自考线性代数经管类(04184)试题及答案解析评分标准

合集下载

最新全国自考04184线性代数(经管类)答案

最新全国自考04184线性代数(经管类)答案

2015年4月高等教育自学考试全国统一命题考试线性代数(经管类)试题答案及评分参考(课程代码 04184)一、单项选择题(本大题共5小题,每小题2分类,共10分)1.C2.A3.D4.C5.B二、填空题(本大题共10小题,每小题2分,共20分)6. 97.⎪⎪⎭⎫ ⎝⎛--2315 8.⎪⎪⎭⎫⎝⎛--031111 9. 3 10. -2 11. 0 12. 2 13.()()T T 1,1,1311,1,131---或14. -1 15.a >1三、计算题(本大题共7小题,每小题9分,共63分)16.解 D=40200320115011315111141111121131------=- (5分) =74402032115=-- (9分) 17.解 由于21=A ,所以A 可逆,于是1*-=A A A (3分) 故11*12212)2(---+=+A A A A A (6分) =2923232112111=⎪⎭⎫ ⎝⎛==+----A A A A (9分) 18.解 由B AX X +=,化为()B X A E =-, (4分)而⎪⎪⎪⎭⎫ ⎝⎛--=-201101011A E 可逆,且()⎪⎪⎪⎭⎫ ⎝⎛--=--110123120311A E (7分) 故⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=11021335021111012312031X (9分) 19.解 由于()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛----→00007510171101751075103121,,,4321αααα (5分) 所以向量组的秩为2,21,αα是一个极大线性无关组,并且有214213717,511αααααα-=+-= (9分)注:极大线性无关组不唯一。

20. 解 方程组的系数行列式 D=()()()b c a c a b c c b b a a ---=222111因为a,b,c 两两互不相同,所以0≠D ,故方程有唯一解。

04184 线性代数(经管类)习题集及答案

04184 线性代数(经管类)习题集及答案

西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称:工商企业管理专业代码:Y020202目录第一部分习题一、选择题 3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题31第一部分 习题 一、选择题1、若n 阶方阵A 的秩为r ,则结论( )成立。

A. 0||≠A B. 0||=A C. r >n D. n r ≤2、下列结论正确的是( )A. 若AB=0,则A=0或B=0.B. 若AB=AC,则B=CC.两个同阶对角矩阵是可交换的.D. AB=BA 3、下列结论错误的是( )A. n+1个n 维向量一定线性相关.B. n 个n+1维向量一定线性相关C. n 个n 维列向量n ααα,,,21 线性相关,则021=n αααD. n 个n 维列向量n ααα,,,21 ,若021=n ααα 则n ααα,,,21 线性相关,4、若m c c c b b b a a a =321321321,则=321321321333222c c c b b b a a a ( ) A. 6m B.-6m C. m 3332 D. m 3332- 5、设A,B,C 均为n 阶方阵,AB=BA,AC=CA,则ABC=( ) A. ACB B. CAB C. CBA D. BCA6、二次型3221222132124),,(x x x x x x x x x f -++=的秩为( )A 、0B 、1C 、2D 、3 7、若A 、B 为n 阶方阵,下列说法正确的是( ) A 、若A ,B 都是可逆的,则A+B 是可逆的 B 、若A ,B 都是可逆的,则AB 是可逆的 C 、若A+B 是可逆的,则A-B 是可逆的 D 、若A+B 是可逆的,则A ,B 都是可逆的8、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A ,则=*A ( ) A 、⎪⎪⎭⎫ ⎝⎛--a c b d B 、⎪⎪⎭⎫ ⎝⎛--a b c dC 、⎪⎪⎭⎫ ⎝⎛--a c b dD 、⎪⎪⎭⎫⎝⎛--a b c d 9、关于初等矩阵下列结论成立的是( )A. 都是可逆阵B. 所对应的行列式的值为1C. 相乘仍为初等矩阵D. 相加仍为初等矩阵10、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=4321A ,则=*A ( )A 、⎪⎪⎭⎫⎝⎛--1324 B 、⎪⎪⎭⎫ ⎝⎛--1234 C 、⎪⎪⎭⎫ ⎝⎛--1324 D 、⎪⎪⎭⎫⎝⎛--1234 11、设21,ββ是非齐次线性方程组β=AX 的两个解,则下列向量中仍为方程组β=AX 解的是( )A 、21ββ+B 、21ββ-C 、3221ββ+ D 、32321ββ- 12、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关13、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关14、0=AX 是非齐次方程组β=AX 的对应齐次线性方程组,则有( ) A 、0=AX 有零解,则β=AX 有唯一解 B 、0=AX 有非零解,则β=AX 有无穷多解 C 、β=AX 有唯一解,则0=AX 只有零解 D 、β=AX 有无穷多解,则0=AX 只有零解15、设A ,B ,C 均为二阶方阵,且AC AB =,则当( )时,可以推出B=CA 、⎪⎪⎭⎫ ⎝⎛=0101AB 、⎪⎪⎭⎫ ⎝⎛=0011AC 、⎪⎪⎭⎫ ⎝⎛=0110AD 、⎪⎪⎭⎫⎝⎛=1111A16、若m c c c b b b a a a =321321321,则=231231231333222c c c b b b a a a ( )A. 6mB.-6mC. m 3332D. m 3332- 17、如果矩阵A 的秩等于r ,则( )。

