工程力学
工程力学公式整理
工程力学公式整理工程力学(Engineering Mechanics)是一门研究力学原理在工程中的应用的学科。
它主要研究物体在受力作用下的运动和变形规律。
在工程学中,力学公式是进行分析和计算的基础。
下面是一些常见的工程力学公式整理。
1.力的合成与分解公式:力的合成公式:F = √(F₁² + F₂² + 2F₁F₂cosθ)力的分解公式:F₁ = Fcosθ, F₂ = Fsinθ其中,F为施于物体的合力,F₁、F₂为分解后的力,θ为施力与横坐标方向的夹角。
2.矩形截面惯性矩和抗弯应力公式:惯性矩公式:I=(b*h³)/12抗弯应力公式:σ=(M*y)/I其中,b和h分别为矩形截面的宽度和高度,I为截面的惯性矩,M 为弯矩,y为截面内其中一点的纵坐标。
3.应力和变形的关系公式:胡克定律公式:σ=Ee弹性模量公式:E=(F/A)/(ΔL/L₀)其中,σ为应力,E为弹性模量,F为受力,A为受力面积,ΔL为长度变化量,L₀为初始长度。
4.摩擦力公式:滑动摩擦力公式:F=μN滚动摩擦力公式:F=RμN其中,F为摩擦力,μ为摩擦系数,N为垂直于接触面的力,R为滚动半径。
5.动量和能量守恒公式:动量守恒公式:m₁v₁+m₂v₂=m₁v₁'+m₂v₂'动能公式:K = (1/2)mv²其中,m为物体的质量,v为物体的速度,v'为受撞物体的速度。
6.应力和应变的关系公式:杨氏模量公式:E=(σ/ε)横向收缩率公式:μ=-(ε₁/ε₂)泊松比公式:μ=-(ε₁/ε₂)其中,E为杨氏模量,σ为应力,ε为应变,μ为泊松比,ε₁为纵向应变,ε₂为横向应变。
这些力学公式是工程力学中常用的基本公式,用于解决各种工程问题。
通过运用这些公式,我们可以计算结构的受力情况、变形情况,进行力学分析和设计,保证工程的稳定性和安全性。
当然,工程力学的应用还远不止于此,还包括静力学、动力学、流体力学等等。
工程力学知识点详细总结
工程力学知识点详细总结工程力学是研究物体受力和变形规律的学科,它是工程学的基础学科之一。
在工程实践中,我们经常需要对结构物体的力学特性进行分析和计算,以保证结构的安全可靠。
因此,工程力学的理论和方法在工程设计和施工中起着不可替代的作用。
本文以静力学、动力学和固体力学为主要内容,详细总结了工程力学的相关知识点。
一、静力学1.力的概念和分类力是引起物体产生加速度的原因,根据力的性质和来源可以将力分为接触力和场力。
接触力是通过物体的静止接触面传递的力,包括摩擦力、正压力和剪切力等;场力是由物体之间的相互作用所产生的力,包括重力、电磁力和引力等。
2.受力分析受力分析是研究物体受力情况的一种分析方法,通过分析物体受力的大小、方向和作用点,可以确定物体的平衡条件和受力状态。
在受力分析中,可以应用力矩平衡、受力图和自由体图等方法来分析物体的受力情况。
3.力的合成和分解力的合成和分解是将若干个力按照一定规律合成为一个合力,或者将一个力分解为若干个分力的方法。
通过力的合成和分解,可以简化受力分析的过程,求解物体的受力情况。
4.平衡条件平衡是指物体处于静止状态或匀速直线运动状态。
根据平衡的要求,可以得出物体的平衡条件,包括受力平衡和力矩平衡。
在分析物体的平衡条件时,可以应用力的合成和分解、力矩平衡等方法进行求解。
5.杆件受力分析杆件受力分析是研究杆件受力情况的一种分析方法,通过分析杆件受力的大小、方向和作用点,可以确定杆件的受力状态。
在杆件受力分析中,可以应用正压力、拉力和剪力等概念进行求解。
6.梁的受力分析梁是一种常见的结构构件,受到外部加载作用时会产生弯曲变形。
梁的受力分析是研究梁受力情况的一种分析方法,通过分析梁受到的弯矩和剪力的分布规律,可以确定梁的受力状态。
在梁的受力分析中,可以应用梁的静力平衡和弯矩方程等方法进行求解。
7.静力学原理静力学原理是研究物体力学特性的基本原理,包括牛顿定律、平衡条件和力的合成分解定理等。
工程力学知识点全集总结
