2013白银中考数学试题答案解析
2013年中考数学答案
数学参考答案及评分标准 第1页(共4页)2013年来宾市初中毕业升学统一考试数学参考答案及评分标准一、选择题(每小题3分,共36分)二、填空题(每小题3分,共18分) 13.5-;14.31;15.x ﹥4 ; 16.9; 17.8;18.y =x 2-7x +12.三、解答题(本大题共7小题,共66分)19.解:(1)原式=1-1+2-3(每个知识点1分) …………………4分=-1……………………………6分(2)去分母,得2×2x =x +2 ………………………………2分 3x =2 ………………………………3分32=x ………………………………4分 检验:把32=x 代入 2x (x +2) ≠0 ………………………………5分∴32=x 是原分式方程的解 ………………………………6分20.解:(1)A 1的坐标是(2,4); ………………………………2分(画图正确3分,每对一点给1分) ………………………………5分 (2)(画图正确3分,每对一点给1分); ………………………………8分 (画图略)21.解:(1)80 ………………………………2分(2)综合 ………………………………4分 (3)(画图略) ………………………………6分 (如果有刻度线或条形图上标有数据且画图正确给满分,否则只画图给1分) (4)105 ………………………………8分22.解:(1)依题意,得(360-280)×60=4800 ………………………………2分 故降价前商场每月销售该商品的利润是4800元. ………………3分(2)设每件商品应降价x 元,依题意,得 ………………………………4分数学参考答案及评分标准 第2页(共4页)(360-280-x )(60+5x )=7200 ………………………………6分整理,得x 2-68x +480=0解得 x 1=60,x 2=8 ………………………………7分 因为要更有利于减少库存,所以必须多销售,故取x =60答:每件商品应降价60元. ………………………………8分 23.解:(1)△AEH ≌△DGH ………………………………1分△BEF ≌△CGF ………………………………2分 (当只写出四个三角形或两个能全等的三角形只给1分) 【证法一】:∵梯形ABCD 是等腰梯形,AD ∥BC ∴∠A =∠D ,AB=DC∵E ,F ,G ,H 分别是梯形ABCD 各边的中点∴AH =DH ,AB AE 21=,CD DG 21= …………………………3分∴AE =DG ∴△AEH ≌△DGH ………………………………4分 【证法二】:连接AC ,BD…………………………3分∵E ,F ,G ,H 分别是梯形ABCD 各边的中点,∴AH =DH ,AB AE 21=,CD DG 21=,BD EH 21=,AC GH 21= 又∵梯形ABCD 是等腰梯形 ∴AC =BD ,AE =DG ∴EH =GH∴△AEH ≌△DGH ………………………………4分 (2)【证法一】:连接AC ,BD ………………………………5分∵E ,F ,G ,H 分别是梯形ABCD 各边的中点∴BD EH 21=,BD FG 21=,AC EF 21=,AC GH 21= ………6分 又∵梯形ABCD 是等腰梯形 ∴AC =BD∴EF =FG =GH =HE ………7分 ∴四边形EFGH 是菱形 ………8分 【证法二】:连接AC ,BD ………5分 ∵E ,F ,G ,H 分别是梯形ABCD 各边的中点 ∴EH ∥BD 且BD EH 21=,FG ∥BD 且BD FG 21= ∴EH ∥FG 且EH =FG 同理 EF ∥HG 且EF =HG∴四边形EFGH 是平行四边形 ………………………………6分H G FE D CBA(第23题图)数学参考答案及评分标准 第3页(共4页)又∵梯形ABCD 是等腰梯形∴AC =BD∵AC EF 21=,BD EH 21= ∴EF =EH ………………………………7分 ∴四边形EFGH 是菱形 ………………………………8分 (其它证法参照以上方法步骤给分) 24.(1)解:△BCD 是等腰三角形…………………2分(2)证明:作⊙O 的直径AE ,连接DE ………………………3分∵AE 是⊙O 的直径∴∠ADE =90° ………………………4分 ∴∠DAE +∠E =90°又∵∠E =∠ABD ,∠P AD =∠ABD∴∠E =∠P AD ………………………5分 ∴∠DAE +∠P AD =90° 即∠P AE =90°∴P A 是⊙O 的切线. ………………………6分(3)证明:∵∠P AD =∠ABD ,∠ABD =∠ACP∴∠P AD =∠ACP …………7分 又∵∠P =∠P∴△APD ∽△CP A …………8分 ∴APDPCP AP =∴AP 2=CP ·DP∴AP 2=(CD +DP )·DP ……9分 ∵∠BAC =∠CAD ∴ BC =CD∴AP 2=(BC +DP )·DP =DP ·BC +DP 2∴AP 2-DP 2=DP ·BC ………………………10分25.