自考4184线性代数(经管类)历年真题及答案

自考4184线性代数(经管类)历年真题及答案

自考4184线性代数(经管类)历年真题及答案篇一:2021年4月全国自考线性代数(经管类)试卷参考答案2021年4月全国自考线性代数(经管类)试卷参考答案篇二:2021年4月自学考试04184线性代数(经管类)试卷及答案2021年4月高等教育自学考试全国统一命题考试04184线性代数(经管类)试卷一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列举的四个对备选项中只有一个选项就是合乎题目建议的,恳请将其代码核对在题后的括号内。

错选、多挑选或未选均无分。

1、设行列式d1=a1a2b1b2,d2=a1a22b1?3a1,则d2=【】2b2?3a2a.-d1b.d1c.2d1d.3d12、若a=10x??202,b=??42y??,且2a=b,则【】211a.x=1,y=2b.x=2,y=1c.x=1,y=1d.x=2,y=23、已知a是3阶可逆矩阵,则下列矩阵中与a等价的是【】100100100100a.000b.010c.000d.0100000000010014、设2阶实等距矩阵a的全部特征值味1,-1,-1,则齐次线性方程组(e+a)x=0的基础卢播所含解向量的个数为【】a.0b.1c.2d.35、矩阵31???存有一个特征值为【】1?3??a.-3b.-2c.1d.2二、填空题(本大题共10小题,每小题2分后,共20分后)请在每小题的空格中填上正确答案。

错填、不填均无分。

6、设a为3阶矩阵,且a=3,则3a?1.21*7、设a=??35??,则a=.??8、未知a=10??1?11?,b=,若矩阵x满足用户ax=b,则x=.21??112?9、若向量组?1?(1,2,1)t,?2?(k-1,4,2)t线性相关,则数k=.x12x2ax3010、若齐次线性方程组?2x1?x2?x3?0存有非零求解,则数a=.3xxx023111、设立向量?1?(1,-2,2)t,?2?(2,0,-1)t,则内积(?1,?2)=.12、向量空间v={x=(x1,x2,0)t|x1,x2?r}的维数为.13、与向量(1,0,1)t和(1,1,0)t均拓扑的一个单位向量为.14、矩阵12的两个特征值之积为.23??22215、若虚二次型f(x1,x2,x3)=x1?ax2?a2x3?2x1x2正定,则数a的值域范围就是.三、计算题(本大题共7小题,每小题9分后,共63分后)2116、排序行列式d=111311114111的值.1517、设2阶矩阵a的行列式a?1?1*,谋行列式(2a)?2a的值.20101118、设矩阵a=??111?,b=?20?,矩阵x满足x=ax+b,求x.10?15?3?19、求向量组?1?(1,2,1)t,?2?(2,5,1)t,?3?(?1,3,?6)t,?4?(3,?1,10)t的秩和一个极大线性无关组,并将向量组中的其余向量由该极大线性无关组线性表出.x1ax2a2x33a220、利用克拉默法则解线性方程组?x1?bx2?b2x3?3b2,其中a,b,c两两互不相同.22xcxcx3c1231a100021、已知矩阵a??a31?与b??010?相似,求数a,b的值.11100b22、用正交变换化二次型f(x1,x2)?5x1?5x2?4x1x2为标准型,并写出所作的正交变换.四、证明题(本题7分后)23、设a,b均为n阶矩阵,且a=b+e,b2=b,证明a可逆.2021年4月高等教育自学考试全国统一命题考试线性代数(经管类)试题答案及评分参考(课程代码04184)一、单项选择题(本大题共5小题,每小题2分类,共10分)1.c2.a3.d4.c5.b二、填空题(本大题共10小题,每小题2分,共20分)516.97.328.1?11??9.3130?11310.-211.012.213.??1,1,1?t或1,1,1?t14.-115.a>1三、计算题(本大题共7小题,每小题9分,共63分)1311131121110?5?1?16.解d=?(5分)??11410?23011150?2045?1?1=22300?74(9分)41*?1,所以a对称,于是a?aa(3分后)217.求解由于a?故(2a)?1?2a*?1?1a?2aa?1(6分)22139?3?=a?1?a?1?a?1a?1?(9分后)222?2?18.解由x?ax?b,化为?e?a?x?b,(4分)21??1?10??01?1而e?a??10?1?对称,且?e?a321?(7分后)3??10??20?11?。