工程力学知识点全集总结一、力的作用1. 力的概念力是物体相互作用的结果,可以改变物体的运动状态或形状。
力的大小用力的大小和方向来描述,通常用矢量表示。
2. 力的分类根据力的性质,力可以分为接触力和非接触力两种。
根据力的性质和作用对象的不同,可以将力分为压力、拉力、剪切力、弹性力、重力等不同类型的力。
3. 力的合成与分解多个力共同作用在物体上时,可以将它们的效果看作是一个力的合成。
而反之,一个力也可以根据其方向和大小,被分解为若干个分力。
4. 力的平衡当物体受到多个力的作用时,如果这些力的合力为零,则称物体处于力的平衡状态。
5. 力的矩力的矩是力的大小与作用点到物体某一点的距离的乘积,力矩的方向垂直于力的方向和力臂的方向。
物体在力的作用下发生转动,与力的大小、方向以及力臂的长度有关。
6. 自由体图自由体图是指将某个物体从其他物体中分离出来,然后在自由体上画出受到的所有力的作用线,用以分析物体所受力的平衡情况。
二、刚体静力学1. 刚体的概念刚体是指在受力作用下,形状和尺寸不发生改变的物体。
刚体的转动可以分为平移和转动两种。
2. 刚体的平衡条件刚体的平衡条件包括平衡的外力条件和平衡的力矩条件。
当刚体受到多个力的作用时,这些力的合力为零,力矩的合力矩也为零时,刚体处于平衡状态。
3. 简支梁的受力分析简支梁是指两端支持固定并能够转动的梁,在受力作用下会产生弯曲和剪切。
可以利用简支梁受力分析的原理,对梁在受力作用下的受力和变形进行研究。
4. 梁的受力分析在工程实践中,梁的受力分析是非常重要的。
在不同受力条件下,梁的受力分析方法会有所不同。
通常会用到力学平衡、力学方程等知识来分析和计算梁的受力情况。
5. 摩擦力摩擦力是指物体在相对运动或相对静止的过程中,由于接触面间的不规则性而产生的力。
摩擦力的大小和方向与接触面的性质、力的大小和方向等因素有关。
6. 斜面上的力学问题斜面上的力学问题是工程力学中的一个常见问题,包括斜面上的物体受力情况、斜面上的滑动、斜面上的加速度等内容。
工程力学介绍
工程力学介绍
工程力学是一门研究物体在受外力作用下的运动规律和力学性
能的学科。
它是工程科学的基础,涉及到工程设计、制造、施工和运营等所有阶段。
工程力学主要包括静力学、动力学、材料力学、结构力学和流体力学等分支。
静力学是研究物体在静止状态下的力学性质,主要包括平衡力、重心、支持反力、弹性变形等内容。
动力学则研究物体在运动状态下的力学问题,其中最基本的内容是牛顿运动定律和动量守恒定律。
材料力学是研究物体材料的力学性质,包括材料的弹性、塑性、断裂等特性。
结构力学则是研究物体结构的力学性质,可以用来计算建筑物、桥梁、船舶等结构物的承载能力和稳定性。
流体力学则是研究流体运动规律和力学性能的学科,广泛应用于工程领域中的液力传动、泵、水力发电等领域。
工程力学的研究不仅可以为工程设计提供理论支撑,也可以为工程实践提供指导。
它是工程科学研究中不可或缺的一部分。
- 1 -。
工程力学ppt课件
工程力学在土木工程中的应用
要点一
结构设计
土木工程中的结构设计需要应用工程 力学原理和方法,对建筑结构进行受 力分析、变形计算和稳定性评估。这 有助于确保土木工程结构的安全性和 稳定性。
要点二
土力学与地基工程
工程力学中的土力学理论和方法为地 基工程提供了支持。通过应用土力学 原理,土木工程师可以更好地理解和 评估地基的承载能力和稳定性,从而 优化地基设计。
工程力学的应用领域
建筑工程
建筑工程中的结构分析、抗震设计和施工过 程中的力学问题等。
航空工程
航空器的空气动力学分析、结构分析和优化 设计等。
机械工程
机械零件的强度、刚度和稳定性分析,以及 机械系统的动力学问题等。
水利工程
水坝、水闸和船闸等水利设施的设计、施工 和运行中的力学问题等。
工程力学的研究对象和方法
工程力学ppt课件
目录
• 工程力学简介 • 静力学基础 • 材料力学 • 动力学基础 • 工程力学在工程实践中的应用 • 工程力学的未来发展趋势和挑战
01
工程力学简介
什么是工程力学
