富平县实验中学2018-2019学年上学期高三数学10月月考试题
山西省富平县富平中学2018届高三上学期第五次检测数学(文)试题+Word版缺答案
富平中学2017-2018学年度上学期第五次检测高三文科数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.{}2{|},1A x x x B x =<=≥,则A B ⋃=( )A . RB . ()0,+∞C . {}1D . [)1,+∞2.已知复数11Z i=- ,则Z = ( )A . 1i -+B . 1i --C . 1i +D . 1i - 3.下列说法中正确的是( )A .“f(0)=0”是“函数f(x)是奇函数”的充要条件B .若p :∃x 0∈R ,x 20-x 0-1>0,则非p :∀x ∈R ,x 2-x -1<0C .若p ∧q 为假命题,则p ,q 均为假命题D .命题“若α=π6,则sin α=12”的否命题是“若α≠π6,则sin α≠12”4.已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为( )A. a b c <<B.b a c <<C.c b a <<D.c a b <<5.函数y =sin ⎝ ⎛⎭⎪⎫x +π6图像上各点的横坐标缩短到原来的12(纵坐标不变),再将图像向右平移π3个单位长度,那么所得图像的一条对称轴方程为( ) A .x =-π2 B .x =-π4 C .x =π8D .x =π46. 已知cos ⎝⎛⎭⎪⎫α+π2=35,-π2<α<π2,则sin 2α的值等于( )A.1225 B .-1225 C.2425 D .-24257.. 已知函数x x f 2log x6(-=),在下列区间中,包含f(x)零点的区间是( ) A .(0,1) B .(1,2) C .(2,4) D .(4,+∞)8. 数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1 B. 16 C. 56D.1309.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为( )A. 4B. 6+C. 4+D. 210. 执行如图所示程序框图,若输出的k 的值为3,则输入的x 的取值范围为( )A .[15,60)B .(15,60]C .[12,48)D .(12,48]第9题图 第10题图11. 已知f(x)=⎩⎨⎧log 3x ,x>0,a x +b ,x ≤0,且f(0)=2,f(-1)=3,则f(f(-3))=( )A .-2B .2C .3D .-312. 已知椭圆C :22221x y a b+=,(a>b>0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )D.13二、填空题,本题共4小题,每小题5分,共20分13. 某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.14.若x ,y 满足约束条件⎩⎨⎧x +y -2≤0x -2y +1≤02x -y +2≥0,则z =3x +y 的最大值为________.15. 已知向量a →,b →均为单位向量,a →与b →夹角为π3,则|a →-2 b →|=________16. 设a>0,b>0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为________. 三、解答题:共70分。
城区实验中学2018-2019学年上学期高三数学10月月考试题(2)
城区实验中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 不等式≤0的解集是()A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]2. 若函数则函数的零点个数为( )21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩1()2y f x x =+A .1B .2C .3D .43. 如图在圆中,,是圆互相垂直的两条直径,现分别以,,,为直径作四个O AB CD O OA OB OC OD 圆,在圆内随机取一点,则此点取自阴影部分的概率是()O DABCO A .B .C .D .π1π21π121-π2141-【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.4. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是()A .B .C .D .5. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=AC B .A+C=2B C .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )6. 若曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,则a+b=()A .1B .2C .3D .47. 若函数则的值为( )1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩(3)f -A .5B .C .D .21-7-8. 若直线与曲线:没有公共点,则实数的最大值为( ):1l y kx =-C 1()1ex f x x =-+kA .-1B .C .1D 12【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.9. 阅读右图所示的程序框图,若,则输出的的值等于( )8,10m n ==S A .28B .36C .45D .12010.与圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0都相切的直线有( )A .1条B .2条C .3条D .4条二、填空题11.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 . 12.已知是函数两个相邻的两个极值点,且在1,3x x ==()()()sin 0f x x ωϕω=+>()f x 32x =处的导数,则___________.302f ⎛⎫'<⎪⎝⎭13f ⎛⎫= ⎪⎝⎭13.在直角梯形分别为的中点,,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===,AB AC 点在以为圆心,为半径的圆弧上变动(如图所示).若,其中,P A AD DE AP ED AF λμ=+,R λμ∈则的取值范围是___________.2λμ-14.分别在区间、上任意选取一个实数,则随机事件“”的概率为_________.[0,1][1,]e a b 、ln a b ≥15.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题:A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).16.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,其中为自然对数()1e e x xf x =-e 的底数,则不等式的解集为________.()()2240f x f x -+-<三、解答题17.(本小题满分13分)设,数列满足:,.1()1f x x =+{}n a 112a =1(),n n a f a n N *+=∈(Ⅰ)若为方程的两个不相等的实根,证明:数列为等比数列;12,λλ()f x x =12n na a λλ⎧⎫-⎨⎬-⎩⎭(Ⅱ)证明:存在实数,使得对,.m n N *∀∈2121222n n n n a a m a a -++<<<< )18.已知函数f (x )=,求不等式f (x )<4的解集.19.【泰州中学2018届高三10月月考】已知函数.()(),,xf x eg x x m m R ==-∈(1)若曲线与直线相切,求实数的值;()y f x =()y g x =m (2)记,求在上的最大值;()()()h x f x g x =⋅()h x []0,1(3)当时,试比较与的大小.0m =()2f x e-()g x20.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.21.(本小题满分14分)设集合12432x A x -⎧⎫=⎨⎬⎩⎭≤≤,{}()222300B x x mx m m =+-<>.(1) 若2m =,求A B ⋂;(2) 若B A ⊇,求实数m 的取值范围.22.(本题满分12分)设向量,,,记函数))cos (sin 23,(sin x x x -=)cos sin ,(cos x x x +=R x ∈.x f ⋅=)((1)求函数的单调递增区间;)(x f (2)在锐角中,角的对边分别为.若,,求面积的最大值.ABC ∆C B A ,,c b a ,,21)(=A f 2=a ABC ∆城区实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】D【解析】解:依题意,不等式化为,解得﹣1<x ≤2,故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解. 2. 【答案】D 【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几0)(=x f 个零点.(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图],[b a 0)()(<b f a f 象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.3. 【答案】C【解析】设圆的半径为,根据图形的对称性,可以选择在扇形中研究问题,过两个半圆的交点分别O 2OAC 向,作垂线,则此时构成一个以为边长的正方形,则这个正方形内的阴影部分面积为,扇形OA OC 112-π的面积为,所求概率为.OAC ππππ12112-=-=P 4. 【答案】A【解析】解:0<a <1,实数x ,y 满足,即y=,故函数y 为偶函数,它的图象关于y轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A .【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题. 5. 【答案】C【解析】解:若公比q=1,则B ,C 成立;故排除A ,D ;若公比q ≠1,则A=S n =,B=S 2n =,C=S 3n =,B (B ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n )A (C ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n );故B (B ﹣A )=A (C ﹣A );故选:C .【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.6. 【答案】A【解析】解:∵f (x )=acosx ,g (x )=x 2+bx+1,∴f ′(x )=﹣asinx ,g ′(x )=2x+b ,∵曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,∴f (0)=a=g (0)=1,且f ′(0)=0=g ′(0)=b ,即a=1,b=0.∴a+b=1.故选:A .【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题. 7. 【答案】D111]【解析】试题分析:.()()()311112f f f -=-==+=考点:分段函数求值.8. 【答案】C【解析】令,则直线:与曲线:没有公共点,()()()()111ex g x f x kx k x =--=-+l 1y kx =-C ()y f x =等价于方程在上没有实数解.假设,此时,.又函()0g x =R 1k >()010g =>1111101e k g k -⎛⎫=-+< ⎪-⎝⎭数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没()g x ()0g x =R ()0g x =R 有实数解”矛盾,故.又时,,知方程在上没有实数解,所以的最大值1k ≤1k =()10e xg x =>()0g x =R k 为,故选C .19. 【答案】C【解析】解析:本题考查程序框图中的循环结构.,当121123mnn n n n m S C m---+=⋅⋅⋅⋅= 8,10m n ==时,,选C .82101045mn C C C ===10.【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数.【解答】解:∵圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0的方程可化为,;;∴圆C 1,C 2的圆心分别为(3,﹣2),(7,1);半径为r 1=1,r 2=6.∴两圆的圆心距=r 2﹣r 1;∴两个圆外切,∴它们只有1条内公切线,2条外公切线.故选C .二、填空题11.【答案】 ( 1,±2) .【解析】解:设点P坐标为(a 2,a )依题意可知抛物线的准线方程为x=﹣2a 2+2=,求得a=±2∴点P 的坐标为( 1,±2)故答案为:( 1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题. 12.【答案】12【解析】考点:三角函数图象与性质,函数导数与不等式.【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和,再结合极值点的导数等于零,ω可求出.在求的过程中,由于题目没有给定它的取值范围,需要用来验证.求出表达式后,ϕϕ302f ⎛⎫'<⎪⎝⎭()f x 就可以求出.113f ⎛⎫ ⎪⎝⎭13.【答案】[]1,1-【解析】考点:向量运算.【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.14.【答案】1e e-【解析】解析: 由得,如图所有实数对表示的区域的面积为,满足条件“”的ln a b ≥ab e ≤(,)a b e ab e ≤实数对表示的区域为图中阴影部分,其面积为,∴随机事件“”的概率为(,)a b 111|a a e da e e ==-⎰ln a b ≥.1e e-15.【答案】BC【解析】【分析】验证发现,直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π)表示圆x 2+(y ﹣2)2=1的切线的集合,A .M 中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B .