带通
多路信号输出
话音输入3
➢ 主要优点: 便于信号的数字化和实现数字通信。 制造调试较易,更适合采用集成电路实现。 生产成本较低,具有价格优势。
➢ 国际电信联盟(ITU)建议: 准同步数字体系PDH 同步数字体系 SDH
整理课件
7
9.3.1 准同步数字体系(PDH)
层次
E-1
E
E-2
体 E-3
系
E-4
E-5
T-1
14
➢ 复接帧结构图
第I组(212 b) 1~1011 12 13~212
告 警国内用 复接帧 同步码
支路比特
复接帧 (848 b)
第II组(212 b)
第III组 (212 b)
帧结构示意图下第二组8个码元就是m序列数据

返回
5)解复接帧同步信号指示观测
观测TPB07与TPB06波形,观测两信号之间 是否完全同步,记录测试结果。
收端帧同步指示与发端指示一致,且对应发端下降沿 返回
6)解复接m序列数据输出测量
观测TPB01与TPB05波形,。观测经复接/解复 接系统传输的时延是多少?。调整M_SEL0和 M_SEL1,产生不同的m序列输出(有4种),观测 帧内m序列数据是否随之一致变化。
帧指示 TP405
Barker 码产生 K401 开关状态设置 K404
开关
T0
TP403
T1 TP402 发 m 序列 T2
信 号 复 接
复接时钟
TP402 复接数据
●
M 序列发生器
m_Sel0
跳线器
m_Sel1
加错指示 TP404 错码产生器
……
K403 加 扰 模 块 信令信号
T16
PCM 编码数据
接收时钟 TP502 同 步 接收数据 TP501
K501 跳 线 器 Dr Dt K502 跳 线 器 CLKR CLKT
信 号 解 复 接
TP504
……
●
送 至 交 换 模 块
信令信号
T16
PCM 译码数据
Ti
同步 变化
……
与复接同步控制
图 7-7 解复接模块工作原理组成框图
2、电路模块各测试点安排如下:
任务2 项目计划
任务名称 测试电路图 实训目的 设备和工具 测试模块功能
各测试点名称
实训步骤 测试结果
E_Sel0
跳线器
E_Sel1
Ti
(可变)
K403 HDB3 测试 码产生器 输出
第2章TCM编码语音处理技术及多址技术

12
13
14
15
16
任意一个子信道中的正/余弦波和其他任何子信道 中的正/余弦波都必然是正交的
0,Ts f
i
组成正交函数集
17
正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)是近年来备受关注的一种多载波调制方式。由于调制 后信号的各个子载波是相互正交的,因此称为正交复用。 OFDM以减少和消除码间串扰(ISI)的影响来克服信道的频率选 择性衰落。目前提出的OFDM方法有滤波法、偏置QAM法 (OQAM)和DFT法等。下面介绍利用DFT方法实现OFDM的原 理。
5.格型编码调制(TCM) 多址技术
在传统上,数字调制与纠错编码是独立设计的。纠错编
码需要冗余度,而编码增益依靠降低信息传输效率来获得。在
限带信道中,则可通过加大调制信号来为纠错编码提供所需的 冗余度,以避免信息传输速率因纠错编码的加入而降低。但若
调制和编码仍按传统的相互独立的方法设计,则不能得到满意
信号的选定引入某种依赖性,因而只有某些信号序列才是允许
出现的,而这些允许出现的信号序列可以采用网格图来描述, 所以称为网格编码调制。正是由于这种前后信号点的选择具有
一定的规则关系,因此在解调时不光是检测本信号的参数,
7
还要观测其前面信号所经历的路由,判决时不只简单判决该信 号点,还必须符合某确定路由,才能确定该点是否为所求的信 号点。如果传输过程受到干扰,并引起信号点移位,接收机将 比较所有与观测点有关的那些点,并选择最靠近观测点的路由 所确定的最终信号点为所求的信号点,从而恢复出原数据信息 码。这种解调方式称为软判决维特比译码解调。 这种采用卷积编码的网格编码调制和采用软判决维特比译 码技术的解调可获得3~6 dB的信噪比增益。TCM技术已使话
吉比特无源光网络GPON技术及其标准化