工程力学是研究工程中物质和运动规 律的一门科学,涉及到物体的受力、 变形和运动等方面的知识。
工程力学结合了物理学和数学等多个 学科的知识,为各种工程实践提供基 础理论和解决方法。
载荷分析与校核
载荷分析是机械设计中的重要环节,通过工程力学的方法,设计师可以精确地预测和评估 机器在各种工况下的载荷情况,从而进行零部件的强度校核和优化设计。
摩擦与磨损研究
工程力学也涉及到摩擦与磨损的研究。这为机械设计师提供了关于摩擦、磨损和润滑的机 理和方法,有助于减少机器的摩擦和磨损,提高机器的效率和寿命。
工程力学知识点
工程力学知识点工程力学是研究物体在受力作用下产生的运动、变形和力学特性的科学。
以下是关于工程力学的几个重要知识点。
1.力的平衡:力的平衡是指物体受到的所有外力之和为零时,物体处于力的平衡状态。
物体在力的平衡下不会发生运动或变形。
力的平衡有三个条件:合力为零、合力矩为零和合力与合力矩均为零。
2.刚体:刚体是指物体在受力作用下不发生形状和体积的变化的物体。
刚体的运动可以用刚体的质心和角速度来描述。
刚体力学研究刚体受力作用下的平衡、运动和力学性质。
3.静力学:静力学是研究物体在受力作用下保持静止的力学分支。
静力学主要研究物体受力平衡的条件、力矩和力的分解。
静力学的应用包括悬挂物体的稳定性分析、静力平衡的判断等。
4.受力分析:受力分析是研究物体受到外力作用下的力的分解和合成。
力的分解是将一个力分解为两个或多个分力的过程,可以简化受力的计算和分析。
力的合成是将两个或多个力合成为一个合力的过程,可以描述多个力对物体的合成作用。
5.弹簧的力学性质:弹簧是一种可以储存和释放弹性势能的器件,常用于衡量力的大小和测量压力或拉力。
弹簧的力学性质主要包括胡克定律、弹簧的切线刚度和拉伸和压缩弹簧的伸长量计算等。
6.摩擦力:摩擦力是两个物体表面相互接触时产生的一种力,会阻碍物体间的相对运动。
摩擦力分为静摩擦力和动摩擦力。
静摩擦力是指在物体相对静止时作用于物体间的力,动摩擦力是指在物体相对运动时作用于物体间的力。
7.应力和应变:应力是实力单位面积上的作用,是描述物体抵抗外力的能力的物理量。
应变是物体由于受外力作用而发生形变的程度。
应力和应变之间有线性关系,可以通过杨氏定律计算。
总而言之,工程力学是工程学的基础科学,研究物体在受力作用下的力学性质和运动规律。
掌握这些重要的工程力学知识点能够帮助我们理解和解决与工程相关的问题。
工程力学知识点总结
工程力学知识点总结工程力学是一门研究物体机械运动和受力情况的学科,它对于解决工程实际问题具有重要的意义。
以下是对工程力学一些关键知识点的总结。
一、静力学静力学主要研究物体在静止状态下的受力平衡问题。
1、力的基本概念力是物体间的相互作用,具有大小、方向和作用点三个要素。
力的单位是牛顿(N)。
2、力的合成与分解遵循平行四边形法则,可以将一个力分解为多个分力,也可以将多个力合成为一个合力。
3、约束与约束力约束是限制物体运动的条件,约束力是约束对物体的反作用力。
常见的约束有柔索约束、光滑接触面约束、铰链约束等。
4、受力分析对物体进行受力分析是解决静力学问题的关键步骤。
要明确研究对象,画出其受力图,包括主动力和约束力。
5、平衡方程对于平面力系,有∑Fx = 0、∑Fy = 0、∑Mo(F) = 0 三个平衡方程;对于空间力系,则有六个平衡方程。
二、材料力学材料力学主要研究杆件在受力作用下的变形和破坏规律。
1、内力与应力内力是杆件内部由于外力作用而产生的相互作用力。
应力是单位面积上的内力,分为正应力和切应力。
2、应变应变是杆件变形量与原始尺寸的比值,分为线应变和切应变。
3、拉伸与压缩杆件在受到轴向拉伸或压缩时,会产生轴向变形和横截面上的应力分布。
4、剪切与挤压在剪切面上会产生切应力,在挤压面上会产生挤压应力。
5、扭转圆轴扭转时,横截面上会产生切应力,其分布规律与扭矩有关。
6、弯曲梁在弯曲时,会产生弯矩和剪力,横截面上会有正应力和切应力分布。