04184线性代数(经管类)

04184线性代数(经管类)

1【单选题】与矩阵合同的矩阵是()。

A、B、C、D、您的答案:B参考答案:B纠错查看解析2【单选题】设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,则下列解向量组中,可以作为该方程组基础解系的是A、α1+α2,α2+α3,α3+α1B、α1-α3,α1-α2,α2+α3-2α1C、α1-α2,α2-α3,α3-α1D、α1,α2,α1-α2您的答案:A参考答案:A纠错查看解析3【单选题】设行列式,则A、B、C、D、您的答案:未作答参考答案:C纠错查看解析4【单选题】已知是三阶可逆矩阵,则下列矩阵中与等价的是()。

A、B、C、D、您的答案:未作答参考答案:D纠错查看解析5【单选题】设A为3阶方阵,B为4阶方阵,且行列式|A|=1,|B|=-2,则行列式||B|A|之值为()A、-8B、-2C、2D、8您的答案:未作答参考答案:A纠错查看解析6【单选题】已知A是一个3×4矩阵,下列命题中正确的是()A、若矩阵A中所有三阶子式都为0,则秩(A)=2B、若A中存在二阶子式不为0,则秩(A)=2C、若秩(A)=2,则A中所有三阶子式都为0D、若秩(A)=2,则A中所有二阶子式都不为0您的答案:未作答参考答案:C纠错查看解析7【单选题】设则的特征值为1,2,3,则A、-2B、2C、3D、4您的答案:未作答参考答案:D纠错查看解析8【单选题】二次型的正惯性指数为()A、0B、1C、2D、3您的答案:未作答参考答案:C纠错查看解析9【单选题】设为3阶矩阵,将的第三行乘以得到单位矩阵,则A、-2B、C、D、2您的答案:未作答参考答案:A纠错查看解析10【单选题】矩阵有一个特征值为()。

A、-3B、-2C、1D、2您的答案:未作答参考答案:B纠错查看解析11【单选题】设为3阶矩阵,且,将按列分块为,若矩阵,则A、0B、C、D、您的答案:未作答参考答案:C纠错查看解析12【单选题】n维向量组α1,α2,…,αs(s≥2)线性相关充要条件A、α1,α2,…,αs中至少有两个向量成比例B、α1,α2,…,αs中至少有一个是零向量C、α1,α2,…,αs中至少有一个向量可以由其余向量线性表出D、α1,α2,…,αs中第一个向量都可以由其余向量线性表出您的答案:未作答参考答案:C纠错查看解析13【单选题】若矩阵中有一个阶子式等于零,且所有阶子式都不为零,则必有().A、B、C、D、您的答案:未作答参考答案:B纠错查看解析14【单选题】设三阶实对称矩阵的全部特征值为1,-1,-1,则齐次线性方程组的基础解系所含解向量的个数为()。

2019年10月浙江自考04184《线性代数(经管类)》试题和答案

2019年10月浙江自考04184《线性代数(经管类)》试题和答案

浙江省2019年10月高等教育自学考试线性代数(经管类)试题【正确答案】 A【答案解析】 因为由方阵性质可知,若方阵的行列式等于零,则它的行向量组和列向量组都线性相关。

所以可得100110100,,111(1)2022212212202x xαβγx x x x x x x ==-=-=-=-g解得2x =。

【知 识 点】 第三章 线性相关性的若干基本定理。

4. 1231323220,20,0.ax x x x x a x x +-=⎧⎪-+==⎨⎪-+=⎩若方程组有无穷多解,则( )。

A. 0 B. 3 C. -1 D. -3【正确答案】 A【答案解析】 由题可得2200201201011011a a A -⎡⎤⎡⎤⎢⎥⎢⎥=-→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦因为若方程组有无穷多解,可知()r A n <。