存在定点P 不在M 中的任一条直线上,观察直线的方程即可得到点的坐标.C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上,由直线系的几何意义可判断,D .M 中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.【解答】解:因为点(0,2)到直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π)中每条直线的距离d==1,直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π)表示圆x 2+(y ﹣2)2=1的切线的集合,A .由于直线系表示圆x 2+(y ﹣2)2=1的所有切线,其中存在两条切线平行,M 中所有直线均经过一个定点(0,2)不可能,故A 不正确;B .存在定点P 不在M 中的任一条直线上,观察知点M (0,2)即符合条件,故B 正确;C .由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上,故C 正确;D .如下图,M 中的直线所能围成的正三角形有两类,其一是如△ABB ′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC 型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确.故答案为:BC.16.【答案】()32-,【解析】∵,∴,即函数为奇函数,()1e ,e x x f x x R =-∈()()11x x x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝⎭()f x 又∵恒成立,故函数在上单调递增,不等式可转化为()0x x f x e e-=+>'()f x R ()()2240f x f x -+-<,即,解得:,即不等式的解集为()()224f x f x -<-224x x -<-32x -<<()()2240f x f x -+-<,故答案为.()32-,()32-,三、解答题17.【答案】【解析】解:证明:,∴,∴.2()10f x x x x =⇔+-=2112221010λλλλ⎧+-=⎪⎨+-=⎪⎩21122211λλλλ⎧-=⎪⎨-=⎪⎩∵, (3分)12111111112122222222111111n n n n n n n n n na a a a a a a a a a λλλλλλλλλλλλλλλλ++--+----====⋅------+,,11120a a λλ-≠-120λλ≠∴数列为等比数列. (4分)12n na a λλ⎧⎫-⎨⎬-⎩⎭(Ⅱ)证明:设,则.m =()f m m =由及得,,∴.112a =111n n a a +=+223a =335a =130a a m <<<∵在上递减,∴,∴.∴,(8分)()f x (0,)+∞13()()()f a f a f m >>24a a m >>1342a a m a a <<<<下面用数学归纳法证明:当时,.n N *∈2121222n n n n a a m a a -++<<<<①当时,命题成立. (9分)1n =②假设当时命题成立,即,那么n k =2121222k k k k a a m a a -++<<<<由在上递减得()f x (0,)+∞2121222()()()()()k k k k f a f a f m f a f a -++>>>>∴2222321k k k k a a m a a +++>>>>由得,∴,2321k k m a a ++>>2321()()()k k f m f a f a ++<<2422k k m a a ++<<∴当时命题也成立, (12分)1n k =+由①②知,对一切命题成立,即存在实数,使得对,.n N *∈m n N *∀∈2121222n n n n a a m a a -++<<<<18.【答案】【解析】解:函数f (x )=,不等式f (x )<4,当x ≥﹣1时,2x+4<4,解得﹣1≤x <0;当x <﹣1时,﹣x+1<4解得﹣3<x <﹣1.综上x ∈(﹣3,0).不等式的解集为:(﹣3,0).19.【答案】(1);(2)当时,;当时,;1m =-1e m e <-()()max 1h x m e =-1e m e ≥-()max h x m =-(3).()()2f x e g x ->【解析】试题分析:(1)研究函数的切线主要是利用切点作为突破口求解;(2)通过讨论函数在定义域内的单调性确定最值,要注意对字母m 的讨论;(3)比较两个函数的大小主要是转化为判断两个函数的差函数的符号,然后转化为研究差函数的单调性研究其最值.试题解析:(1)设曲线与相切于点,()x f x e =()g x x m =-()00,P x y 由,知,解得,()x f x e '=01x e =00x =又可求得点为,所以代入,得.P ()0,1()g x x m =-1m =-(2)因为,所以.()()x h x x m e =-()()()()[]1,0,1x x x h x e x m e x m e x =+-=∈'--①当,即时,,此时在上单调递增,10m -≤1m ≤()0h x '≥()h x []0,1所以;()()()max 11h x h m e ==-②当即,当时,单调递减,011m <-<12m <<()0,1x m ∈-()()0,h x h x '<当时,单调递增,.()1,1x m ∈-()()0,h x h x '>()()()0,11h m h m e =-=-(i )当,即时,;()1m m e -≥-21e m e ≤<-()()max 0h x h m ==-(ii )当,即时,;()1m m e -<-11e m e <<-()()()max 11h x h m e ==-③当,即时,,此时在上单调递减,11m -≥2m ≥()0h x '≤()h x []0,1所以.()()min 0h x h m ==-综上,当时,;1e m e <-()()max 1h x m e =-当时,.1e m e ≥-()max h x m =-(3)当时,,0m =()()22,x f x e e e g x x --==①当时,显然;0x ≤()()2f x eg x ->②当时,,0x >()()222ln ln ,ln ln x f x e x e e e g x x ---===记函数,()221ln ln x x x e x e x eφ-=-=⨯-则,可知在上单调递增,又由知,在()22111x x x e e e x xφ-=⨯-=-'()x φ'()0,+∞()()10,20φφ''()x φ'上有唯一实根,且,则,即(*),()0,+∞0x 012x <<()020010x x e x φ--'==0201x e x -=当时,单调递减;当时,单调递增,()00,x x ∈()()0,x x φφ'<()0,x x ∈+∞()()0,x x φφ'>所以,()()0200ln x x x e x φφ-≥=-结合(*)式,知,0201x e x -=002ln x x -=-所以,()()()2200000000121120x x x x x x x x x φφ--+≥=+-==>则,即,所以.()2ln 0x x ex φ-=->2ln x e x ->2x e e x ->综上,.()()2f x e g x ->试题点睛:本题综合考查了利用导数研究函数的单调性、最值基本思路,当比较两个函数大小的时候,就转化为两个函数的差的单调性,进一步确定最值确定符号比较大小.20.【答案】【解析】解:(I )证明:因为四边形ABCD 是菱形,所以AC ⊥BD ,又因为PA ⊥平面ABCD ,所以PA ⊥BD ,PA ∩AC=A所以BD ⊥平面PAC(II )设AC ∩BD=O ,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O 为坐标原点,分别以OB ,OC 为x 轴、y 轴,以过O 且垂直于平面ABCD 的直线为z 轴,建立空间直角坐标系O ﹣xyz ,则P (0,﹣,2),A (0,﹣,0),B (1,0,0),C (0,,0)所以=(1,,﹣2),设PB 与AC 所成的角为θ,则cos θ=|(III )由(II )知,设,则设平面PBC 的法向量=(x ,y ,z )则=0,所以令,平面PBC 的法向量所以,同理平面PDC 的法向量,因为平面PBC ⊥平面PDC ,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力21.【答案】(1) {}22x x -<≤ (2) 203m <≤【解析】(2) ()3,B m m =-,,要使A B ⊆1只要32253m m m --⎧⇒⎨⎩≤≤≥, ……………………………………………………12分所以203m <≤综上,知m 的取值范围是:203m <≤……………………………………………14分考点:集合运算【易错点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A ∩B =∅,A ⊆B 等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.22.【答案】【解析】【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,难度为中等.。
富平实验中学2018-2019学年高二上学期第二次月考试卷数学卷
富平县实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知椭圆C :+=1(a >b >0)的左、右焦点为F 1、F 2,离心率为,过F 2的直线l 交C 于A 、B两点,若△AF1B 的周长为4,则C 的方程为( )A .+=1B .+y 2=1C .+=1D .+=12. 在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为( )A .B .C .D .3. 若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a4. 已知函数f (x )满足f (x )=f (π﹣x ),且当x ∈(﹣,)时,f (x )=e x+sinx ,则( )A .B .C .D .5. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <06. 如图所示,阴影部分表示的集合是( )A .(∁UB )∩A B .(∁U A )∩BC .∁U (A ∩B )D .∁U (A ∪B )7. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直8. 已知命题p ;对任意x ∈R ,2x 2﹣2x+1≤0;命题q :存在x ∈R ,sinx+cosx=,则下列判断:①p 且q是真命题;②p 或q 是真命题;③q 是假命题;④¬p 是真命题,其中正确的是( )A .①④B .②③C .③④D .②④9. 复数z 为纯虚数,若(3﹣i )•z=a+i (i 为虚数单位),则实数a 的值为( )A .﹣B .3C .﹣3D .10.若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )A .[5,10]B .(5,10)C .[3,12]D .(3,12)11.下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形12.设a ∈R ,且(a ﹣i )•2i (i 为虚数单位)为正实数,则a 等于( ) A .1 B .0C .﹣1D .0或﹣1二、填空题13.双曲线x 2﹣my 2=1(m >0)的实轴长是虚轴长的2倍,则m 的值为 .14.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .15.函数f (x )=﹣2ax+2a+1的图象经过四个象限的充要条件是 .16.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为 .17.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .18.命题p :∀x ∈R ,函数的否定为 .三、解答题19.【南师附中2017届高三模拟二】如下图扇形AOB 是一个观光区的平面示意图,其中AOB ∠为23π,半径OA 为1km ,为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由圆弧AC 、线段CD 及线段BD 组成.其中D 在线段OB 上,且//CD AO ,设AOC θ∠=.(1)用θ表示CD 的长度,并写出θ的取值范围; (2)当θ为何值时,观光道路最长?20.(本小题满分12分) 已知函数21()x f x x +=,数列{}n a 满足:12a =,11n n a f a +⎛⎫= ⎪⎝⎭(N n *∈). (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.21.已知函数f (x )=alnx+x 2+bx+1在点(1,f (1))处的切线方程为4x ﹣y ﹣12=0. (1)求函数f (x )的解析式; (2)求f (x )的单调区间和极值.22.已知等差数列满足:=2,且,成等比数列。
富平县第二中学2018-2019学年上学期高三数学10月月考试题
23.已知椭圆 线被椭圆 G 截得的线段长为 (I)求椭圆 G 的方程; .
的左焦点为 F,离心率为
,过点 M(0,1)且与 x 轴平行的直
(II)设动点 P 在椭圆 G 上(P 不是顶点),若直线 FP 的斜率大于 的取值范围.
,求直线 OP(O 是坐标原点)的斜率
第 4 页,共 16 页
第 5 页,共 16 页
3. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过 200 元.已知 一等奖和二等奖奖品的单价分别为 20 元、10 元,一等奖人数与二等奖人数的比值不得高于 的人数不能少于 2 人,那么下列说法中错误的是( ) A.最多可以购买 4 份一等奖奖品 B.最多可以购买 16 份二等奖奖品 C.购买奖品至少要花费 100 元 D.共有 20 种不同的购买奖品方案 4. 若复数满足 A.1 5. 设集合 A.{1,2,5} 6. O 为坐标原点,F 为抛物线 ) A.1 B. C. D.2 的焦点,P 是抛物线 C 上一点,若|PF|=4,则△POF 的面积为( B.{l,2,4,5} C.{1,4,5} ,且获得一等奖
1 i 7 i (为虚数单位),则复数的虚部为( z B. 1
) C. ) D. i
,则 A∩B 等于( D.{1,2,4}
7. 已知 {an } 是等比数列, a2 2,a5 A.