7、强度理论用于判断材料在复杂应力状态下是否发生破坏,常见的有第一、第二、第三和第四强度理论。
三、运动学运动学研究物体的运动规律,而不考虑引起运动的力。
1、点的运动描述点的运动可以用直角坐标法、自然法和极坐标法。
2、刚体的平动和转动平动时刚体上各点的运动轨迹相同,速度和加速度也相同;转动时刚体绕某一固定轴旋转。
3、角速度和角加速度用于描述刚体转动的快慢和变化率。
4、点的合成运动包括牵连运动、相对运动和绝对运动,通过速度合成定理和加速度合成定理来分析。
工程力学
工程力学力学是研究物体机械运动的规律。
机械运动是指物体的空间位置随时间的变化。
固体的运动和变形,气体和液体的流动都属于机械运动。
工程力学的研究对象是运动速度远远小与光速的宏观物体。
工程力学的研究内容是以牛顿运动定律、线弹性体的胡克定律、叠加原理为基础,密切联系工程实际,分析并研究物体受力、平衡、运动、变形等方面的基本规律,为工程结构的力学设计提供理论依据和计算方法。
工程力学的基本内容包括:刚体静力分析、弹性静力分析和动力分析。
刚体静力分析——研究物体的平衡规律,同时也研究力的一般性质及其合成法则。
弹性静力分析——研究平衡状态下的弹性体,在外力作用下的受力、变形和失效规律,为工程构件的静力学设计提供有关强度、刚度与稳定性分析的基本理论和计算方法。
动力分析——研究物体的运动规律以及与所受力之间的关系,提供为工程结构进行动力设计的计算方法。
工程力学研究方法的特点:1. 抽象化方法——分析问题特征,建立符合工程实际的力学模型(力、刚体、质点、弹性固体)。
2. 数学演绎法——采用数学演绎的方法,根据力学原理建立各力学量之间的关系(列方程),从而揭示各物理量之间的内在联系及机械运动的实质。
刚体静力分析刚体静力分析(刚体静力学)是以刚体作为讨论力学问题的模型,研究物体在力系作用下的平衡规律。
刚体静力分析任务包括以下三方面:1. 物体的受力分析分析结构或构件所受到的各个力的方向和作用线位置。
2. 力系的等效和简化研究如何将作用在物体上的一个复杂力系用简单力系来等效替换,并探求力系的合成规律。
通过力系的等效和简化了解力系对物体作用的总效应。
3. 力系的平衡条件和平衡方程寻求物体处于平衡状态时,作用在其上的各种力系应满足的条件,称为力系的平衡条件。
利用平衡条件建立所对应力系的数学方程,称为平衡方程。
刚体静力学的核心问题是:利用平衡方程求解物体或物体系统的平衡问题,而研究力系的等效简化则是为了探求、建立力系的平衡方程。
工程力学
工程力学(engineering mechanics) 应用于工程实际的各门力学学科的总称。
常指以可变形固体为研究对象的固体力学。
广义的工程力学还包括水力学、岩石力学、土力学等。
工程力学是力学的一个新分支,它从物质的微观结构及其运动规律出发,运用近代物理学、物理化学和量子化学等学科的成就,通过分析研究和数值计算,阐明介质和材料的宏观性质,并对介质和材料的宏观现象及其运动规律作出微观解释。
工程力学的产生工程力学作为力学的一个分支,是20世纪50年代末出现的。
首先提出这一名称并对这个学科做了开创性工作的是中国学者钱学森。
在20世纪50年代,出现了一些极端条件下的工程技术问题,所涉及的温度高达几千度到几百万度,压力达几万到几百万大气压,应变率达百万分之一~亿分之一秒等。
在这样的条件下,介质和材料的性质很难用实验方法来直接测定。
为了减少耗时费钱的实验工作,需要用微观分析的方法阐明介质和材料的性质;在一些力学问题中,出现了特征尺度与微观结构的特征尺度可比拟的情况,因而必须从微观结构分析入手处理宏观问题;出现一些远离平衡态的力学问题,必须从微观分析出发,以求了解耗散过程的高阶项;由于对新材料的需求以及大批新型材料的出现,要求寻找一种从微观理论出发合成具有特殊性能材料的“配方”或预见新型材料力学性能的计算方法。
在这样的背景条件下,促使了工程力学的建立。