OMCI在下面几个方面对ONT进行管理:
1)配置管理:提供了控制、识别、从ONT收集数据和向ONT提供数据的功能;
2)故障管理:支持有限的故障管理功能,大多数操作仅限于进行故障指示;
3)性能管理:主要是性能监控;
4)安全管理:使能/去使能下行加密功能、全光纤保护倒换能力管理。
5.ONU激活注册
DBA功能可提供各种不同的QoS。GPON TC层规定了5种T-CONT(Type1,2,3,4,5),DBA功能在各T-CONT中实现。GEM模式中,GEM连接由GEM-Port标识,并根据QoS要求由一种T-CONT类型承载。DBA功能分为下面几个部分:
●OLT和/或ONU检测拥塞状态;
图2 GPON各种应用方式示意
总的来说,GPON具有如下主要技术特点:
1)业务支持能力强,具有全业务接入能力。GPON系统可以提供包括64kbit/s业务、E1电路业务、ATM业务、IP业务和CATV等在内的全业务接入能力,是提供语音、数据和视频综合业务接入的理离。GPON系统可以提供下行2.488Gbit/s,上行1.244Gbit/s的带宽。此外,GPON系统中一个OLT可以支持64个ONU并支持20km传输。
●ONU通过Upstream_Overhead消息接收工作参数;
●ONU根据接收到的工作参数调整自己的参数(如:发送光功率);
●OLT通过Serial_Number Acquisition流程发现新ONU的序列号;
●OLT给所有新ONU分配ONU-ID;
●OLT测量新ONU的均衡时延;
(3)动态带宽分配(DBA)与业务QoS管理
GTC系统根据T-CONT管理业务流,每个T-CONT由Alloc-ID标识。一个T-CONT可包含一个或多个GEM Port-ID。OLT监控每个T-CONT的流量负载,并调整带宽分配来更好地分配PON带宽资源。PON带宽资源的分配分为动态或静态两种方式,在动态资源分配方式中,OLT通过检查来自ONU的DBA报告和/或通过输入业务流的自监测来了解拥塞情况,然后分配足够的资源。在静态资源分配方式中,OLT根据配置信息为业务流预留固定带宽。
帧结构及其传输系统实验

帧结构及其传输系统实验一、实验目的1、掌握时分复用的概念。
2、了解时分复用的构成及工作原理。
3、了解时分复用的优点与缺点。
4、了解时分复用在整个通信系统中的作用。
二、实验内容对两路模拟信号进行PCM编码,然后进行复用,观察复用后的信号。
三、实验器材1、信号源模块一块2、②号模块一块3、⑧号模块一块4、20M 双踪示波器一台5、连接线若干6、耳麦一副四、实验原理在数字通信中,PCM、 M、ADPCM或者其它模拟信号的数字化,一般都采用时分复用方式来提高信道的传输效率。
所谓复用就是多路信号(语音、数据或图像信号)利用同一个信道进行独立的传输。
如利用同一根同轴电缆传输1920路电话,且各路电话之间的传递是相互独立的,互不干扰。
时分复用(TDM)的主要特点是利用不同时隙来传递各路不同信号,时分复用是建立在抽样定理基础上的,因为抽样定理是连续(模拟)的基带信号有可能在被时间上离散出现的抽样脉冲所代替。
这样,当抽样脉冲占据较短时间时,在抽样脉冲之间就留出了时间空隙。
利用这些空隙便可以传输其他信号的抽样值,因此,就可能用一条信道同时传送若干个基带信号,并且每一个抽样值占用的时间越短,能够传输的路数也就越多。
TDM与FDM(频分复用)原理的差别在于:TDM在时域上是各路信号分割开来的;但在频域上是各路信号混叠在一起的。
FDM在频域上是各路信号分割开来的;但在时域上是混叠在一起的。
TDM的方法有两个突出的优点:(1)多路信号的汇合与分路都是数字电路,比FDM的模拟滤波器分路简单、可靠。
(2)信道的非线性会在FDM系统中产生交调失真与高次谐波,引起路际串话,因此,对信道的非线性失真要求很高;而TDM系统的非线性失真要求可降低。
然而,TDM对信道中时钟相位抖动及接收端与发送端的时钟同步问题则提出了较高要求。
所谓同步是指接收端能正确地从数据流中识别各路序号。
为此,必须在每帧内加上标志信号(称为帧同步信号)。
它可以是一组特定的码组,可以是特定宽度的脉冲。
计算机网络期末知识点例题版