1 ,则公比 q ( 4
) C.2 ) D.
1 2
B.a=﹣3 )1111]
B.-2
1 2
8. 已知 A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且 A∩B={9},则 a 的值是( A.a=3 间隔为( C.a=±3 D.a=5 或 a=±3
城区高中2018-2019学年上学期高三数学10月月考试题(3)
城区高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 在极坐标系中,圆的圆心的极坐标系是( )。
ABC D2. 已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且1PF PQ ⊥,若||||1PF PQ λ=,34125≤≤λ,则双曲线离心率e 的取值范围为( ).A. ]210,1(B. ]537,1(C. ]210,537[ D. ),210[+∞ 第Ⅱ卷(非选择题,共100分)3. 二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .414. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .565. 已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( )A .211B .227C . 32259D .324356. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间)4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 7. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象,则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 8. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .1129. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}10.函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 11.给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能12.双曲线=1(m ∈Z )的离心率为( )A .B .2C .D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知函数22tan ()1tan x f x x =-,则()3f π的值是_______,()f x 的最小正周期是______.【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.14.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .15.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.16.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)三、解答题(本大共6小题,共70分。
2019届高三10月月考数学(文)试题(3).docx
一. 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是符合题目要求的)1•已知集合A={0, 1,2},则集合B={x-y|xeA,yEA}中元素的个数是(2.命题 3x ()eR, sin的否定为()4. 一个扇形的面积为2,周长为6则扇形的圆屮角的弧度数为(是奇函数7T 17T6. 已知 sin(cr-—)=-,贝!|cos(a + —)的值是(A. 1B. -1C.空3337. sin 7° cos37° - sin 83° cos307 =(1 B. -2A. (-1,0) U (2, +8)B. (一8, -2) U (0, 2)9. 为了得到函数y=sin (2兀一申)的图象,只需把函数y=cos 加的图象上所有的点()5 77S TTA.向左平行移动莎个单位长度B.向右平行移动石个单位长度且在(_8,0)上是减函数,若f ( —2)=0,则 xf{x ) <0的解集为)•C. (―°°, —2) U (2, +°°)D. (-2,0) U (0, 2)A.1B.3C.5D.9A. 3%oR, sinxo=£()B. D.17T3.已知sin(^-S) = log 8—,且Qw(■—,0),则tan (2^-5)的值为(A.-M5C•普D.752B.1 或 4 5.设fd )是R 上的任意函数,则下列叙述正确的是A.1C.4D.2 或 4c. gn 是偶函数 D. f{x)+f{-x)是偶函数D.V32、兀Syr C. 向左平行移动「个单位长度 D.向右平行移动「个单位长度66T[7T10. 函数…沖(巧―逅)的图象是()(A) (B) (C) (D)11・某工厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其它三边需要砌新的墙壁,当砌新的墙壁所用的材料最省时,堆料场的长和宽分别为(JA. 40 米,20 米B. 30 米,15 米C. 32 米,16 米D. 36 米,18 米 12.若函数/W 二log 2(tz-2v )+x-2有零点,则d 的取值范围为( )A. (-oc, -2]B. (-co, 4]C. [2, +oo)D. [4, +oo)二、填空题(木大题共4小题,每小题5分,共20分.)13. 函数/(兀)=J2cosx-1的定义域是 _____________ ・14. 已知函数夬力=x(x~m)2在兀=1处取得极小值,则实数加 _____________ 15. 曲线y=xe+2x~l 在点(0, —1)处的切线方程为 _______________ ..16. 已知函数 沧)=¥—1+111 x,若存在x 0>0,使得/(AO )<0有解,则实数a 的取值范围•/V是 _______ .三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤”)17. (本小题满分10分)己知角u 终边上一点卩(一4, 3),⑴求sin 2a 的值; ⑵求tan 書―的值.19. (本小题满分12分).己知aWR,函数/(x)=(-?+ar)e x (xeR,e 为自然对数的底数).⑴当a=2时,求函数fg 的•单调递增区间…18.cos (号+«jsin( ~71~a) cos (■导- Jsin 伴 + J的值(本小题满分12分)已知cos (彳+a)cos(^—幺丿=—£ «e.| Z3, 2/⑵函数/U)是否为R上的单调递减函数,若是,求出a的取值范围;若不是,请说明理由.20.(本小题满分12分)已知函数fix)=x3— 3ax—}, dHO.(1)求/U)的单调区间;(2)若/(兀)在兀=—1处収得极值,直线y=m与y=/U)的图象有三个不同的交点,求加的収值范围.若人兀)的极大值为1,求a的值.21.(本小题满分12分) 已知函数几v) =(X2—Zv)ln x+ax1+2.(1)当G=—1时,求7W在点(1,川))处的切线方程;⑵若°=1,证明:当x$l时,g(x)=/U)—x—2M0成立22.(本小题满分12分)已知函数几。
富平县高级中学2018-2019学年上学期高三数学10月月考试题
富平县高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图,程序框图的运算结果为( )A .6B .24C .20D .1202. 下列判断正确的是( )A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台3. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞ 4. 某几何体的三视图如图所示,则它的表面积为( )A .B .C .D .5. 若复数满足71i i z+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -6. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
A3 B4 C5 D67. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )A .B .C .D .8. 已知数列{}n a 的各项均为正数,12a =,114n n n n a a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .1219. 一个几何体的三视图如图所示,则该几何体的体积是( ) A .64 B .72 C .80 D .112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力. 10.以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定二、填空题11.不等式()2110ax a x +++≥恒成立,则实数的值是__________.12.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 . 13.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .14.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为15.在等差数列{}n a 中,17a =,公差为d ,前项和为n S ,当且仅当8n =时n S 取得最大值,则d 的取值范围为__________.16.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题: ①存在一条定直线与所有的圆均相切;②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点.其中真命题的代号是 (写出所有真命题的代号).三、解答题17.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余 弦值.【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.18.(本小题满分16分)给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =- (1)若()f x 在1=x 处取最值.求的值;(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围; (3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.19.函数。
2019-2020学年高三数学10月月考试题.doc
2019-2020学年高三数学10月月考试题注意事项:1.答题前,考生务必用黑色碳素笔将自己的考号、姓名、考场、座位号、班级在答题卡上填写清楚。
2.每小题选出答案后,用2B 铅笔把答题卡上对应的题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试卷上作答无效。
第Ⅰ卷(选择题,共60分)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.=0330cos ( ) A.23B. 23-C.21D.21-2.已知复数z 满足i zi +-=1,则z 在平面直角坐标系中对应的点是( ) A.()1,1- B.()1,1- C.()1,1 D.()1,1--3.已知集合{}11|≤≤-=x x A ,{}02|2>-=x x x B ,则()=B C A U ( ) A.[-1,0] B.[1,2] C.[0,1] D.(-∞,1]∪[2,+∞) 4.已知向量()2,1=,()m ,4-=,若b a +2与a 垂直,则m =( ) A.-3 B.3 C.-8 D.85.正项等比数列{}n a 中,23=a ,6464=⋅a a ,则2165a a a a ++的值是( )A.4B.8C.16D.646.已知双曲线C :()0,012222>>=-b a by a x 的渐近线方程为x y 43±=,且其左焦点为(-5,0),则双曲线C 的方程为( )A .116922=-y x B .191622=-y x C .14322=-y x D .13422=-y x 7.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A .34000cm 3B .38000cm 3C .32000cmD .34000cm8.右图程序框图输出S 的值为( ) A.2 B.6 C.14 D.309.将函数()()ϕ+=x x f 2sin 的图象向左平移8π个单位,所得到的函数是偶函数,则ϕ的一个可能取值为( ) A .43π B .4πC .0D .4π-10.下列三个数:2323ln-=a ,ππ-=ln b ,33ln -=c ,大小顺序是( ) A .b c a << B .c b a >> C .c a b >> D .b c a >>11.若直线2-=kx y 与抛物线x y 82=交于A ,B 两个不同的点,且AB 的中点的横坐标为2,则=k ( )A.-1B.2C.2或-1D.1±512.定义在R 上的奇函数()x f 和定义在{}0|≠x x 上的偶函数()x g 分别满足()⎪⎩⎪⎨⎧≥<≤-=)1(1)10(12x x x x f x ,()()0log 2>=x x x g ,若存在实数a 使得()()b g a f =成立,则实数b 的取值范围是( )A .[]2,2-B .⎥⎦⎤⎝⎛⎪⎭⎫⎢⎣⎡-21,00,21 C .(][)+∞-∞-,22, D .⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--2,2121,2第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤+≥+≥32320y x y x x ,则y x z -=的最小值是 .14.若()51-ax 的展开式中3x 的系数是80,则实数a 的值是 .15.已知四棱锥ABCD P -的顶点都在半径为2的球面上,底面ABCD 是正方形,且底面经过球心O ,E 是AB 的中点,⊥PE 底面ABCD ,则该四棱锥ABCD P -的体积于 .16.在数列{}n a 中,已知7,221==a a ,2+n a 等于1+⋅n n a a ()+∈N n 的个位数,则=2015a .三、解答题:解答时写出文字说明,证明过程和演算步骤. 17.(本题满分12分)已知向量()x x cos ,22sin 3+=,()x cos 2,1=,设函数()x f ⋅= (1)求()x f 的最小正周期;(2)在△ABC 中,c b a ,,分别是角A ,B ,C 的对边,若3=a ,f (A )=4,求△ABC 的面积的最大值.18.(本题满分12分)如图,正方形ADEF 与梯形ABCD 所在的平面互相垂直,AD CD ⊥,CD AB //,4,2===CD AD AB ,M 为CE 的中点.(1)求证:BM ∥平面ADEF ;(2)求平面BEC 与平面ADEF 所成锐二面角的余弦值.19.(本题满分12分)某公司对员工进行身体素质综合测试,测试成绩分为优秀、良好、合格三个等级,测试结果如下表:(单位:人)按优秀、良好、合格三个等级分层,从中抽到50人,其中成绩为优秀的有30人. (1)求a 的值;(2)若用分层抽样的方法,在合格的员工中按男女抽取一个容量为5的样本,从中任选3人,记X 为抽取女员工的人数,求X 的分布列及数学期望.20.(本题满分12分)已知椭圆L :()012222>>=+b a b y a x 的一个焦点与抛物线y 2=8x 的焦点重合,点()2,2在L 上. (1)求L 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与L 有两个交点A ,B ,线段AB 的中点为M ,证明:OM 的斜率与直线l 的斜率的乘积为定值.21.(本题满分12分)已知函数()R a xax x x f ∈+-=,21ln (1)当2=a 时,求曲线()x f y =在1=x 处的切线方程; (2)当1>x 时,()0<x f 恒成立,求a 的取值范围请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分。