若0a =时,()23r A n =<=。

故选A 。

【知 识 点】 第四章 齐次线性方程组的解。

5. 若110011101t A t t t 为正交矩阵,则-⎡⎤⎢⎥=-=⎢⎥⎢⎥-⎣⎦( )。

A. -1B. 01【正确答案】 C【答案解析】 因为若A 为正交矩阵,则有1A =±。

3110011(1)11101t A t t t -⎡⎤⎢⎥=-=-+=±⎢⎥⎢⎥-⎣⎦解得1t =或1t =-。

故选C 。

【知 识 点】 第五章 正交矩阵。

6. 222231123(),,25f x x x x x x =--二次型的负惯性指数是( )。

A. -5 B. -7 C. 1 D. 2【正确答案】 D【答案解析】 因为负惯性指数即为二次型中系数为负数的项的个数。

题干中的二次型负数项有两个,所以负惯性指数为2,故选D 。

【知 识 点】 第六章 二次型的规范形。

二、填空题(本大题共9小题,每小题2 分,共 18分)7. 行列式___0______0_0__x y x y yx=。

《线性代数(经管类)》历年真题及参考答案

《线性代数(经管类)》历年真题及参考答案

20XX年10月高等教育自学考试全国统一命题考试线性代数(经管类)试卷(课程代码 04184)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设3阶方阵A的行列式为2,则= 【】A.-1 B.-C. D.12.设,则方程的根的个数为【】A.0 B.1C.2 D.33.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,若|A|≠|B|,则必有A.|A|=0 B.|A+B|≠0C.|A|≠0 D.|A-B|≠04. 设A、B是任意的n阶方阵,下列命题中正确的是【】A. B.C. D.5.设A= ,其中,则矩阵A的秩为【】A.0 B.1C.2 D.36.设6的阶方阵A的秩为4,则A的伴随矩阵的秩为【】A.0 B.2C.3 D.47.设向量a=(1,-2,3),与=(2,k,6)A.-10 B.-4C.4 D.108.已知线性方程组无解,则数a= 【】A.- B.0C. D.19.设3阶方阵A的特征多项式为,则|A|= 【】10.若3阶实对称矩阵A=( )是正定矩阵,则4的3个特征值可能为【】二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.设行列式D=,其第三行各元素的代数余子式之和为.12设A=,B=,则AB:.13设A是4x3矩阵且r(A)=2,B=,则r(AB).14.向量组(1,2),(2,3),(3,4)的秩为15设线性无关的向量组可由向量组线性表示,则r与s的关系为16.设方程组有非零解,且数,则= .17.设4元线性方程组Ax=b的三个解,已知,.则方程组的通解是.19.设矩阵有一个特征值=2,对应的特征向量为,则数20.设实二次型,已知A的特征值为-1,1,2,则该二次型的规范形为三、计算题(本大题共6小题,每小题9分,共54分)21.设矩阵,,其中口,均为3维列向量,且 |A|=18,|B|=2.求|A-B|.22.解矩阵方程23.设向量组,,问P为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.24.设3元线性方程组(1)确定当取何值时,方程组有惟一解、无解、有无穷多解?(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示)25.已知2阶方阵A的特征值为,方阵.(1)求B的特征值;(2)求B的行列式.。

全国2020年8月自考04184线性代数(经管类)试题及答案

全国2020年8月自考04184线性代数(经管类)试题及答案

D020·04184(附参考答案)绝密★考试结束前2020年08月高等教育自学考试全国统一命题考试线性代数(经管类)(课程代码:04184)注意事项:1. 本试卷分为两部分,第一部分为选择题,第二部分为非选择题。

2. 应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。

3. 涂写部分、画图部分必须使用2B 铅笔,书写部分必须使用黑色字迹签字笔。

说明:在本卷中,A T 表示矩阵A 的转置矩阵,A •表示矩阵A 的伴随矩阵,E 是单位矩阵,丨A 丨表示方阵A 的行列式,r (A )表示矩阵A 的秩。

第一部分 选择题一、单项选择题:本大题共5小题,每小题2分,共10分。

在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。

1.设2,121,,ββαα是3维列向量,且行列式n m ==221121,,,,,αβαβαα,则行列式=+2121,,ββααA.n m -B.m n -C.n m +D.mn2.设A 为3阶矩阵,将A 的第2列与第3列互换得到矩阵B ,再将B 的第1列的(-2)倍加到第3列得到单位矩阵E ,则=-1AA.⎪⎪⎪⎭⎫ ⎝⎛010100021B.⎪⎪⎪⎭⎫⎝⎛-010100021C.⎪⎪⎪⎭⎫ ⎝⎛-010100201D.⎪⎪⎪⎭⎫⎝⎛010100201 3.设向量组321,,ααα线性无关,而向量组432,,ααα线性相关,则A.1α必可由432,,ααα线性表出B.2α必可由431,,ααα线性表出C.3α必可由421,,ααα线性表出D.4α必可由321,,ααα线性表出4.若3阶可逆矩阵A 的特征值分别是1,-1,2,则1-A =A.-2B.21-C.21D.25.二次型()31223212,,x x x x x x f +=的规范形是 A.232221z z z ++ B.232221z z z -+ C.232221z z z --D.232221z z z ---第二部分 非选择题注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