解:(1)依题意,得A ,B 两点的坐标分别是A (0,6),B (8,0),设过点A 和点B 的直线表达式是:y =kx +b ………………1分∴⎩⎨⎧=+=086b k b解得:⎪⎩⎪⎨⎧=-=643b k∴直线AB 的表达式是:(第24题图)数学参考答案及评分标准 第4页(共4页)643+-=x y ………………………2分(2)设点M 的移动时间为t 秒,△OMN 的面积为S 1平方厘米,△AOB 的面积为S 2平方厘米,四边形AMNB 的面积为S 平方厘米,得OM =6-2t ,ON =4t ………………………3分15)23(441224)26(421682121212212+-=+-=-⨯-⨯⨯=⋅-⋅=-=t t t t t OM ON OA OB S S S ………………………5分当23=t 时,S 有最小值是15 所以,当点M 移动32秒时,四边形AMNB 的面积最小值是15平方厘米;………7分(3)存在. ……………………………8分①设当点M ,N 移动t 1秒时,如果OBONOA OM =, 则有△OMN ∽△OAB ∴8462611t t =-,解得:2.11=t ∴当点M ,N 移动1.2秒时, OM =6-2t 1=6-2×1.2=3.6, ON =4t 1=4×1.2=4.8∴点M 和点N 的坐标分别为M (0,3.6),N (4.8,0) …………10分②设当点M ,N 移动t 2秒时,如果OAONOB OM =, 则有△OMN ∽△OBA ∴6482622t t =-,解得:1192=t ∴当点M ,N 移动119秒时, OM =6-2t 2=6-2×119=1148, ON =4t 2=4×119=1136∴点M 和点N 的坐标分别为M (0,1148),N (1136,0) ………11分 综上所述:点M 和点N 的坐标分别为M (0,3.6),N (4.8,0)或数学参考答案及评分标准 第5页(共4页)M (0,1148),N (1136,0). ……………………………………12分。
2013年中考数学答案
数学参考答案及评分标准 第1页(共4页)2013年来宾市初中毕业升学统一考试数学参考答案及评分标准一、选择题(每小题3分,共36分)二、填空题(每小题3分,共18分) 13.5-;14.31;15.x ﹥4 ; 16.9; 17.8;18.y =x 2-7x +12.三、解答题(本大题共7小题,共66分)19.解:(1)原式=1-1+2-3(每个知识点1分) …………………4分=-1……………………………6分(2)去分母,得2×2x =x +2 ………………………………2分 3x =2 ………………………………3分32=x ………………………………4分 检验:把32=x 代入 2x (x +2) ≠0 ………………………………5分∴32=x 是原分式方程的解 ………………………………6分20.解:(1)A 1的坐标是(2,4); ………………………………2分(画图正确3分,每对一点给1分) ………………………………5分 (2)(画图正确3分,每对一点给1分); ………………………………8分 (画图略)21.解:(1)80 ………………………………2分(2)综合 ………………………………4分 (3)(画图略) ………………………………6分 (如果有刻度线或条形图上标有数据且画图正确给满分,否则只画图给1分) (4)105 ………………………………8分22.解:(1)依题意,得(360-280)×60=4800 ………………………………2分 故降价前商场每月销售该商品的利润是4800元. ………………3分(2)设每件商品应降价x 元,依题意,得 ………………………………4分 (360-280-x )(60+5x )=7200 ………………………………6分数学参考答案及评分标准 第2页(共4页)整理,得x 2-68x +480=0解得 x 1=60,x 2=8 ………………………………7分 因为要更有利于减少库存,所以必须多销售,故取x =60答:每件商品应降价60元. ………………………………8分23.解:(1)△AEH ≌△DGH ………………………………1分△BEF ≌△CGF ………………………………2分 (当只写出四个三角形或两个能全等的三角形只给1分) 【证法一】:∵梯形ABCD 是等腰梯形,AD ∥BC ∴∠A =∠D ,AB=DC∵E ,F ,G ,H 分别是梯形ABCD 各边的中点∴AH =DH ,AB AE 21=,CD DG 21= …………………………3分∴AE =DG ∴△AEH ≌△DGH ………………………………4分 【证法二】:连接AC ,BD…………………………3分∵E ,F ,G ,H 分别是梯形ABCD 各边的中点,∴AH =DH ,AB AE 21=,CD DG 21=,BD EH 21=,AC GH 21= 又∵梯形ABCD 是等腰梯形 ∴AC =BD ,AE =DG ∴EH =GH∴△AEH ≌△DGH ………………………………4分 (2)【证法一】:连接AC ,BD ………………………………5分∵E ,F ,G ,H 分别是梯形ABCD 各边的中点∴BD EH 21=,BD FG 21=,AC EF 21=,AC GH 21= ………6分 又∵梯形ABCD 是等腰梯形 ∴AC =BD∴EF =FG =GH =HE ………7分 ∴四边形EFGH 是菱形 ………8分 【证法二】:连接AC ,BD ………5分 ∵E ,F ,G ,H 分别是梯形ABCD 各边的中点 ∴EH ∥BD 且BD EH 21=,FG ∥BD 且BD FG 21= ∴EH ∥FG 且EH =FG 同理 EF ∥HG 且EF =HG∴四边形EFGH 是平行四边形 ………………………………6分又∵梯形ABCD 是等腰梯形∴AC =BDH G FE D CBA (第23题图)数学参考答案及评分标准 第3页(共4页)∵AC EF 21=,BD EH 21= ∴EF =EH ………………………………7分 ∴四边形EFGH 是菱形 ………………………………8分 (其它证法参照以上方法步骤给分) 24.(1)解:△BCD 是等腰三角形…………………2分(2)证明:作⊙O 的直径AE ,连接DE ………………………3分∵AE 是⊙O 的直径∴∠ADE =90° ………………………4分 ∴∠DAE +∠E =90°又∵∠E =∠ABD ,∠P AD =∠ABD∴∠E =∠P AD ………………………5分 ∴∠DAE +∠P AD =90° 即∠P AE =90°∴P A 是⊙O 的切线. ………………………6分(3)证明:∵∠P AD =∠ABD ,∠ABD =∠ACP∴∠P AD =∠ACP …………7分 又∵∠P =∠P∴△APD ∽△CP A …………8分 ∴APDPCP AP =∴AP 2=CP ·DP ∴AP 2=(CD +DP )·DP ……9分∵∠BAC =∠CAD ∴ BC =CD∴AP 2=(BC +DP )·DP =DP ·BC +DP 2∴AP 2-DP 2=DP ·BC ………………………10分25.