镇平县实验中学2018-2019学年上学期高三数学10月月考试题
镇平县实验中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为 ) A .()()22210x y -++= B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++= 2. 设数列{a n }的前n 项和为S n ,若S n =n 2+2n (n ∈N *),则++…+=( )A.B.C.D.3. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题. 4. 命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )A .∀x ≤0,都有x 2﹣x >0B .∀x >0,都有x 2﹣x ≤0C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >05. 在△ABC 中,若A=2B ,则a 等于( ) A .2bsinAB .2bcosAC .2bsinBD .2bcosB6. 抛物线x=﹣4y 2的准线方程为( ) A .y=1 B .y=C .x=1D .x=7.两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( ) A .2:1 B .5:2 C .1:4 D .3:18. 设x ∈R ,则x >2的一个必要不充分条件是( ) A .x >1 B .x <1 C .x >3 D .x <39. 已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则实数m 的取值范围是( )A .1-<mB .10<<mC .1>mD .1≥m【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.10.若函数21,1,()ln,1,x xf xx x⎧-≤=⎨>⎩则函数1()2y f x x=+的零点个数为()A.1 B.2 C.3 D.4 二、填空题11.定义在R上的可导函数()f x,已知()f xy e=′的图象如图所示,则()y f x=的增区间是▲.和平面BC1D的位置关系为.的单调递增区间是.222)3(9yxx++-+的最小值是.【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()t﹣a(a为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室.16.17.已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称.三、解答题17.(本题12分)正项数列{}na满足2(21)20n na n a n---=.(1)求数列{}na的通项公式na;(2)令1(1)nnbn a=+,求数列{}nb的前项和为nT.18.(本小题满分12分)设f(x)=-x2+ax+a2ln x(a≠0).(1)讨论f(x)的单调性;(2)是否存在a>0,使f(x)∈[e-1,e2]对于x∈[1,e]时恒成立,若存在求出a的值,若不存在说明理由.19.已知数列{a n}是等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.20.如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点.(1)求BD长;(2)当CE⊥OD时,求证:AO=AD.21.(本题满分15分)如图AB 是圆O 的直径,C 是弧AB 上一点,VC 垂直圆O 所在平面,D ,E 分别为VA ,VC 的中点. (1)求证:DE ⊥平面VBC ;(2)若6VC CA ==,圆O 的半径为5,求BE 与平面BCD 所成角的正弦值.【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力.22.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.镇平县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】B【解析】考点:圆的方程.1111]2.【答案】D【解析】解:∵S n=n2+2n(n∈N*),∴当n=1时,a1=S1=3;当n≥2时,a n=S n﹣S n﹣1=(n2+2n)﹣[(n﹣1)2+2(n﹣1)]=2n+1.∴==,∴++…+=++…+==﹣.故选:D.【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.3.【答案】C4.【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x>0,使得x2﹣x<0,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.5.【答案】D【解析】解:∵A=2B,∴sinA=sin2B ,又sin2B=2sinBcosB , ∴sinA=2sinBcosB ,根据正弦定理==2R 得:sinA=,sinB=,代入sinA=2sinBcosB 得:a=2bcosB . 故选D6. 【答案】D【解析】解:抛物线x=﹣4y 2即为y 2=﹣x ,可得准线方程为x=.故选:D .7. 【答案】D【解析】解:设球的半径为R ,圆锥底面的半径为r ,则πr 2=×4πR 2=,∴r=.∴球心到圆锥底面的距离为=.∴圆锥的高分别为和.∴两个圆锥的体积比为: =1:3.故选:D .8. 【答案】A【解析】解:当x >2时,x >1成立,即x >1是x >2的必要不充分条件是, x <1是x >2的既不充分也不必要条件, x >3是x >2的充分条件,x <3是x >2的既不充分也不必要条件, 故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础.9. 【答案】C【解析】画出可行域如图所示,)3,1(A ,要使目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则需直线l 过点A 时截距最大,即z 最大,此时1>l k 即可.10.【答案】D 【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.二、填空题11.【答案】(﹣∞,2) 【解析】 试题分析:由()21()0f x x ef x '≤≥⇒≥′时,()21()0f xx e f x '><⇒<′时,所以()y f x =的增区间是(﹣∞,2)考点:函数单调区间12.【答案】平行.【解析】解:∵AB1∥C1D,AD1∥BC1,AB1⊂平面AB1D1,AD1⊂平面AB1D1,AB1∩AD1=AC1D⊂平面BC1D,BC1⊂平面BC1D,C1D∩BC1=C1由面面平行的判定理我们易得平面AB1D1∥平面BC1D故答案为:平行.【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.13.【答案】[2,3).【解析】解:令t=﹣3+4x﹣x2>0,求得1<x<3,则y=,本题即求函数t在(1,3)上的减区间.利用二次函数的性质可得函数t在(1,3)上的减区间为[2,3),故答案为:[2,3).14.【解析】15.【答案】0.6【解析】解:当t>0.1时,可得1=()0.1﹣a∴0.1﹣a=0a=0.1由题意可得y≤0.25=,即()t﹣0.1≤,即t﹣0.1≥解得t≥0.6,由题意至少需要经过0.6小时后,学生才能回到教室.故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.16.【答案】【解析】解:∵f(x)=a x g(x)(a>0且a≠1),∴=a x,又∵f′(x)g(x)>f(x)g′(x),∴()′=>0,∴=a x 是增函数,∴a >1,∵+=.∴a 1+a ﹣1=,解得a=或a=2.综上得a=2.∴数列{}为{2n }.∵数列{}的前n 项和大于62,∴2+22+23+ (2)==2n+1﹣2>62,即2n+1>64=26,∴n+1>6,解得n >5.∴n 的最小值为6. 故答案为:6.【点评】本题考查等比数列的前n 项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.三、解答题17.【答案】(1)n a n 2=;(2)=n T )1(2+n n.考点:1.一元二次方程;2.裂项相消法求和.18.【答案】【解析】解:(1)f(x)=-x2+ax+a2ln x的定义域为{x|x>0},f′(x)=-2x+a+a 2x=-2(x+a2)(x-a)x.①当a<0时,由f′(x)<0得x>-a2,由f′(x)>0得0<x<-a2.此时f(x)在(0,-a2)上单调递增,在(-a2,+∞)上单调递减;②当a>0时,由f′(x)<0得x>a,由f′(x)>0得0<x<a,此时f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.(2)假设存在满足条件的实数a,∵x∈[1,e]时,f(x)∈[e-1,e2],∴f(1)=-1+a≥e-1,即a≥e,①由(1)知f(x)在(0,a)上单调递增,∴f(x)在[1,e]上单调递增,∴f(e)=-e2+a e+e2≤e2,即a≤e,②由①②可得a=e,故存在a=e,满足条件.19.【答案】已知数列{a n}是等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.【考点】数列的求和;等比数列的通项公式.【专题】计算题;证明题;方程思想;综合法;等差数列与等比数列.【分析】(Ⅰ)设数列{a n}的公比为q,从而可得3(1++)=9,从而解得;(Ⅱ)讨论可知a2n+3=3•(﹣)2n=3•()2n,从而可得b n=log2=2n,利用裂项求和法求和.【解析】解:(Ⅰ)设数列{a n}的公比为q,则3(1++)=9,解得,q=1或q=﹣;故a n=3,或a n=3•(﹣)n﹣3;(Ⅱ)证明:若a n=3,则b n=0,与题意不符;故a2n+3=3•(﹣)2n=3•()2n,故b n=log2=2n,故c n==﹣,故c1+c2+c3+…+c n=1﹣+﹣+…+﹣=1﹣<1.【点评】本题考查了数列的性质的判断与应用,同时考查了方程的思想应用及裂项求和法的应用.20.【答案】【解析】解:(1)∵OC=OD,∴∠OCD=∠ODC,∴∠OAC=∠ODB.∵∠BOD=∠A,∴△OBD∽△AOC.∴,∵OC=OD=6,AC=4,∴,∴BD=9.…(2)证明:∵OC=OE,CE⊥OD.∴∠COD=∠BOD=∠A.∴∠AOD=180°﹣∠A ﹣∠ODC=180°﹣∠COD ﹣∠OCD=∠ADO . ∴AD=AO …【点评】本题考查三角形相似,角的求法,考查推理与证明,距离的求法.21.【答案】(1)详见解析;(2. 【解析】(1)∵D ,E 分别为VA ,VC 的中点,∴//DE AC ,…………2分∵AB 为圆O 的直径,∴AC BC ⊥,…………4分 又∵VC ⊥圆O ,∴VC AC ⊥,…………6分 ∴DE BC ⊥,DE VC ⊥,又∵VCBC C =,∴DE VBC ⊥面;…………7分(2)设点E 平面BCD 的距离为d ,由D BCE E BCD V V --=得1133BCE BCD DE S d S ∆∆⨯⨯=⨯⨯,解得2d =,…………12分 设BE 与平面BCD 所成角为θ,∵8BC =,BE =sin d BE θ==.…………15分 22.【答案】【解析】解:(Ⅰ)设数列{a n }的公比为q ,由a 32=9a 2a 6得a 32=9a 42,所以q 2=.由条件可知各项均为正数,故q=.由2a 1+3a 2=1得2a 1+3a 1q=1,所以a 1=.故数列{a n }的通项式为a n =.(Ⅱ)b n =++…+=﹣(1+2+…+n )=﹣,故=﹣=﹣2(﹣)则++…+=﹣2=﹣,所以数列{}的前n 项和为﹣.【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n 项和的公式,会进行数列的求和运算,是一道中档题.。
2019-2020中学高三上学期10月月考数学试题(解析版).docx