(完整word版)全国2018年10月自考04184线性代数(经管类)试卷及答案

(完整word版)全国2018年10月自考04184线性代数(经管类)试卷及答案

2018年10月高等教育自学考试全国统一命题考试线性代数(经管类)试卷和答案(课程代码04184)本试卷共4页,满分100分,考试时间150分钟。

考生答题注意事项:1•本卷所有试题必须在答题卡上作答。

答在试卷上无效,试卷空白处和背面均可作草稿纸。

2•第一部分为选择题。

必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑3•第二部分为非选择题。

必须注明大、小题号,使用0. 5毫米黑色字迹签字笔作答。

4•合理安排答题空间,超出答题区域无效。

第一部分选择题一、单项选择题:本大题共5小题,每小题2分,共10分。

在每小题列岀的备选项中只有一项是最符合题目要求的,请将其选岀。

J 1 41+行充或5 0 3中元素4的代數余子式尊于2 ~2 IA” -40 B+-】0 C. 10 6 40 2-下列矩貯中不是初第矩阵的为W ■广0 0 IA「0 0八广1 0 (? 「1 00 1 -2 B.0 1 0 C.0 2 0 D. 0 11J 0 o丿(I 0 0)W。

b卫0玉设底蛊給®殉心綫牡无先吟吩毁綫性梅关,则下列结论申箍谡的是A*吗q巍性无关吐碍可由吗■迅线性表出C. 相关D.线性无关4设轴是4元非齐抉纯性方程^Ax = b的弐个解向氐己知心)=3”珀=01 2*4几也~1-%0(0* I, 2, 3)1(卍为任息常数,则方Ax -b的遍解可奁示为A. ( b 2t3, 4)T+e( L b h 1)T B+( L 2. 3. 4)T+c(0, L 2. 3 )TG ( L 2,3. 4)T+C(213, 4.5 )T D. (L 2. 3, 4 )T+ c (3# 4> 5, 6 )T(1 2 -I t>>匚谊分块矩阵/ = 英中硯是3维列向B= -I 10 2,工:3 -b 则的第4列是A.網~弼4■绍B” 运+佑+磅c* -€E] +3«, D- 一砖第二部分非选择题二.填空題:本大题共10小麺,每环疇2分,共20分.0 1 II 行列式i o 1 = __________________ .t i &I 2 17■设D= 0 4 3 t D 中元索引的代数余子式记为知人则-1 -2 22斗 j + - 2地]■ ----------- 1<1 0 乱矩阵0 2①09-矩阵“卫)经初等行变按化为则JS = __________________ . 10,组耳=(一【丄0几兔=LI ,O ,1}T ,碍=(厂1,陝的秩等于2,则数x = __________ *1L 设呂是5汶6矩阵「r (/4)-3,则齐次蛭性方程^Xx = O 的基础解粟中包含解向量的个数为 _____________ ・IL ^a=(M h -2>T j^3阶矩阵/属丁•特征值2 = 2的特征向址.财妣址_ _•15.若実二次型f3丹坷)=#+4x5*4^421%^正定.则数Ji 的取值范囤为 _____________r\ 1 B.矩阵片=1 1 J 1 ri 的非零特征值丸二打OVlrl 2 12.己知绘性方程组0 2? 0无刚数门三、计算厲:本大殛其7那腫,毎小観9分.共楣分*a 1 ab1乩计算行列式2a a + b 2h 的值一余向童由潼扱大线性无关裁线性表出.,X] - iJtj + Xj «I当数“为何值时,线性方程纽*「込+马+斗=1苔无穷麥解2并求出其通解,【要求用它的-牛特解和寻出组的基础解篦表示)乜o r2h 若矩阵3 I X 可招似对肃化,叢趙工.“ o (22.求正交变瓠—丹卜将二次型/片切=*£斗闵士铭可优为标准陰 并写出相战 的标淮形.坷1斗十昭】屯+叫:勺=坷】 可匹 证明线性方程组•旳內+吆勺+叫汪二幻无解.fl Jl x ]+a H x 3+rj J3x i = a 5j4 2『T17.设矩阵满足等式AX.B t 其rf4- 2 2 1卩** 3tB >求**18.说向重盘三(1,-】,2”,0 = (1』,2)十,^A = afi f ,求/和片巴4宀=3 4 > % = 71 4 W3J抽卜极大线性无芸组,并将基20.求向董组叫四、证明题;本題T53%2018年10月成尊籾fVl学考试全国统一命題考试线性代数(经管类)试题答案及评分参考(课程代码04184)单戍連僅拧;本大时技"卜駛.2兌忆讨+二.出空變,本丈於摊⑷吓魁・卜韭2分・其型分.12. t11- Iwwwrzikso^cpmJlcil' k為艸三*计■馳本大静共「卜强,粉『卜荻9分.CJ16.烷■ ■ ■ ■ * "XJi !.f ^trtK«\ 胡i ■: < ;u q17. Iff- Ml,1| - :X ft . f^lA nJ 世.或- J X - A fi(I 3 a'< ^4 ' ~ - ~ -J 2'1 3r ■»■Xir3 *5i—一3—0--22、丨J-«>解二iA| .4| _ 2 0 . ,^/t >hi,1 2” 1“津)二2 2J 11: 0 1J 1 M- if i <> n : v:n> n i 0 : fi rw u I:-L•i(x $«r11丿T] I 3 21IN.解4 一Qp' --I d. k 1)- -I -7 • 2,2 =A1~\aP Ka/7 i -Aap' ) -aip'aY^ ~iP a\'a^'f I 1又恥v(U I -2r1 4 2 1从山十—丁』T1 12 b 1 •fl性代裁已百妇试愿轉思瓦if分參零T. 2 <J[ (JU K)t> i1 1K A - {fi ,ff.L £r,x 4i b 141 4 1r ・.■3 L2 -10 0綁的个帰JU.启割为眄止” H此时通•<为f-'11I-]!• *、丄21解(|口身葷利包址qqS2787M3LJt-i j x 心 I . <£ - A问为J* W 刑fcl 时他比*创4叫斗E A) 1,1F线吃代故(绘汐黑)域迪售余妣讨幼鑒船•弗J 觅门14f ]1 1h'l U -! I -I2 I 1 I4fl 1I ' 1 11\ ' 1 对4 U a^2\仆CH-12Uf, r</1) = rM) = 2< i . 口XI fiV.Mt 擀AE-A\_r(A - 5 n 4 -1)左I A =5.方阳1农£-”伽-E川鈿呻紀=1I-甲的匕符时i 丘-li 小h f'l^ll it -(I 们卩诂祈汞 f 1. ^■■.'/Itf t ii i .■卜W| 小r - - ..... <»vU P ?/ . L f- i—由ItM託埶碍P ■櫥駅正交&为JC 一小1 l/<2 V\2 I巧叮"化杠忌:*为/ >r?/...... 7 W 四庄暇鼬;齐对17分.'5 %:%»23 il Hi f临性力和堆的乘爺岖円为耳」码I % %:*| h il I {t- “ 吧(n J)= 2 . n .i)- 3“.,■ 怒丿植攤删AWtl『:乐却I阵柿肝「如FT皓枕何Z* WiiHWI A催Httfta ・1?康及评井•痔9B4<(M4W。