一、 计算题1、 给出IP (可以是二进制数表示的形式),判断是哪类IP 地址(A/B/C )?网络号、主机号为划分子网的子网掩码,把该主机所在的网络划分为6个子网,求子网掩码及IP 范围 已知网络IP ,要求划分子网,求子网掩码。
或者给出子网掩码,问是否划分了子网2、 求有效数据传输率例题:在2km 的总线网,数据传输速率为10Mbps 。
帧长为512bits ,发送站成功发送帧后,在下一个时隙接收方发送一个32bits 的确认,假设没有冲突,求有效传输率。
发送512bits 所用的实际时间为:512/10M+ 32/10M+ 2*2k/(3*10^8)(往返的线路长度除以电磁波的传播速度)=67.733(us)有效数据传输率=512/67.733=7.559Mbps7.559Mbps=67.733512=有效数据传效数67.733(us)= )往返的线返的线)(10(32k 2 +10M 32 +10M 5128÷⨯÷⨯÷÷除以电磁波的传播速度3、 奈奎斯定理,求波特率进而求比特率;香农公式计算(用到信噪比)最大传输速率R-MAX 计算:无噪声信道:V W R 2max log 2=(W 带宽,V 信号离散等级)有噪声信道:香农公式:)/1(log 2max n s W R +=噪声=N S /lg 10噪声为30dB,S/N=1000比特率与波特率的计算:V og 2l 波特率=比特率⨯例题:某信道的带宽为4MHz ,假定无噪声并采用4电平的数字信号,试求该信道的最大数据传输率。
(要求列出简要计算式) 解:16Mbps =242=4l 42=V 2Wlog =最大数据传大数据22⨯⨯⨯⨯og例题:采用相—幅调制(PAM)技术在带宽为32KHz 的无噪声信道上传输数字信号,每个相位处都有两种不同幅度的电平。
若要达到192Kbps 的数据速率,至少要有多少种不同的相位? 解:无噪声,kbps R kHz W 192,32max ==; V W R 2max log 2=(W 带宽,V 信号离散等级)得 3)322(1922/log max 2=⨯÷==W R V所以V=8,每个相位都有两种不同的幅度的电平,所以至少需要8/2=4种不同的相位。
什么是TDM?

什么是TDM?TDM:时分复用和复用器(TDM:Time Division Multiplex and Multiplexer)时分复用是指一种通过不同信道或时隙中的交叉位脉冲,同时在同一个通信媒体上传输多个数字化数据、语音和视频信号等的技术。
电信中基本采用的信道带宽为DS0,其信道宽为64 kbps。
电话网络(PSTN)基于TDM 技术,通常又称为TDM 访问网络。
电话交换通过一些格式支持TDM:DS0、T1/E1 TDM 以及BRI TDM。
E1 TDM 支持2.048 Mbps通信链路,将它划分为32个时隙,每间隔为64 kbps 。
T1 TDM 支持1.544 Mbps 通信链路,将它划分为24个时隙,每间隔为64 kbps,其中8 kbps 信道用于同步操作和维护过程。
E1 和T1 TDM 最初应用于电话公司的数字化语音传输,与后来出现的其它类型数据没有什么不同。
E1 和T1 TDM 目前也应用于广域网链路。
BRI TDM 是通过交换机基本速率接口(BRI,支持基本速率ISDN,并可用作一个或多个静态PPP 链路的数据信道)提供。
基本速率接口具有2个64 kbps 时隙。
TDMA 也应用于移动无线通信的信元网络。
时分复用器是一种利用TDM 技术的设备,主要用于将多个低速率数据流结合为单个高速率数据流。
来自多个不同源的数据被分解为各个部分(位或位组),并且这些部分以规定的次序进行传输。
这样每个输入数据流即成为输出数据流中的一个“时间片段”。
必须维持好传输顺序,从而输入数据流才可以在目的端进行重组。
特别值得注意的是,相同设备通过相同TDM 技术原理却可以执行相反过程,即:将高速率数据流分解为多个低速率数据流,该过程称为解除复用技术。
因此,在同一个箱子中同时存在时分复用器和解复用器(Demultiplexer)是常见的。
TDM就是时分复用模式。
时分复用是指一种通过不同信道或时隙中的交叉位脉冲,同时在同一个通信媒体上传输多个数字化数据、语音和视频信号等的技术。
TDM格式介绍