工程力学之所以出现,一方面是迫切要求能有一种有效的手段,预知介质和材料在极端条件下的性质及其随状态参量变化的规律;另一方面是近代科学的发展,特别是原子分子物理和统计力学的建立和发展,物质的微观结构及其运动规律已经比较清楚,为从微观状态推算出宏观特性提供了基础和可能。
工程力学虽然还处在萌芽阶段,很不成熟,而且继承有关老学科的地方较多,但作为力学的一个新分支,确有一些独具的特点。
工程力学着重于分析问题的机理,并借助建立理论模型来解决具体问题。
只有在进行机理分析而感到资料不够时,才求助于新的实验。
工程力学研究内容
工程力学研究内容
工程力学是研究物体在力的作用下的运动和力学平衡的学科,其研究内容主要包括以下几个方面:
1. 材料力学:研究物体的材料性质,包括材料的硬度、强度、韧性、弹性模量等,以及物体在力的作用下的变形和断裂等问题。
2. 动力学:研究物体在力的作用下的运动规律,包括物体的加速度、速度、位移、能量等方面的问题。
3. 弹性力学:研究物体的弹性性质,包括物体在力的作用下的变形和回复问题,以及物体之间的弹性相互作用等问题。
4. 塑性力学:研究物体在力的作用下的塑性变形和断裂问题,以及物体的应力状态和热力学问题。
5. 力的平衡与非线性动力学:研究物体在复杂力作用条件下的平衡问题,包括力的作用方式和作用路径的影响,以及物体的非线性运动和动力学问题。
6. 工程结构力学:研究物体在力的作用下的应力和应变问题,包括结构的强度和稳定性等问题。
7. 热力学力学:研究物体的热力学性质,包括物体的温度、热传导、热膨胀等问题。
以上是工程力学主要的研究方向,随着科技的发展,工程力学的研究方向也在不断拓展和更新。
工程力学专业介绍
工程力学专业介绍工程力学是一门应用力学原理和方法研究工程结构力学性能和工程问题的学科。
它主要涉及静力学、动力学、材料力学、结构力学、流体力学以及振动与控制等领域。
工程力学的研究内容包括力学的基本原理、结构力学的基本理论和应用、工程设计原理与实践、物质的力学与性能评价等。
工程力学作为现代工程学的基础学科,具有广泛的应用领域。
它在各个工程领域,如土木工程、建筑工程、机械工程、航空航天工程等中都扮演着重要的角色。
通过工程力学的研究,可以对工程结构的力学性能进行分析和评价,为工程设计提供理论基础和实践指导。
工程力学专业的学习内容包括力学的基础理论、工程力学的基本原理、材料力学、结构力学、流体力学、振动与控制等课程。
学生在学习过程中将通过理论课程、实验教学和工程实践等多种方式培养自己的工程力学能力。
在工程力学的学习中,学生将学习到以下几个方面的知识与技能:1. 力学基础:学生将学习到力学的基本原理和方法,包括力学的基本概念、力的合成与分解、力的作用点和力的矩等。
2. 结构力学:学生将学习到结构力学的基本原理和方法,包括结构受力分析、结构稳定性、结构受力性能评价等。
3. 材料力学:学生将学习到材料力学的基本原理和方法,包括材料的力学性能、材料的强度、刚度、韧性等。
4. 流体力学:学生将学习到流体力学的基本原理和方法,包括流体的性质与流动规律、流体的静力学、动力学以及流体力学中的应用等。
5. 振动与控制:学生将学习到振动与控制的基本原理和方法,包括机械振动的特性与控制、结构振动的特性与控制等。
在工程力学专业学习中,学生将通过理论课程的学习、实验教学的实践和工程实践的参与培养自己的工程力学综合能力。
他们将能够运用力学原理实现工程结构的安全可靠设计和优化,并能够分析和解决工程实践中出现的力学问题。
工程力学定义
工程力学工程力学是研究有关物质宏观运动规律,及其应用的科学。
工程给力学提出问题,力学的研究成果改进工程设计思想。
从工程上的应用来说,工程力学包括:质点及刚体力学,固体力学,流体力学,流变学,土力学,岩体力学等。
人类对力学的一些基本原理的认识,一直可以追溯到史前时代。
在中国古代及古希腊的著作中,已有关于力学的叙述。
但在中世纪以前的建筑物是靠经验建造的。
1638年3月伽利略出版的著作《关于两门新科学的谈话和数学证明》被认为是世界上第一本材料力学著作,但他对于梁内应力分布的研究还是很不成熟的。