2020年8月全国自考《线性代数(经管类)》试题和答案04184

2020年8月全国自考《线性代数(经管类)》试题和答案04184

2020年8月全国自考04184线性代数(经管类)真题和答案1、设α1,α2,β1,β2是三维列向量,且行列式|α1,α2,β1|=m,|α1,β2,,α2|=n,则行列式|α1,α2,β1+β2|=A、m-nB、n-mC、m+nD、mn正确答案A2、设A为3阶矩阵,将A的第2列与第3列互换得到矩阵B,再将B的第1列的(-2)倍加到第3列得到单位矩阵E,则A-1=()。

正确答案C3、正确答案D因为向量组α1,α2,α3线性无关,所以向量组α1,α2,α3中任意一个均不能由其他两个表示出来,所以就排除了A、B、C三个选项;又因为向量组α2,α3,α4线性相关,所以向量组α2,α3,α4中至少有一个可以由其他两个线性表示,所以D是正确的。

参见教材P116。

4、若3阶可逆矩阵A的特征值分别是1,-1,2,则|A-1|A、-2B、-1/2C、1/2D、2正确答案B解析:因为|A|=1*-1*2=-2,所以|A-1|=1/|A|=-1/2.参见教材P160。

5、正确答案B解析07、解析a1a2a3a4 8、解析解析10、解析a≠1且≠-2 11、解析12、解析解析-414、解析3615、解析a大于216、设α1,α2,α3为2维列向量,令A=(α1,α3),B=(2α2,3α3),且已知|A|=1/2,|B|=-2,求行列式|A+B|的值。

答案17、答案18、答案19、答案20、答案21、答案22、答案23、答案。

2022年10月04184线性代数真题及答案

2022年10月04184线性代数真题及答案

2022年10月《线性代数》真题说明:在本卷中,A T表示矩阵A的转置矩阵,A∗表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的秩.第一部分选择题一、单项选择题:本大题共5小题,每小题2分,共10分。