TDM格式介绍TDM格式有些IC支持使用一个公共时钟的多路I2S数据输入或输出,但这样的方法显然会增加数据传输所需要的管脚数量。
当同一个数据线上传输两个以上通道的数据时,就要使用TDM格式。
TDM数据流可以承载多达16通道的数据,并有一个类似于I2S的数据/时钟结构。
每个通道的数据都使用数据总线上的一个槽(Slot),其宽度相当于帧的1/N,其中N是传输通道的数量。
出于实用考虑,N通常四舍五入到最近的2次幂(2、4、8、或16),并且任何多余通道都被空闲。
一个TDM帧时钟通常实现为一位宽的脉冲,这与I2S的50%占空比时钟相反。
超过25 MHz的时钟速率通常不用于TDM数据,原因是较高的频率会引起印刷电路板设计者要避免的板面布局问题。
TDM常用于多个源馈入一个输入端,或单源驱动多只器件的系统。
在前一种情况下,(多源馈入一个输入端),每个TDM源共享一个公共的数据总线。
该信源必须配置为在其适用通道期间才驱动总线,而当其它器件在驱动其它总线时,其驱动器要置为三态。
TDM接口还没出现类似飞利浦I2S的其他标准,因此,很多IC都有着自己略微不同的TDM实现方法。
这些变化体现在时钟极性、通道配置,以及闲置通道的三态化和驱动上。
当然,通常情况下不同IC是可以一起工作的,但系统设计者必须确保一个器件的输出格式要符合另一只器件输入端的预期PDM数据连接PDM数据连接在手机和平板电脑等便携音频应用上方面变得越来越普遍。
PDM在尺寸受限应用中优势明显,因为它可以将音频信号的布放围绕LCD显示屏等高噪声电路,而不必处理模拟音频信号可能面临的干扰问题。
有了PDM,仅两根信号线就可以传输两个音频通道。
如图4系统框图所示,两个PDM源将一根公共数据线驱动为一个接收器。
系统主控生成一个可被两个从设备使用的时钟,这两个从设备交替使用时钟的边缘,通过一根公共信号线将其数据输出出去。
这些数据调制在一个64×速率上,从而形成一个通常为1到3.2 MHz的时钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时分复用的帧结构
现以PCM30/32路电话系统为例,来说明时分复用的帧结构,这样形成的PCM信号称为PCM一次群信号。
在讨论时分多路复用原理时曾指出,时分多路复用的方式是用时隙来分割的,每一路信号分配一个时隙叫路时隙,帧同步码和信令码也各分配一个路时隙。
PCM30/32系统的意思是整个系统共分为32个路时隙,其中30个路时隙分别用来传送30路话音信号,一个路时隙用来传送帧同步码,另一个路时隙用来传送信令码。
图3-3是CCITT建议G.732规定的帧结构。
从图中可看出,PCM30/32路系统中一个复帧包含16帧,编号为帧 、帧……帧,一复帧的时间为2毫秒。
每一帧(每帧的时间为125微秒)又包含有32个路时隙,其编号为
,每个路时隙的时间为3.9微秒。
每一路时隙包含有8个位时隙,其
编号为,每个位时隙的时间为0.488微秒。
路时隙 分别传送第1路~第15路的信码,路时隙 分别传送
第16路~第30路的信码。
偶帧时隙传送帧同步码,其码型为{×0011011}。
奇帧TS0时隙码型为{×1A1SSSSS},其中A1是对端告警码,A1=0时表示帧同步,A1=1时表示帧失步;S为备用比特,可用来传送业务码;×为国际备用比特或传送循环冗余校验码(CRC码),它可用
于监视误码。
帧 时隙前4位码为复帧同步码,其码型为 0000;A2为复帧失步对告
码。
帧的 时隙用来传送30个话路的信令码。
帧 时隙前4位码用
来传送第1路信号的信令码,后4位码用来传送第16 路信号的信令码……。
直到 帧
时隙前后各4位码分别传送第15路、第30 路信号的信令码,这样一个复帧中各个话路分别轮流传送信令码一次。
按图3-3所示的帧结构,并根据抽样理论,每帧频率应为8000帧/秒,帧周期为125微秒,所以PCM30/32路系统的总数码率是
=8000(帧/秒)×32(路时隙/帧)×8(bit/路时
隙)=2048kbit/s=2.048Mbit/s
PCM30/32路端机方框图如图3-4所示。
用户的话音信号(发与收)采用二线制传输,但端机的发送与接收支路是分开的,即发与收是采用四线制传输。
因此,用户的话音信号需经2/4线变换,也就是通过差动变量器(差动变量器1~2端发送与4-1端接收的传输衰减越小越好,而4-2端的衰减要越大越好,以防止通路振鸣)1~2端送入PCM端机的发送端,经放大(调节话音电平)、低通滤波(限制话音频带、防止折叠噪声)、抽样、合路和编码,编码后的PCM码、帧同步码、信令码、数据信号码在汇总电路里按PCM30/32系统帧结构排列,最后经码型变换成适宜于信道传输的码型送往信道。
接收端首先将接收到信号进行整形、再生,然后经过码型反变换,恢复成原来的码型,再由分离电路将PCM码、信令码、帧同步码、数据信号码分离,分离出的话路信码经解码、分路门恢复出每一路的PCM信号,然后经低通平滑,恢复成每一路的话音模拟信号,最后经放大、差动变量器4~1端送至用户。
再生电路所提取时钟,除了用于抽
样判决,识别每一个码元外,还由它来控制收端定时系统产生收端所需的各种脉冲信号。