2019-2020中学高三上学期10月月考数学试题一、单选题A.{1,2,3,4} B.{1,2,3} C.{4,5} D .{1,4}【答案】A【解析】将阴影部分对应的集合的运算表示出来,然后根据集合AB 表示元素的范 围计算结果. 【详解】因为阴影部分是:A (C R B );又因为x (4—x )<0,所以x>4或x<0,所以B = {x|x )4或x<0},所以 C R B = {X |0<X <4},又因为 A = {1,2,3,4,51,所以 A (QB )= {1,2,3,4}, 故选:A. 【点睛】本题考查根据已知集合计算伽"图所表示的集合,难度较易.对于图中的阴影部 分首先要将其翻译成集合间运算,然后再去求解相应值.3.设a, b 是非零向量,是“a//b”的()4 3 . A. 1B. —1C.—I —I5 5【答案】D 【解析】【详解】由题意可得:忖=(¥ +3? = 5,且:乞=4一3几z 4-3/4 3 .据此有:旧-丁十一尹 本题选择D 选项.D.-3. —I52.若集合A = {1,2,3,4,5}傑合B = {x|x (4-x )<0}侧图中阴影部分表示()ZA.充分而不必要条件 C.充分必要条件【答案】A 【解析1 a-b =|a|-|Z?|cos^,Z?^ ,由已知得cos(a,b 〉= l,即仏巧=0,加/方.而当 a 〃Q 时,仏方)还可能是兀,此时a-b =-|®|j^|,故“a"=问”| ”是“a//b ”的充分 而不必要条件,故选A. 【考点】充分必要条件、向量共线.4. 设 a = log 4S,b = log 0A 8, c = 204,!S!l ()A.b<c<aB.c<b<aC.c<a<bD.b< a<c【答案】A【解析】根据指数函数、对数函数单调性比较数值大小. 【详解】因为 a = log 4 8 = ^-log 2 2 =扌’b = log 04 8 < log 041 = 0, c = 20'4< 20'5 = A /2 < 扌, 所以b<c<a , 故选:A. 【点睛】本题考查利用指、对数函数的单调性比较数值大小,难度一般•利用指、对数函数单调 性比较大小时,注意利用中间量比较大小,常用的中间量有:0,1.5. 若直线 lax-by + 2 = 0(a > 0,b > 0)被圆 x 2 + y 2+2x-4_y+ 1 = 0 截得弦长为 4,4 1一则—:的最小值是()a b1 1 A. 9B. 4C.-D.-24【答案】A 【解析】圆x2+ y 2 + 2x-4y + l = 0的标准方程为:(x+1) 2+ (y - 2) 2 =4,它表示以(-1, 2)为圆心、半径等于2的圆; 设弦心距为d,由题意可得22+d 2=4,求得d=0,可得直线经过圆心,故有-2a - 2b+2=0, 即a+b=l,再由a>0, b>0,可得B.必要而不充分条件 D.既不充分也不必要条件4 14 1I =(Ia ba b4Z? a4 ]当且仅当一=—时取等号,•••一 + 〒的最小值是9. a b a b故选:A.点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表 示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.① 一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一 个为定值;③三相等:含变量的各项均相等,取得最值.6.函数/(%) = x 2-cos%在-彳冷 的图像大致是()【解析】先判断奇偶性,然后通过计算导函数在特殊点的导函数值正负来判断相应结果. 【详解】因为/ (兀)定义域关于原点对称且=- cos (-%) = X 2 - cos % = /(%),所以/(X )是偶函数,排除A 、C ;又因为/,(x) = x (2cosx-xsinx),所以【点睛】 本题考查函数图象的辨别,难度一般•辨别函数图象一般可通过奇偶性、单调性、特殊 点位置、导数值正负对应的切线斜率变化等来判断.7.如图,长方体 ABCD-A.B^D, ^,AA l =AB^2,AD = l,^E,F,G 分别是 D0, AB, CC,的中点,则异面直线与GF 所成角的余弦值是71所以“护对应的切线斜率大于零,所以排除D,)(a+b) =5+ —+ ->5+2 a b=9故选:B.【答案】D 【解析】以DA,DC,DD [所在直线为x,y,z 轴,建立空间直角坐标系,可得4疋和GF 的坐标,进而可得cos^EGF,从而可得结论. 【详解】以DA, DC, DD,所在直线为X, % z 轴,建立空间直角坐标系, 则可得 4(l,0,2),E (0,0,l ),G (0,2,l ),F (l,l,0),设异面直线4E 与GF 所成的角为0,【点睛】本题主要考查异面直线所成的角,属于中档题.求异面直线所成的角主要方法有两种: 一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向 量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位 线等方法找出两直线成的角,再利用平面几何性质求解.& 在AABC 中,ZA, ZB, ZC 的对边分别为 a, b, c, cos 2— =,贝U ABC2 2c的形状一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】Byk h + C【解析】在△ ABC 中,利用二倍角的余弦与正弦定理可将已知cos?—=——,转化为2 2c cosA=^-,整理即可判断△ ABC 的形状.sinC【详解】 亠亠 c A b + c在AABC 中,Vcos2—=-------- , 2 2cD.O则 cos 0 = |cos 4E, GF | =-lxl + 0 + (-l )x (-l )72x^2=0, 故选D..l + cosA = sinB + sinC=j_ sinB+j_2 2sinC 2 sinC 2sinB an sinB・°・ 1+cosA = 1,艮卩cosA = ----- ,sinC sinCcosAsinC = sinB = sin (A+C) = sinAcosC+cosAsinC,:.sinAcosC=0, *.* sin A#),cosC=0,・・・c为直角.故选:B.【点睛】本题考查三角形的形状判断,着重考查二倍角的余弦与正弦定理,诱导公式的综合运用, 属于中档题.9.若函数f(x) = ^x2-2x + alnx有两个不同的极值点,则实数。
富平县一中2018-2019学年上学期高三数学10月月考试题
富平县一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F 是菱形,则其在底面ABCD 上投影的四边形面积( )A .12 B .34 C. 2D .34-2. 方程1x -=表示的曲线是( )A .一个圆B . 两个半圆C .两个圆D .半圆 3. 棱长为2的正方体的8个顶点都在球O 的表面上,则球O 的表面积为( ) A .π4 B .π6 C .π8 D .π104. 已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 5. 已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FQ PF 2=,则=QF ( ) A .6B .3C .38D .34 第Ⅱ卷(非选择题,共100分)6. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .17. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( ) A .m >2B .m >4C .m >6D .m >88. 在空间中,下列命题正确的是( ) A .如果直线m ∥平面α,直线n ⊂α内,那么m ∥nB .如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC .如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m ⊥αD .如果平面α⊥平面β,任取直线m ⊂α,那么必有m ⊥β9. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .34 D .38【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.10.已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是( )A .(﹣2,﹣1)∪(1,2)B .(﹣2,﹣1)∪(0,1)∪(2,+∞)C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)11.定义运算:,,a a ba b b a b≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )A .22⎡-⎢⎣⎦ B .[]1,1- C .,12⎤⎥⎣⎦ D .1,2⎡-⎢⎣⎦ 12.正方体的内切球与外接球的半径之比为( )A .B .C .D .二、填空题13.设x ,y 满足约束条件,则目标函数z=2x ﹣3y 的最小值是 .14.已知命题p :∃x ∈R ,x 2+2x+a ≤0,若命题p 是假命题,则实数a 的取值范围是 .(用区间表示)15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA •tanB •tanC=tanA+tanB+tanC②tanA+tanB+tanC 的最小值为3③tanA ,tanB ,tanC 中存在两个数互为倒数 ④若tanA :tanB :tanC=1:2:3,则A=45°⑤当tanB ﹣1=时,则sin 2C ≥sinA •sinB .16.已知α为钝角,sin (+α)=,则sin (﹣α)= .三、解答题17.已知数列{a n }共有2k (k ≥2,k ∈Z )项,a 1=1,前n 项和为S n ,前n 项乘积为T n ,且a n+1=(a ﹣1)S n +2(n=1,2,…,2k ﹣1),其中a=2,数列{b n }满足b n =log 2,(Ⅰ)求数列{b n }的通项公式;(Ⅱ)若|b 1﹣|+|b 2﹣|+…+|b 2k ﹣1﹣|+|b 2k ﹣|≤,求k 的值.18.已知函数()2ln f x x bx a x =+-.(1)当函数()f x 在点()()1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*0,1,x n n n N ∈+∈,求的值;(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且1202x x x +=,求证:()00f x '>.19.(本题满分15分)设点P 是椭圆14:221=+y x C 上任意一点,过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.(1)求证:PB PA =;(2)OAB ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.20.(1)已知f (x )的定义域为[﹣2,1],求函数f (3x ﹣1)的定义域; (2)已知f (2x+5)的定义域为[﹣1,4],求函数f (x )的定义域.21.如图,在四边形ABCD 中,,,3,2,45AD DC AD BC AD CD AB DAB ⊥===∠=, 四 边形绕着直线AD 旋转一周.(1)求所成的封闭几何体的表面积; (2)求所成的封闭几何体的体积.22.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;(2)求函数[()]f f x 的解析式并确定其定义域.23.设A (x 0,y 0)(x 0,y 0≠0)是椭圆T :+y 2=1(m >0)上一点,它关于y 轴、原点、x 轴的对称点依次为B ,C ,D .E 是椭圆T 上不同于A 的另外一点,且AE ⊥AC ,如图所示.(Ⅰ) 若点A 横坐标为,且BD ∥AE ,求m 的值;(Ⅱ)求证:直线BD 与CE 的交点Q 总在椭圆+y 2=()2上.富平县一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】B 【解析】试题分析:在棱长为的正方体1111D ABC A B C D -中,112BC AD ==,设AF x =,则221x x -=+,解得24x =,即菱形1BED F 的边长为232244-=,则1BED F 在底面ABCD 上的投影四边形是底边为34,高为的平行四边形,其面积为34,故选B. 考点:平面图形的投影及其作法. 2. 【答案】A 【解析】试题分析:由方程()2111x y -=-+,两边平方得()2221(11)x y -=-+,即22(1)(1)1x y -++=,所以方程表示的轨迹为一个圆,故选A. 考点:曲线的方程. 3. 【答案】B 【解析】考点:球与几何体 4. 【答案】A.【解析】||||cos cos ||cos ||cos αβαβααββ->-⇔->-,设()||cos f x x x =-,[,]x ππ∈-, 显然()f x 是偶函数,且在[0,]π上单调递增,故()f x 在[,0]π-上单调递减,∴()()||||f f αβαβ>⇔>,故是充分必要条件,故选A. 5. 【答案】A解析:抛物线C :y x 82=的焦点为F (0,2),准线为l :y=﹣2,设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),∵,∴2m=﹣a ,4=﹣4,∴m 2=32,由抛物线的定义可得|QF|=+2=4+2=6.故选A .6. 【答案】【解析】选C.由题意得log2(a+6)+2log26=9.即log2(a+6)=3,∴a+6=23=8,∴a=2,故选C.7.【答案】C【解析】解:由f′(x)=3x2﹣3=3(x+1)(x﹣1)=0得到x1=1,x2=﹣1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m﹣2,f(x)max=f(2)=m+2,f(0)=m由题意知,f(1)=m﹣2>0 ①;f(1)+f(1)>f(2),即﹣4+2m>2+m②由①②得到m>6为所求.故选C【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值8.【答案】C【解析】解:对于A,直线m∥平面α,直线n⊂α内,则m与n可能平行,可能异面,故不正确;对于B,如果平面α内的两条相交直线都平行于平面β,那么平面α∥平面β,故不正确;对于C,根据线面垂直的判定定理可得正确;对于D,如果平面α⊥平面β,任取直线m⊂α,那么可能m⊥β,也可能m和β斜交,;故选:C.