在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。

1.已知3阶行列式D第1行的元素依次为1,2,−1,它们的余子式依次为2,−2,1,则D=()A.-5B.-3C.3D.5【答案】D【解析】2.设A为3阶矩阵,P=(130010001),则用P右乘A,相当于将A()A.第1行的3倍加到第2行B.第2行的3倍加到第1行C.第1列的3倍加到第2列D.第2列的3倍加到第1列【答案】C【解析】3.向量组a1=(1,1,0)T,a2=(3,0,−9)T,a3=(1,2,3)T,a4=(1,−1,−6)T的秩是()A.1B.2C.3D.4【答案】B【解析】4.设线性方程组无解{kx 1+x 2+x 3=1x 1+kx 2+x 3=k x 1+x 2+kx 3=k 2,则数k =()A.-2B.-1C.0D.1【答案】A【解析】由克拉默法则无解,则D =|k 111k 111k|=0,解得(k −1)2·(k +2)=0即k =1或-2,若k =1,则方程组{x 1+x 2+x 3=1x 1+x 2+x 3=1x 1+x 2+x 3=1有无数解故k =−25.设矩阵A =(−100022022),则二次型f (x 1,x 2,x 3)=x T Ax 的规范形为()A.z 12−z 22−z 32B.z 12+z 22−z 32C.z 12+z 22D.z 12−z 22 【答案】D【解析】|λE −A |=|λ+1000λ−2−20−2λ−2|=(λ+1)(λ−4)·λ=0∴λ=0,−1,4一正一负.第二部分 非选择题二、填空题:本大题共10小题,每小题2分,共20分。

《线性代数(经管类)》(课程代码04184)校考试题答案

《线性代数(经管类)》(课程代码04184)校考试题答案

《线性代数(经管类)》(课程代码04184)第一大题:单项选择题1、设行列式=1 , =2, 则= ( D )•错误!未找到引用源。

A.—3•错误!未找到引用源。

B.—1•错误!未找到引用源。

C.1•错误!未找到引用源。

D.32、设A为3阶方阵,且已知|-2A|=2,则|A|=( B )•错误!未找到引用源。

A.—1•错误!未找到引用源。

B.•错误!未找到引用源。

C.•错误!未找到引用源。

D.13、设矩阵A,B,C为同阶方阵,则=__B__•错误!未找到引用源。

A.•错误!未找到引用源。

B.•错误!未找到引用源。

C.•错误!未找到引用源。

D.4、设A为2阶可逆矩阵,且已知= ,则A=( D )•错误!未找到引用源。

A.•错误!未找到引用源。

B.•错误!未找到引用源。

C.•错误!未找到引用源。

D.5、设A为m×n矩阵,则齐次线性方程组=0仅有零解的充分必要条件是( A )•错误!未找到引用源。

A.A的列向量组线性无关•错误!未找到引用源。

B.A的列向量组线性相关•错误!未找到引用源。

C.A的行向量组线性无关•错误!未找到引用源。

D.A的行向量组线性相关6、已知,是非齐次线性方程组=b的两个不同的解,,是其导出组=0的一个基础解系,,为任意常数,则方程组=b的通解可以表为( A )•错误!未找到引用源。

A.•错误!未找到引用源。

B.•错误!未找到引用源。

C.•错误!未找到引用源。

D.7、设3阶矩阵A与B相似,且已知A的特征值为2,2,3 则 ||= ( A )•错误!未找到引用源。

A.•错误!未找到引用源。

B.•错误!未找到引用源。

C.7•错误!未找到引用源。

D.128、设A为3阶矩阵,且已知|3A+2E|=0,则A必有一个特征值为( A )•错误!未找到引用源。

A.•错误!未找到引用源。

B.•错误!未找到引用源。

C.•错误!未找到引用源。

D.9、二次型的矩阵为( C )•错误!未找到引用源。

04184 线性代数(经管类)习题集及答案

04184 线性代数(经管类)习题集及答案

西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称:工商企业管理专业代码:Y020202目录第一部分习题一、选择题 3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题31第一部分 习题 一、选择题1、若n 阶方阵A 的秩为r ,则结论( )成立。