纳维于1819年提出了关于梁的强度及挠度的完整解法。
1821年5月14日,纳维在巴黎科学院宣读的论文《在一物体的表面及其内部各点均应成立的平衡及运动的一般方程式》,这被认为是弹性理论的创始。
其后,1870年圣维南又发表了关于塑性理论的论文水力学也是一门古老的学科。
早在中国春秋战国时期(公元前5~前4世纪),墨翟就在《墨经》中叙述过物体所受浮力与其排开的液体体积之间的关系。
欧拉提出了理想流体的运动方程式。
物体流变学是研究较广义的力学运动的一个新学科。
1929年,美国的宾厄姆倡议设立流变学学会,这门学科才受到了普遍的重视。
土力学在二十世纪初期即逐淅形成,并在40年代以后获得了迅速发展。
在其形成以及发展的初期,泰尔扎吉起了重要作用。
岩体力学是一门年轻的学科,二十世纪50年代开始组织专题学术讨沦,其后并已由对具有不连续面的硬岩性质的研究扩展到对软岩性质的研究。
岩体力学是以工程力学与工程地质学两门学科的融合而发展的。
从十九世纪到二十世纪前半期,连续体力学的特点是研究各个物体的性质,如梁的刚度与强度,柱的稳定性,变形与力的关系,弹性模量,粘性模量等。
这一时期的连续体力学是从宏观的角度,通过实验分析与理论分析,研究物体的各种性质。
它是由质点力学的定律推广到连续体力学的定律,因而自然也出现一些矛盾。
于是基于二十世纪前半期物理学的进展,并以现代数学为基础,出现了一门新的学科——理性力学。
工程力学
绞车通过钢丝绳牵引重力为P的矿车沿斜面轨道运动 的矿车沿斜面轨道运动。 例1. 绞车通过钢丝绳牵引重力为 的矿车沿斜面轨道运动。 画出矿车的受力图。 画出矿车的受力图。
T C A Bα NA A P NB B C
解: 研究矿车 画矿车受力图水平梁AB两端用铰支座和辊轴支座支撑 两端用铰支座和辊轴支座支撑。 例2. 水平梁 两端用铰支座和辊轴支座支撑。在C处作 处作 用一集中载荷P,梁重不计,画出梁AB的受力图 的受力图。 用一集中载荷 ,梁重不计,画出梁 的受力图。
2.4.2 隔离法
在进行受力分析,需要把所研究的物体(称为研究对象) 在进行受力分析,需要把所研究的物体(称为研究对象) 从与它相联系的周围物体中分离出来, 从与它相联系的周围物体中分离出来,单独画出该物体的轮 廓简图,使之成为分离体, 廓简图,使之成为分离体,在分离体上画上它所受的全部主 动力和约束反力。 动力和约束反力。
F’ F
2.3 约束和约束力
(1) 约束 约束--对非自由体运动的限制条件(周围物体)。 对非自由体运动的限制条件 对非自由体运动的限制条件(周围物体)
约束力--约束对物体的作用力 是被动力(待求的未知 约束对物体的作用力。是被动力 约束对物体的作用力 是被动力( (2) 约束力 力)。 其作用线或方向: 其作用线或方向:可由约束对物体运动的限制情况 与所限制的运动方向相反。 而定,与所限制的运动方向相反 而定 与所限制的运动方向相反 其大小:与主动力的大小有关,用平衡条件求得 其大小:与主动力的大小有关,用平衡条件求得。
2.3.4 球铰链约束 一种空间约束, 一种空间约束 , 它能限制物体沿空间任何方向 移动, 但物体可以绕其球心任意转动。 移动 , 但物体可以绕其球心任意转动 。 球铰链的约 束反力可用三个正交的分力F 束反力可用三个正交的分力 F AX 、 F AY 、 F AZ 表 示。
工程力学
静力分析的基本概念与方法
3、约束:限制物体运动的某些条件。 4、约束力:约束(约束体)给予被约束物 体的力。也称为约束反力。 5、主动力:除了约束力以外的力,统称为 主动力,如:重力。
约束、约束力、主动力
约束体------
FT
------约束力
W
------重力(主动力)
第一章
静力分析的基本概念与方法
T P P
S2
S'2
柔性体约束只能承受拉力,所以它们的约束反力是作用在接
触点,方向沿柔性体轴线,背离被约束物体。是离点而去的
力。
2.光滑接触面的约束 (光滑指摩擦不计)
P P N
NB NA
N