解:(1)依题意,得A ,B 两点的坐标分别是A (0,6),B (8,0),设过点A 和点B 的直线表达式是:y =kx +b ………………1分∴⎩⎨⎧=+=086b k b解得:⎪⎩⎪⎨⎧=-=643b k∴直线AB 的表达式是:643+-=x y ………………………2分(2)设点M 的移动时间为t 秒,△OMN 的面积为S 1平方厘米,△AOB 的面积为S 2平方厘米,四边形AMNB 的面积为S 平方厘米,得OM =6-2t ,ON =4t ………………………3分(第24题图)数学参考答案及评分标准 第4页(共4页)15)23(441224)26(421682121212212+-=+-=-⨯-⨯⨯=⋅-⋅=-=t t t t t OM ON OA OB S S S ………………………5分当23=t 时,S 有最小值是15 所以,当点M 移动32秒时,四边形AMNB 的面积最小值是15平方厘米;………7分(3)存在. ……………………………8分①设当点M ,N 移动t 1秒时,如果OBONOA OM =, 则有△OMN ∽△OAB ∴8462611t t =-,解得:2.11=t ∴当点M ,N 移动1.2秒时, OM =6-2t 1=6-2×1.2=3.6, ON =4t 1=4×1.2=4.8∴点M 和点N 的坐标分别为M (0,3.6),N (4.8,0) …………10分②设当点M ,N 移动t 2秒时,如果OAONOB OM =, 则有△OMN ∽△OBA ∴6482622t t =-,解得:1192=t ∴当点M ,N 移动119秒时,OM =6-2t 2=6-2×119=1148,ON =4t 2=4×119=1136∴点M 和点N 的坐标分别为M (0,1148),N (1136,0) ………11分 综上所述:点M 和点N 的坐标分别为M (0,3.6),N (4.8,0)或 M (0,1148),N (1136,0). ……………………………………12分。
2013年中考数学真题试题(解析版)
2013年中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.=9 =﹣2(2.(3分)(2013•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称3.(3分)(2013•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.34.(3分)(2013•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()5.(3分)(2013•济南)图中三视图所对应的直观图是()6.(3分)(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是(),9.(3分)(2013•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过n次抛掷所出现的点数之和大于n=.10.(3分)(2013•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()=,=×(OB×OA=,=11.(3分)(2013•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()12.(3分)(2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(2013•济南)cos30°的值是.cos30°==.故答案为:14.(4分)(2013•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.15.(4分)(2013•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.=)﹣)的平均数为[﹣﹣16.(4分)(2013•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2 .先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到然后变形+得=xy=+==17.(4分)(2013•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F 分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).∴CE=CF=﹣a==2+=2+三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(2013•济南)先化简,再求值:÷,其中a=﹣1.﹣••﹣19.(8分)(2013•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5正正11192(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?1913220.(8分)(2013•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.AD=121.(10分)(2013•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?y=y=(2≤x≤3)22.(10分)(2013•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表1和与每列的各数之和均为非负整数,求整数a的值表2.列≤a23.(10分)(2013•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD 和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.∴BD=100BD=100=100米.24.(12分)(2013•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.=3.=,,y=,t+1t+1+2 =PM•CM+PN•OM﹣(),﹣的最大值为。