【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题.9.【答案】B10.【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图则不等式xf(x)<0的解为:或解得:x∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)故选:D.11.【答案】D【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.12.【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为:a,所以,正方体的内切球与外接球的半径之比为:故选C二、填空题13.【答案】﹣6.【解析】解:由约束条件,得可行域如图,使目标函数z=2x﹣3y取得最小值的最优解为A(3,4),∴目标函数z=2x﹣3y的最小值为z=2×3﹣3×4=﹣6.故答案为:﹣6.14.【答案】(1,+∞)【解析】解:∵命题p:∃x∈R,x2+2x+a≤0,当命题p是假命题时,命题¬p:∀x∈R,x2+2x+a>0是真命题;即△=4﹣4a<0,∴a>1;∴实数a的取值范围是(1,+∞).故答案为:(1,+∞).【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目.15.【答案】①④⑤【解析】解:由题意知:A≠,B≠,C≠,且A+B+C=π∴tan(A+B)=tan(π﹣C)=﹣tanC,又∵tan(A+B)=,∴tanA+tanB=tan(A+B)(1﹣tanAtanB)=﹣tanC(1﹣tanAtanB)=﹣tanC+tanAtanBtanC,即tanA+tanB+tanC=tanAtanBtanC,故①正确;当A=,B=C=时,tanA+tanB+tanC=<3,故②错误;若tanA,tanB,tanC中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故③错误;由①,若tanA:tanB:tanC=1:2:3,则6tan3A=6tanA,则tanA=1,故A=45°,故④正确;当tanB﹣1=时,tanA•tanB=tanA+tanB+tanC,即tanC=,C=60°,此时sin2C=,sinA•sinB=sinA•sin(120°﹣A)=sinA•(cosA+sinA)=sinAcosA+sin2A=sin2A+﹣cos2A=sin(2A﹣30°)≤,则sin2C≥sinA•sinB.故⑤正确;故答案为:①④⑤【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档.16.【答案】﹣.【解析】解:∵sin(+α)=,∴cos(﹣α)=cos[﹣(+α)]=sin(+α)=,∵α为钝角,即<α<π,∴<﹣,∴sin(﹣α)<0,∴sin(﹣α)=﹣=﹣=﹣,故答案为:﹣.【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必须注意角的范围,以确定函数值的符号.三、解答题17.【答案】【解析】(本小题满分13分)解:(1)当n=1时,a2=2a,则;当2≤n≤2k﹣1时,a n+1=(a﹣1)S n+2,a n=(a﹣1)S n﹣1+2,所以a n+1﹣a n=(a﹣1)a n,故=a,即数列{a n}是等比数列,,∴T n=a1×a2×…×a n=2n a1+2+…+(n﹣1)=,b n==.…(2)令,则n≤k+,又n∈N*,故当n≤k时,,当n≥k+1时,.…|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|=+()+…+()…=(k+1+…+b2k)﹣(b1+…+b k)=[+k]﹣[]=,由,得2k2﹣6k+3≤0,解得,…又k≥2,且k∈N*,所以k=2.…【点评】本题考查数列的通项公式的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意等比数列的性质和构造法的合理运用.18.【答案】(1)()26ln f x x x x =--;(2)3n =;(3)证明见解析. 【解析】试题解析: (1)()2af'x x b x =+-,所以(1)251(1)106f'b a b f b a =+-=-=-⎧⎧⇒⎨⎨=+==⎩⎩, ∴函数()f x 的解析式为2()6ln (0)f x x x x x =-->;(2)22626()6ln '()21x x f x x x x f x x x x--=--⇒=--=,因为函数()f x 的定义域为0x >,令(23)(2)3'()02x x f x x x +-==⇒=-或2x =, 当(0,2)x ∈时,'()0f x <,()f x 单调递减,当(2,)x ∈+∞时,'()0f x >,函数()f x 单调递增, 且函数()f x 的定义域为0x >,(3)当1a =时,函数2()ln f x x bx x =+-,21111()ln 0f x x bx x =+-=,22222()ln 0f x x bx x =+-=,两式相减可得22121212()ln ln 0x x b x x x x -+--+=,121212ln ln ()x x b x x x x -=-+-. 1'()2f x x b x =+-,0001'()2f x x b x =+-,因为1202x x x +=,所以12120121212ln ln 2'()2()2x x x x f x x x x x x x +-=⋅+-+--+ 212121221221122112211121ln ln 2()211ln ln ln 1x x x x x x x x x x x x x x x x x x x x x x ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤--⎝⎭⎢⎥=-=--=-⎢⎥⎢⎥-+-+-⎣⎦+⎢⎥⎢⎥⎣⎦设211xt x =>,2(1)()ln 1t h t t t -=-+,∴2222214(1)4(1)'()0(1)(1)(1)t t t h t t t t t t t +--=-==>+++, 所以()h t 在(1,)+∞上为增函数,且(1)0h =,∴()0h t >,又2110x x >-,所以0'()0f x >.考点:1、导数几何意义及零点存在定理;2、构造函数证明不等式.【方法点睛】本题主要考查导数几何意义及零点存在定理、构造函数证明不等式,属于难题.涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 19.【答案】(1)详见解析;(2)详见解析.∴点P 为线段AB 中点,PB PA =;…………7分(2)若直线AB 斜率不存在,则2:±=x AB ,与椭圆2C 方程联立可得,)1,2(2--±t A ,)1,2(2-±t B ,故122-=∆t S OAB ,…………9分若直线AB 斜率存在,由(1)可得148221+-=+k km x x ,144422221+-=k t m x x ,141141222212+-+=-+=k t k x x k AB ,…………11分 点O 到直线AB 的距离2221141kk km d ++=+=,…………13分∴12212-=⋅=∆t d AB S OAB ,综上,OAB ∆的面积为定值122-t .…………15分 20.【答案】【解析】解:(1)∵函数y=f (x )的定义域为[﹣2,1], 由﹣2≤3x ﹣1≤1得:x ∈[﹣,],故函数y=f (3x ﹣1)的定义域为[﹣,];’ (2)∵函数f (2x+5)的定义域为[﹣1,4], ∴x ∈[﹣1,4], ∴2x+5∈[3,13],故函数f (x )的定义域为:[3,13].21.【答案】(1)(8π+;(2)203π. 【解析】考点:旋转体的概念;旋转体的表面积、体积.22.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-. 【解析】试题解析:(1)设()(0)f x kx b k =+>,111] 由题意有:32,27,k b k b -+=⎧⎨+=⎩解得1,5,k b =⎧⎨=⎩∴()5f x x =+,[]3,2x ∈-. (2)(())(5)10f f x f x x =+=+,{}3x ∈-.考点:待定系数法. 23.【答案】【解析】(Ⅰ)解:∵BD ∥AE ,AE ⊥AC ,∴BD ⊥AC ,可知A (),故,m=2;(Ⅱ)证明:由对称性可知B (﹣x 0,y 0),C (﹣x 0,﹣y 0),D (x 0,﹣y 0),四边形ABCD 为矩形, 设E (x 1,y 1),由于A ,E 均在椭圆T 上,则,由②﹣①得:(x 1+x 0)(x 1﹣x 0)+(m+1)(y 1+y 0)(y 1﹣y 0)=0,显然x 1≠x 0,从而=,∵AE ⊥AC ,∴k AE •k AC =﹣1,∴,解得,代入椭圆方程,知.【点评】本题主要考查圆锥曲线的定义的应用,关键是利用椭圆的对称性寻求点的坐标间的关系,体现了整体运算思想方法,是中档题.。
平安县实验中学2018-2019学年上学期高三数学10月月考试题
平安县实验中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1% 的污染物,则需要( )小时. A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.2. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞)B .(0,1)C .(﹣1,0)D .(﹣∞,﹣1)3. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .4. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=AC B .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )5. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件6. 已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →|为( )A .1 B.43C.53D .2 7. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A .2sin 2cos 2αα-+B .sin 3αα+C. 3sin 1αα+ D .2sin cos 1αα-+ 8. “24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 9. 若圆226260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为, 则a =( )A . 1±B . 4±C .D .2±10.给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个二、填空题11.设m 是实数,若x ∈R 时,不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,则m 的取值范围是 .12.已知tan β=,tan (α﹣β)=,其中α,β均为锐角,则α= .13.已知函数22tan ()1tan x f x x =-,则()3f π的值是_______,()f x 的最小正周期是______.【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.14.抛物线y 2=6x ,过点P (4,1)引一条弦,使它恰好被P 点平分,则该弦所在的直线方程为 . 15.已知tan()3αβ+=,tan()24πα+=,那么tan β= .16.不等式x 2+x ﹣2<0的解集为 .三、解答题17.选修4﹣5:不等式选讲已知f (x )=|ax+1|(a ∈R ),不等式f (x )≤3的解集为{x|﹣2≤x ≤1}.(Ⅰ)求a 的值; (Ⅱ)若恒成立,求k 的取值范围.18.(本题满分15分)若数列{}n x 满足:111n nd x x +-=(d 为常数, *n N ∈),则称{}n x 为调和数列,已知数列{}n a 为调和数列,且11a =,123451111115a a a a a ++++=.(1)求数列{}n a 的通项n a ;(2)数列2{}nna 的前n 项和为n S ,是否存在正整数n ,使得2015n S ≥?若存在,求出n 的取值集合;若不存在,请说明理由.【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.19.已知双曲线C:与点P (1,2).(1)求过点P (1,2)且与曲线C 只有一个交点的直线方程;(2)是否存在过点P 的弦AB ,使AB 的中点为P ,若存在,求出弦AB 所在的直线方程,若不存在,请说明理由.20.已知{}n a 是等差数列,{}n b 是等比数列,n S 为数列{}n a 的前项和,111a b ==,且3336b S =,228b S =(*n N ∈).(1)求n a 和n b ; (2)若1n n a a +<,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前项和n T .21.设M 是焦距为2的椭圆E:+=1(a >b >0)上一点,A 、B 是椭圆E 的左、右顶点,直线MA 与MB 的斜率分别为k 1,k 2,且k 1k 2=﹣.(1)求椭圆E 的方程; (2)已知椭圆E:+=1(a >b >0)上点N (x 0,y 0)处切线方程为+=1,若P是直线x=2上任意一点,从P 向椭圆E 作切线,切点分别为C 、D ,求证直线CD 恒过定点,并求出该定点坐标.22.(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号.(Ⅰ)求第一次或第二次取到3号球的概率;(Ⅱ)设ξ为两次取球时取到相同编号的小球的个数,求ξ的分布列与数学期望.平安县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】15【解析】2.【答案】D【解析】解:若a=0,则函数f(x)=﹣3x2+1,有两个零点,不满足条件.若a≠0,函数的f(x)的导数f′(x)=6ax2﹣6x=6ax(x﹣),若f(x)存在唯一的零点x0,且x0>0,若a>0,由f′(x)>0得x>或x<0,此时函数单调递增,由f′(x)<0得0<x<,此时函数单调递减,故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.