约束反力作用在接触点处,方向沿公法线,指向受力 物体是向点而来的力。
类型
定义及约束力
图片
简图及约束力画 法
力的可传性
力可以沿其作用线在刚体上任意滑移而不改变力 对刚体的作用效应。
力的可传性原理图示
F1
B B B
F1
F2
A
F F
A
A
第一章
静力分析的基本概念与方法
4、力的平行四边形法则(不平行三力的平 衡条件): 作用于刚体上某一点的两个力的合力 仍作用在该点。合力的大小和方向可以 用这两个力所组成的平行四边形的对角 线表示。
工程力学
2009、2
引
论
一、关于工程力学 工程力学包含以下三部分:
静力分析——研究物体的受力与平衡的规律。 强度、刚度和稳定分析——研究物体在外力的 作用下的变形规律。 运动与动力分析——研究物体的运动规律,分 析物体产生运动的原因,建立物体的运动与作 用在物体上的力的相互关系。
工程力学
力系简化的基础是力向一点平移定理。
工程力学
第2章 力系的简化
§2–2 力向一点平移定理
力向一点平移定理 作用于刚体上的力可从原来的作用点 平行移动任一点而不改变对刚体的作用效应,但须附加一 个力偶,附加力偶的矩等于原力对新作用点的矩。
F B h
F
F = B h
F
F
A
A
=
M=Fh B A
第2章 力系的简化
求如图所示平面共点力系的合力。其中:F1 = 200 N, y F2 = 300 N,F3 = 100 N,F4 = 250 N。 F2
解: 根据合力投影定理,得合力在轴
x,y上的投影分别为:
FRx F1 cos 30 F2 cos 60 F3 cos 45 F4 cos 45 129 .3 N
FR=FR,但其作用线不过简化中心O。
FR
MO O
FR
= O
d
FR
FR
A
= O
d
FR
A
M 0 m0 ( FR ) d FR ' FR '
把各力矢首尾相接,连接第一个力的始端与最后一个力的终 端的矢量就是合力FR,力系中各力称为合力FR的分力。 F2 F1 F3 F2 F3 F
O
4
F1
FR
F4 • 得到的多边形,称为力多边形,合力就是力多边形的封闭边。
• 用力多边形求解合力的方法称为力的多边形法则。
工程力学 c F3 d F4 c F1 a
加减平衡力系原理
力偶
[证明]
力F
M o M o ( F ) Fh
力系F,F',F''
工程力学知识点总结
工程力学知识点总结工程力学是工程学科中的基础学科之一,它研究物体在受力下的运动和变形规律。
本文将对工程力学的一些重要知识点进行总结。
1.三大力学原理工程力学的研究基于三大力学原理:牛顿第一定律(惯性定律)、牛顿第二定律(运动定律)和牛顿第三定律(作用与反作用定律)。
这些定律为工程力学提供了基本原理和基础方程。
2.受力分析受力分析是工程力学的核心内容之一。
它通过对物体所受的外力和内力进行分析,确定物体的平衡状态和受力情况。
受力分析通常包括力的合成与分解、力的平衡条件和受力图的绘制等内容。
3.平衡条件平衡条件是判断物体是否处于平衡状态的基本依据。
对于物体的平衡,需要满足力的合力为零、力的力矩为零两个条件。
平衡条件可以应用于静力学和动力学问题的求解,是工程力学中的重要概念。
4.弹性力学弹性力学研究物体在受力下的弹性变形规律。
弹性力学的重要概念包括应力、应变和弹性模量等。
应力描述物体单位面积上所受的力,应变描述物体的形变程度,而弹性模量则描述了物体在弹性变形过程中的性质。
5.静力学静力学研究物体在静力平衡状态下的力学性质。
重要的静力学概念包括力的合成与分解、力的平衡条件、杠杆原理、平衡条件在各种结构中的应用等。
静力学的研究对于设计和分析各种工程结构具有重要意义。
6.动力学动力学研究物体在受力下的运动规律和力学性质。
重要的动力学概念包括速度、加速度、作用力、质量、动量和能量等。
动力学的研究可以应用于分析物体的运动轨迹、速度和加速度等问题,对于工程实践中的运动系统设计具有重要意义。
7.应力分析应力分析是研究物体受力下的应力分布规律。