2013年甘肃省定西市中考数学试卷(含答案)
甘肃省定西市2013年中考数学试卷参考答案一、选择题:本大题共10小题,每小题3分,共30分.1.(3分)(2012•绍兴)3的相反数是(B)A.3B.﹣3 C.D.﹣2.(3分)(2013•白银)下列运算中,结果正确的是(A)A.4a﹣a=3a B.a10÷a2=a5C.a2+a3=a5D.a3•a4=a123.(3分)(2011•桂林)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是(C)A.B.C.D.4.(3分)(2012•襄阳)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是(B)A.B.C.D.5.(3分)(2013•白银)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是(C)A.15°B.20°C.25°D.30°6.(3分)(2008•包头)一元二次方程x2+x﹣2=0根的情况是(A)A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.(3分)(2012•广西)分式方程的解是(D)A.x=﹣2 B.x=1 C.x=2 D.x=38.(3分)(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为(D)A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=489.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a﹣b<0;②abc<0;③a+b+c <0;④a﹣b+c>0;⑤4a+2b+c>0,错误的个数有(B)A.1个B.2个C.3个D.4个10.(3分)(2010•岳阳)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是(C)A.B.C.D.二、填空题:本大题共8小题,每小题4分,共32分,把答案写在题中的横线上11.(4分)(2011•连云港)分解因式:x2﹣9=(x+3)(x﹣3).12.(4分)(2012•广安)不等式2x+9≥3(x+2)的正整数解是1,2,3.13.(4分)(2012•随州)等腰三角形的周长为16,其一边长为6,则另两边为6,4或5,5.14.(4分)(2009•朝阳)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为5米.15.(4分)(2013•白银)如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为AC=CD.(答案不唯一,只需填一个)16.(4分)(2012•温州)若代数式的值为零,则x=3.17.(4分)(2012•盐城)已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且O1O2=t+2,若这两个圆相切,则t=2或0.18.(4分)(2013•白银)现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是﹣1或4.三、解答题(一):本大题共5小题,共38分,解答时,应写出必要的文字说明、证明过程或演算步骤。
2013甘肃白银中考数学考试试题
甘肃省白银市2013年中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内3.(3分)(2011•桂林)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的B4.(3分)(2012•襄阳)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是( )B5.(3分)(2013•白银)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )27.(3分)(2012•广西)分式方程的解是( )8.(3分)(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增9.(3分)(2013•白银)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,在下列五个结论中: ①2a ﹣b <0;②abc <0;③a+b+c <0;④a ﹣b+c >0;⑤4a+2b+c >0, 错误的个数有( )10.(3分)(2010•岳阳)如图,⊙O 的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O 与∠α的两边相切,图中阴影部分的面积S 关于⊙O 的半径r (r >0)变化的函数图象大致是( )B二、填空题:本大题共8小题,每小题4分,共32分,把答案写在题中的横线上11.(4分)(2011•连云港)分解因式:x 2﹣9= . 12.