若a<0,由f′(x)>0得<x<0,此时函数递增,由f′(x)<0得x<或x>0,此时函数单调递减,即函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若存在唯一的零点x0,且x0>0,则f()>0,即2a()3﹣3()2+1>0,()2<1,即﹣1<<0,解得a<﹣1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.3.【答案】A【解析】解:取a=﹣时,f(x)=﹣x|x|+x,∵f(x+a)<f(x),∴(x﹣)|x﹣|+1>x|x|,(1)x<0时,解得﹣<x<0;(2)0≤x≤时,解得0;(3)x>时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.4.【答案】C【解析】解:若公比q=1,则B ,C 成立;故排除A ,D ; 若公比q ≠1,则A=S n =,B=S 2n =,C=S 3n =,B (B ﹣A )=(﹣)=(1﹣q n)(1﹣q n)(1+q n)A (C ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n);故B (B ﹣A )=A (C ﹣A );故选:C .【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.5. 【答案】B【解析】解:∵b ⊥m ,∴当α⊥β,则由面面垂直的性质可得a ⊥b 成立, 若a ⊥b ,则α⊥β不一定成立, 故“α⊥β”是“a ⊥b ”的充分不必要条件, 故选:B .【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键.6. 【答案】【解析】解析:选C.设D 点的坐标为D (x ,y ), ∵A (0,1),B (3,2),AD →=2DB →,∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),∴⎩⎪⎨⎪⎧x =6-2x ,y -1=4-2y即x =2,y =53,∴CD →=(2,53)-(2,0)=(0,53),∴|CD →|=02+(53)2=53,故选C.7. 【答案】A 【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.8. 【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A. 9. 【答案】B 【解析】试题分析:由圆226260x y x y +--+=,可得22(3)(1)4x y -+-=,所以圆心坐标为(3,1),半径为2r =,要使得圆上有且仅有三个点到直线10(ax y a -+=是实数)的距离为,则圆心到直线的距离等于12r,即1=,解得a =,故选B. 1 考点:直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于12r 是解答的关键.10.【答案】B 【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.二、填空题11.【答案】 [0,2] .【解析】解:∵|x ﹣m|﹣|x ﹣1|≤|(x ﹣m )﹣(x ﹣1)|=|m ﹣1|, 故由不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,可得|m ﹣1|≤1,∴﹣1≤m ﹣1≤1, 求得0≤m ≤2, 故答案为:[0,2].【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.12.【答案】.【解析】解:∵tan β=,α,β均为锐角,∴tan (α﹣β)===,解得:tan α=1,∴α=.故答案为:.【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题.13.【答案】π.【解析】∵22tan ()tan 21tan x f x x x ==-,∴2()tan 33f ππ==221tan 0x k x ππ⎧≠+⎪⎨⎪-≠⎩,∴()f x 的定义域为(,)(,)(,)244442k k k k k k ππππππππππππ-+-+-++++,k Z ∈,将()f x 的图象如下图画出,从而可知其最小正周期为π,故填:,π.14.【答案】 3x ﹣y ﹣11=0 .【解析】解:设过点P (4,1)的直线与抛物线的交点 为A (x 1,y 1),B (x 2,y 2),即有y 12=6x 1,y 22=6x 2,相减可得,(y 1﹣y 2)(y 1+y 2)=6(x 1﹣x 2),即有k AB ====3,则直线方程为y ﹣1=3(x ﹣4), 即为3x ﹣y ﹣11=0.将直线y=3x ﹣11代入抛物线的方程,可得 9x 2﹣72x+121=0,判别式为722﹣4×9×121>0, 故所求直线为3x ﹣y ﹣11=0. 故答案为:3x ﹣y ﹣11=0.15.【答案】43【解析】试题分析:由1tan tan()241tan πααα++==-得1tan 3α=, tan tan[()]βαβα=+-tan()tan 1tan()tan αβααβα+-=++134313133-==+⨯. 考点:两角和与差的正切公式.16.【答案】 (﹣2,1) .【解析】解:方程x 2+x ﹣2=0的两根为﹣2,1,且函数y=x 2+x ﹣2的图象开口向上,所以不等式x 2+x ﹣2<0的解集为(﹣2,1).故答案为:(﹣2,1).【点评】本题考查一元二次不等式的解法,属基础题,深刻理解“三个二次”间的关系是解决该类题目的关键,解二次不等式的基本步骤是:求二次方程的根;作出草图;据图象写出解集.三、解答题17.【答案】【解析】解:(Ⅰ)由|ax+1|≤3得﹣4≤ax ≤2 ∵不等式f (x )≤3的解集为{x|﹣2≤x ≤1}. ∴当a ≤0时,不合题意; 当a >0时,,∴a=2; (Ⅱ)记,∴h (x )=∴|h (x )|≤1∵恒成立,∴k ≥1.【点评】本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题.18.【答案】(1)1n a n=,(2)详见解析.当8n =时911872222015S =⨯+>>,…………13分∴存在正整数n ,使得2015n S ≥的取值集合为{}*|8,n n n N ≥∈,…………15分19.【答案】【解析】解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.…当直线l 的斜率存在时,设直线l 的方程为y ﹣2=k (x ﹣1),代入C 的方程,并整理得(2﹣k 2)x 2+2(k 2﹣2k )x ﹣k 2+4k ﹣6=0 (*)(ⅰ)当2﹣k 2=0,即k=±时,方程(*)有一个根,l 与C 有一个交点所以l 的方程为…(ⅱ)当2﹣k 2≠0,即k ≠±时△=[2(k 2﹣2k )]2﹣4(2﹣k 2)(﹣k 2+4k ﹣6)=16(3﹣2k ),①当△=0,即3﹣2k=0,k=时,方程(*)有一个实根,l 与C 有一个交点.所以l 的方程为3x ﹣2y+1=0…综上知:l 的方程为x=1或或3x ﹣2y+1=0…(2)假设以P 为中点的弦存在,设为AB ,且A (x 1,y 1),B (x 2,y 2),则2x 12﹣y 12=2,2x 22﹣y 22=2,两式相减得2(x 1﹣x 2)(x 1+x 2)=(y 1﹣y 2)(y 1+y 2)…又∵x 1+x 2=2,y 1+y 2=4, ∴2(x 1﹣x 2)=4(y 1﹣y 2)即k AB==,…∴直线AB 的方程为y ﹣2=(x ﹣1),…代入双曲线方程2x 2﹣y 2=2,可得,15y 2﹣48y+34=0,由于判别式为482﹣4×15×34>0,则该直线AB 存在. …【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题.20.【答案】(1)21n a n =-,12n n b -=或1(52)3n a n =-,16n n b -=;(2)21nn +. 【解析】试题解析:(1)设{}n a 的公差为d ,{}n b 的公比为,由题意得2(33)36,(2)8,q d q d ⎧+=⎨+=⎩解得2,2,d q =⎧⎨=⎩或2,36.d q ⎧=-⎪⎨⎪=⎩∴21n a n =-,12n n b -=或1(52)3n a n =-,16n n b -=.(2)若+1n n a a <,由(1)知21n a n =-,∴111111()(21)(21)22121n n a a n n n n +==--+-+, ∴111111(1)2335212121n nT n n n =-+-++-=-++….考点:1、等差数列与等比数列的通项公式及前项和公式;2、裂项相消法求和的应用. 21.【答案】【解析】(1)解:设A (﹣a ,0),B (a ,0),M (m ,n),则+=1,即n 2=b 2•,由k 1k 2=﹣,即•=﹣,即有=﹣,即为a 2=2b 2,又c 2=a 2﹣b 2=1, 解得a 2=2,b 2=1.即有椭圆E的方程为+y 2=1;(2)证明:设点P (2,t ),切点C (x 1,y 1),D (x 2,y 2), 则两切线方程PC ,PD分别为:+y 1y=1,+y 2y=1, 由于P 点在切线PC ,PD 上,故P (2,t)满足+y 1y=1,+y 2y=1,得:x 1+y 1t=1,x 2+y 2t=1,故C (x 1,y 1),D (x 2,y 2)均满足方程x+ty=1, 即x+ty=1为CD 的直线方程. 令y=0,则x=1, 故CD 过定点(1,0).【点评】本题主要考查椭圆的简单性质、直线与椭圆的位置关系,导数的几何意义等基本知识,考查运算能力和综合解题能力.解题时要注意运算能力的培养.22.【答案】【解析】解:(Ⅰ)事件“第一次或第二次取到3号球的概率”的对立事件为“二次取球都没有取到3号球”,∴所求概率为2244225516125C C P C C =-⋅=(6分)(Ⅱ)0,1,2,ξ= 23253(0)10C P C ξ===,1123253(1)5C C P C ξ⋅===,22251(2)10C P C ξ===,(9分) 故的分布列为:(10分)∴3314012105105E ξ=⨯+⨯+⨯= (12分)。
费县实验中学2018-2019学年上学期高三数学10月月考试题
费县实验中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设集合,集合,则( )A .B .C .D .2. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1)C .D .3. 定义运算,例如.若已知,则=( )A .B .C .D .4. 与圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条5. 已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则实数的取值范围是( )111]A .)22,0( B .)33,0( C .)55,0( D .)66,0(6. 函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( )A. ),0(+∞B. )2,(-∞C. ),2(+∞D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 7. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ) A .众数 B .平均数 C .中位数 D .标准差8. 已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.9. 在ABC ∆中,若60A ∠=,45B ∠=,BC =AC =( )A .B . C. D10.二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( ) A .20 B .24C .30D .36二、填空题11.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.12.设集合 {}{}22|27150,|0A x x x B x x ax b =+-<=++≤,满足AB =∅,{}|52A B x x =-<≤,求实数a =__________.13.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)= .14.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)15.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 . 16.已知函数22tan ()1tan x f x x =-,则()3f π的值是_______,()f x 的最小正周期是______.【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.三、解答题17.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.18.已知等差数列满足:=2,且,成等比数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 8 页,共 17 页
考点:抛物线的性质. 8. 【答案】B 【 解 析 】
考 点:等比数列前项和的性质. 9. 【答案】 【解析】选 C.可设双曲线 E 的方程为x - y =1,
2 2
a2 b2 b 渐近线方程为 y=± x,即 bx±ay=0, a
由题意得 E 的一个焦点坐标为( 6,0),圆的半径为 1, | b| ∴焦点到渐近线的距离为 1.即 6 =1, b2+a2 2 2 又 a +b =6,∴b=1,a= 5, ∴E 的方程为x -y2=1,故选 C. 5 10.【答案】B
2
【解析】解:假设过点 P 且平行于 l 的直线有两条 m 与 n ∴m∥l 且 n∥l 由平行公理 4 得 m∥n 这与两条直线 m 与 n 相交与点 P 相矛盾 又因为点 P 在平面内 所以点 P 且平行于 l 的直线有一条且在平面内 所以假设错误. 故选 B. 【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.