应力分析可以通过数学方法和实验方法进行,常用的应力分析方法包括应力分布图、应力变形图和应力集中等。
应力分析在工程设计和结构强度评估中具有重要作用。
8.应变分析应变分析是研究物体受力下的应变分布规律。
应变分析可以通过数学方法和实验方法进行,常用的应变分析方法包括应变分布图、应变测量和应变计算等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-12 图示一阶梯形截面杆,其弹性模量E=200Gpa ,截面面积A Ⅰ=300mm 2, A Ⅱ=250mm 2, A Ⅲ=200mm 2,作用力P 1=30kN ,P 2=15kN ,P 3=10kN ,P 4=25kN 。
试求每段杆的内力、应力、应变、伸长及全杆的总伸长。
解:每段杆的轴力,N Ⅰ=30kN , N Ⅱ=15kN , N Ⅲ=25kN ;
每段杆的应力, σⅠ= N Ⅰ/A Ⅰ=6
3
10
3001030-⨯⨯=100MPa , σⅡ= N Ⅱ/A Ⅱ=
63
102501015-⨯⨯=60MPa , σ Ⅲ= N Ⅲ/A Ⅲ=6
3
10
2001025-⨯⨯=125MPa ; 每段杆的应变, εⅠ= σⅠ/E Ⅰ=9
6
1020010100⨯⨯=0.05%,
εⅡ= σⅡ/E Ⅱ=9
6
102001060⨯⨯=0.03%, εⅢ= σⅢ/E Ⅲ=
9
6
1020010125⨯⨯=0.0625%; 每段杆的伸长, l ∆Ⅰ=εⅠl ⨯Ⅰ=0.05%⨯1=0.5mm ,
l ∆ Ⅱ=εⅡl ⨯Ⅱ=0.03%⨯1.5=0.45mm , l ∆Ⅲ=εⅢl ⨯Ⅲ=0.0625%⨯2=1.25mm ,
全杆的总伸长, l ∆=2.2mm 。
2-9 图示一刚性杆AB,由两根弹性杆AC 和BD 悬吊。
已知:P,l,a,E 1A 1和E 2A 2,求:当横杆AB 保持水平时x 等于多少?
;P l x N 1=
P l
x l N 2-= 21l l ∆=∆
2
22111A E l N A E l N = l A E A E A E x 2
2112
2+=
.
9、三角架ABC 由AC 和BC 二杆组成。
杆AC 由两根No.12b 的槽钢组成,许用应力
为[σ]=160MPa ;杆BC 为一根No.22a 的工字钢,许用应力为[σ]=100MPa 。
求荷载F 的许可值[F]。
答:420kN
1、 图示冲床的冲头。
在F 力作用下,冲剪钢板,设板厚t=10mm ,板材料的剪切强度极限τb =360MPa ,当需冲剪一个直径d =20mm 的圆孔,试计算所需的冲力F 等于多少? 答:F =226kN
7-6.圆形截面木梁,梁上荷载如图所示,已知L =3m ,F =3kN ,q =3kN/m ,弯曲时木材的许用应力[σ]=10MPa ,试选择圆木的直径d 。
解:图求梁的弯矩图为:
从图中可以看出,梁内最大弯矩为:m KN M B .3= 由 []
σmax
M W ≥
得 6
33
101010332⨯⨯≥d π
从而有:m d 145.0≥
10−13 一简支工字型钢梁,工字钢的型号为28a ,梁
上荷载如图所示,已知l =6m ,F 1=60kN ,F 2=40kN ,
q =8kN/m ,钢材的许用应力[σ]=170Mpa ,[τ]=100Mpa ,试
校核梁的强度。
解:作内力图
则有 MPa 8.170Pa 108.17010
15.508108.8663max max =⨯=⨯⨯==z W M σ 而
[][]%5%47.0170
170
8.170max <=-=-σσσ ][MPa 56.38Pa 1056.380085
.01062.24107.806
3max
,max S,max ττ<=⨯=⨯⨯⨯==b
I S F z z
67.3kN
一铜制正立方块,每边长a=50mm,受压力F=150kN 的作用。
已知铜的弹性模量E=100GPa,泊松比μ=
0.33。
试求铜块的三个主应力和体应变值。
体应变θ= —0.000272。