A. 0||≠A B. 0||=A C. r >n D. n r ≤2、下列结论正确的是( )A. 若AB=0,则A=0或B=0.B. 若AB=AC,则B=CC.两个同阶对角矩阵是可交换的.D. AB=BA 3、下列结论错误的是( )A. n+1个n 维向量一定线性相关.B. n 个n+1维向量一定线性相关C. n 个n 维列向量n ααα,,,21 线性相关,则021=n αααD. n 个n 维列向量n ααα,,,21 ,若021=n ααα 则n ααα,,,21 线性相关,4、若m c c c b b b a a a =321321321,则=321321321333222c c c b b b a a a ( ) A. 6m B.-6m C. m 3332 D. m 3332- 5、设A,B,C 均为n 阶方阵,AB=BA,AC=CA,则ABC=( ) A. ACB B. CAB C. CBA D. BCA6、二次型3221222132124),,(x x x x x x x x x f -++=的秩为( )A 、0B 、1C 、2D 、3 7、若A 、B 为n 阶方阵,下列说法正确的是( ) A 、若A ,B 都是可逆的,则A+B 是可逆的 B 、若A ,B 都是可逆的,则AB 是可逆的 C 、若A+B 是可逆的,则A-B 是可逆的 D 、若A+B 是可逆的,则A ,B 都是可逆的8、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A ,则=*A ( ) A 、⎪⎪⎭⎫ ⎝⎛--a c b d B 、⎪⎪⎭⎫ ⎝⎛--a b c dC 、⎪⎪⎭⎫ ⎝⎛--a c b dD 、⎪⎪⎭⎫⎝⎛--a b c d 9、关于初等矩阵下列结论成立的是( )A. 都是可逆阵B. 所对应的行列式的值为1C. 相乘仍为初等矩阵D. 相加仍为初等矩阵10、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=4321A ,则=*A ( )A 、⎪⎪⎭⎫⎝⎛--1324 B 、⎪⎪⎭⎫ ⎝⎛--1234 C 、⎪⎪⎭⎫ ⎝⎛--1324 D 、⎪⎪⎭⎫⎝⎛--1234 11、设21,ββ是非齐次线性方程组β=AX 的两个解,则下列向量中仍为方程组β=AX 解的是( )A 、21ββ+B 、21ββ-C 、3221ββ+ D 、32321ββ- 12、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关13、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关14、0=AX 是非齐次方程组β=AX 的对应齐次线性方程组,则有( ) A 、0=AX 有零解,则β=AX 有唯一解 B 、0=AX 有非零解,则β=AX 有无穷多解 C 、β=AX 有唯一解,则0=AX 只有零解 D 、β=AX 有无穷多解,则0=AX 只有零解15、设A ,B ,C 均为二阶方阵,且AC AB =,则当( )时,可以推出B=CA 、⎪⎪⎭⎫ ⎝⎛=0101AB 、⎪⎪⎭⎫ ⎝⎛=0011AC 、⎪⎪⎭⎫ ⎝⎛=0110AD 、⎪⎪⎭⎫⎝⎛=1111A16、若m c c c b b b a a a =321321321,则=231231231333222c c c b b b a a a ( )A. 6mB.-6mC. m 3332D. m 3332- 17、如果矩阵A 的秩等于r ,则( )。

2007年4月-2013年1月全国高等教育自学考试线性代数(经管类)试题课程代码:04184试卷及答案

2007年4月-2013年1月全国高等教育自学考试线性代数(经管类)试题课程代码:04184试卷及答案

全国2007年4月高等教育自学考试线性代数(经管类)试题课程代码:04184说明在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A 为3阶方阵,且|A |=2,则|2A -1|=( ) A .-4 B .-1 C .1 D .4 2.设矩阵A =(1,2),B =⎪⎪⎭⎫⎝⎛4321,C =⎪⎪⎭⎫⎝⎛654321,则下列矩阵运算中有意义的是( )A .ACB B .ABC C .BAC D .CBA 3.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( )A .A +A T B .A -A T C .AA T D .A T A 4.设2阶矩阵A =⎪⎪⎭⎫⎝⎛d c b a ,则A *=( )A .⎪⎪⎭⎫ ⎝⎛--a c b d B .⎪⎪⎭⎫ ⎝⎛--a b c d C .⎪⎪⎭⎫ ⎝⎛--a c b dD .⎪⎪⎭⎫⎝⎛--a b c d 5.矩阵⎪⎪⎭⎫ ⎝⎛-0133的逆矩阵是( )A .⎪⎪⎭⎫ ⎝⎛-3310B .⎪⎪⎭⎫ ⎝⎛-3130C .⎪⎪⎭⎫⎝⎛-13110 D .⎪⎪⎪⎭⎫ ⎝⎛-01311 6.设矩阵A =⎪⎪⎪⎭⎫⎝⎛--500043200101,则A 中( )A .所有2阶子式都不为零B .所有2阶子式都为零C .所有3阶子式都不为零D .存在一个3阶子式不为零7.设A 为m×n 矩阵,齐次线性方程组Ax =0有非零解的充分必要条件是( ) A .A 的列向量组线性相关B .A 的列向量组线性无关C .A 的行向量组线性相关D .A 的行向量组线性无关8.设3元非齐次线性方程组Ax=b 的两个解为α=(1,0,2)T ,β=(1,-1,3)T ,且系数矩阵A 的秩r(A )=2,则对于任意常数k , k 1, k 2, 方程组的通解可表为( ) A .k 1(1,0,2)T +k 2(1,-1,3)T B .(1,0,2)T +k (1,-1,3)T C .(1,0,2)T +k (0,1,-1)T D .(1,0,2)T +k (2,-1,5)T9.矩阵A =⎪⎪⎪⎭⎫ ⎝⎛111111111的非零特征值为( )A .4 B .3 C .2 D .110.4元二次型413121214321222),,,(x x x x x x x x x x x f +++=的秩为( )A .4 B .3 C .2 D .1 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档