(Ⅰ)记甲先回答问题 再回答问题 得分为随机变量 ,求 的分布列和数学期望; (Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.
第 5 页,共 17 页
富平县实验中学 2018-2019 学年上学期高三数学 10 月月考试题(参考答案) 一、选择题
1. 【答案】 C 【解析】解:作出不等式对应的平面区域,(阴影部分) 由 z=2x+y,得 y=﹣2x+z, 平移直线 y=﹣2x+z,由图象可知当直线 y=﹣2x+z 经过点 C 时,直线 y=﹣2x+z 的截距最小,此时 z 最小. 即 2x+y=1, 由 即 C(1,﹣1), ∵点 C 也在直线 y=a(x﹣3)上, ∴﹣1=﹣2a, 解得 a= . ,解得 ,
a
b2
21.(本小题满分 12 分)
设 0 , ,满足 6 sin 2 cos 3 . 3 (1)求 cos 的值; 6 (2)求 cos 2 的值. 12
第 4 页,共 17 页
22.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了
5. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( A.①② A.45 B.90 B.① C.120 D.360
2
) D.①②③④
C.③④ )
6. 由两个 1,两个 2,两个 3 组成的 6 位数的个数为(
18.【海安县 2018 届高三上学期第一次学业质量测试】已知函数 f x x 2 ax a e x ,其中 a R , e 是 自然对数的底数. (1)当 a 1 时,求曲线 y f x 在 x 0 处的切线方程; (2)求函数 f x 的单调减区间; (3)若 f x 4 在 4, 0 恒成立,求 a 的取值范围.
C.x -y2=1 D. -y =1 5 2 4 10.已知直线 l∥平面 α,P∈α,那么过点 P 且平行于 l 的直线(
2
x
)
A.只有一条,不在平面 α 内 B.只有一条,在平面 α 内 C.有两条,不一定都在平面 α 内 D.有无数条,不一定都在平面 α 内
二、填空题
11.设直线系 M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),对于下列四个命题: A.M 中所有直线均经过一个定点 B.存在定点 P 不在 M 中的任一条直线上 C.对于任意整数 n(n≥3),存在正 n 边形,其所有边均在 M 中的直线上 D.M 中的直线所能围成的正三角形面积都相等 其中真命题的代号是 (写出所有真命题的代号). 12.函数 y=1﹣ (x∈R)的最大值与最小值的和为 2 .
时,f′(a)>0,此时函数 f(a)单调递增;当
时,f′(a)>0,此时函数 f(a)单调递增;当
或 时,
第 7 页,共 17 页
5. 【答案】A 【解析】
考 点:斜二测画法. 6. 【答案】B 【解析】解:问题等价于从 6 个位置中各选出 2 个位置填上相同的 1,2,3, 所以由分步计数原理有:C62C42C22=90 个不同的六位数, 故选:B. 【点评】本题考查了分步计数原理,关键是转化,属于中档题. 7. 【答案】C 【解析】
B. 3 2 D.
2 2
3 2 2
) C.
8 3
D.3
9. 双曲线 E 与椭圆 C:x +y =1 有相同焦点,且以 E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积 9 3
第 1 页,共 17 页
为π,则 E 的方程为( 2 x2 A. -y =1 3 3
2
) B.x -y =1 42 2
2 2
第 3 页,共 17 页
19.已知函数 f(x)=
,求不等式 f(x)<4 的解集.
20.(本小题满分 12 分)椭圆 C:x 2+ y =1(a>b>0)的右焦点为 F,P 是椭圆上一点,PF⊥x 轴,A,B
2 2
是 C 的长轴上的两个顶点,已知|PF|=1,kPA·kPB=-1. 2 (1)求椭圆 C 的方程; (2)过椭圆 C 的中心 O 的直线 l 交椭圆于 M,N 两点,求三角形 PMN 面积的最大值,并求此时 l 的方程.
B.f(x)=x﹣2;g(x)= D.f(x)= • ;g(x)= )
3. 某校在暑假组织社会实践活动,将 8 名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀 学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( A.36 种B.38 种 C.108 种 4. 设 a,b∈R 且 a+b=3,b>0,则当 A. B. C. 或 D.3 + 取得最小值时,实数 a 的值是( ) D.114 种
第 6 页,共 17 页
3. 【答案】A 【解析】解:由题意可得,有 2 种分配方案:①甲部门要 2 个电脑特长学生,则有 3 种情况;英语成绩优秀 学生的分配有 2 种可能;再从剩下的 3 个人中选一人,有 3 种方法. 根据分步计数原理,共有 3×2×3=18 种分配方案. ②甲部门要 1 个电脑特长学生,则方法有 3 种;英语成绩优秀学生的分配方法有 2 种;再从剩下的 3 个人种 选 2 个人,方法有 33 种,共 3×2×3=18 种分配方案. 由分类计数原理,可得不同的分配方案共有 18+18=36 种, 故选 A. 【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原 理计算,是解题的常用方法. 4. 【答案】C 【解析】解:∵a+b=3,b>0, ∴b=3﹣a>0,∴a<3,且 a≠0. ①当 0<a<3 时, f′(a)= 当 减. ∴当 a= 时, ②当 a<0 时, f′(a)= 当 递减. ∴当 a=﹣ 时, 综上可得:当 a= 故选:C. 【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难 题. + 取得最小值. + 取得最小值. ﹣ + + =﹣ 取得最小值. =﹣ ( )=﹣( + , 时,f′(a)<0,此时函数 f(a)单调 )=f(a), + + = = = + =f(a), , 时,f′(a)<0,此时函数 f(a)单调递
13.用 1,2,3,4,5 组成不含重复数字的五位数,要求数字 4 不出现在首位和末位,数字 1,3,5 中有且 仅有两个数字相邻,则满足条件的不同五位数的个数是 大. .(注:结果请用数字作答) 【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论圆 1 有共同的焦点,且与椭圆相交,其中一个交点的坐标为 27 36 . ( 15 ,4) ,则此双曲线的标准方程是
15.圆心在原点且与直线 x y 2 相切的圆的方程为_____ 16.不等式 ax a 1 x 1 0 恒成立,则实数的值是__________.
2
.
【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.
三、解答题
17.如图,A 地到火车站共有两条路径
两个问题,规定:被抽签抽到的答
题同学,答对问题 可获得 分,答对问题 可获得 200 分,答题结果相互独立互不影响,先回答哪个问 题由答题同学自主决定 ; 但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分 决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对 问题的概率分别为 .
和
,据统计,通过两条路径所用的时间互不影响,所
用时间落在个时间段内的频率如下表:
第 2 页,共 17 页
现甲、乙两人分别有 40 分钟和 50 分钟时间用于赶往火车站。 (1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径? (2)用 X 表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求 X 的分布列和数学期望 。
故选:C.
【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法. 2. 【答案】C 【解析】解:A、函数 f(x)的定义域为 R,函数 g(x)的定义域为{x|x≠0},定义域不同,故不是相同函数; B、函数 f(x)的定义域为 R,g(x)的定义域为{x|x≠﹣2},定义域不同,故不是相同函数; C、因为 综上可得,C 项正确. 故选:C. ,故两函数相同; D、函数 f(x)的定义域为{x|x≥1},函数 g(x)的定义域为{x|x≤1 或 x≥1},定义域不同,故不是相同函数.
二、填空题
11.【答案】BC 【解析】
第 9 页,共 17 页