(4分)(2012•广安)不等式2x+9≥3(x+2)的正整数解是 . 13.(4分)(2012•随州)等腰三角形的周长为16,其一边长为6,则另两边为 . 14.(4分)(2009•朝阳)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为 米. 15.(4分)(2013•白银)如图,已知BC=EC ,∠BCE=∠ACD ,要使△ABC ≌△DEC ,则应添加的一个条件为 .(答案不唯一,只需填一个)16.(4分)(2012•温州)若代数式的值为零,则x= .17.(4分)(2012•盐城)已知⊙O 1与⊙O 2的半径分别是方程x 2﹣4x+3=0的两根,且O 1O 2=t+2,若这两个圆相切,则t= .18.(4分)(2013•白银)现定义运算“★”,对于任意实数a 、b ,都有a ★b=a 2﹣3a+b ,如:3★5=32﹣3×3+5,若x ★2=6,则实数x 的值是 .三、解答题(一):本大题共5小题,共38分,解答时,应写出必要的文字说明、证明过程或演算步骤。
甘肃省白银市2013年中学考试数学试卷(解析汇报版)
甘肃省白银市2013年中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内 1.(3分)(2012•绍兴)3的相反数是( )2.(3分)(2013•白银)下列运算中,结果正确的是( )3.(3分)(2011•桂林)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( ) ...4.(3分)(2012•襄阳)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()...5.(3分)(2013•白银)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )6.(3分)(2008•包头)一元二次方程x 2+x ﹣2=0根的情况是( )7.(3分)(2012•广西)分式方程的解是( )8.(3分)(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( )9.(3分)(2013•白银)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,在下列五个结论中:①2a ﹣b <0;②abc <0;③a +b +c <0;④a ﹣b +c >0;⑤4a +2b +c >0, 错误的个数有( )10.(3分)(2010•岳阳)如图,⊙O 的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O 与∠α的两边相切,图中阴影部分的面积S 关于⊙O 的半径r (r >0)变化的函数图象大致是( ).. .二、填空题:本大题共8小题,每小题4分,共32分,把答案写在题中的横线上 11.(4分)(2011•连云港)分解因式:x 2﹣9= . 12.(4分)(2012•广安)不等式2x +9≥3(x +2)的正整数解是 . 13.(4分)(2012•随州)等腰三角形的周长为16,其一边长为6,则另两边为 .14.(4分)(2009•朝阳)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.15.(4分)(2013•白银)如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为.(答案不唯一,只需填一个)16.(4分)(2012•温州)若代数式的值为零,则x= .17.(4分)(2012•盐城)已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且O1O2=t+2,若这两个圆相切,则t= .18.(4分)(2013•白银)现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是.三、解答题(一):本大题共5小题,共38分,解答时,应写出必要的文字说明、证明过程或演算步骤。
初中毕业升学考试(甘肃白银卷)数学(解析版)(初三)中考真卷.doc
初中毕业升学考试(甘肃白银卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx 题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】下列图形中,是中心对称图形的是()A . B. C. D.【答案】A.【解析】试题分析:A.是中心对称图形,故此选项正确;B.不是中心对称图形,故此选项错误;C.不是中心对称图形,故此选项错误;D.不是中心对称图形,故此选项错误.故选A.考点:中心对称图形.【题文】在1,﹣2,0,这四个数中,最大的数是()A.﹣2 B.0 C. D.1【答案】C.【解析】试题分析:由正数大于零,零大于负数,得:﹣2<0<1<.最大的数是,故选C.考点:有理数大小比较.【题文】在数轴上表示不等式x﹣1<0的解集,正确的是()A. B.C. D.【答案】C【解析】试题分析:解不等式x﹣1<0得:x<1.把它表示在数轴上可知选项C正确.考点:数轴上表示不等式的解集.【题文】下列根式中是最简二次根式的是()A. B. C. D.【答案】B【解析】试题分析:A.=,故此选项错误;B.是最简二次根式,故此选项正确;C.=3,故此选项错误;D.=,故此选项错误;故选B.考点:最简二次根式.【题文】P(0,m)在y轴的负半轴上,则点M(-m,-m+1)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】试题分析:∵y轴的负半轴上点的横坐标等于零,纵坐标小于零,∴-m>0,-m+1>0,∴点M在第一象限,故选A.考点:1平面直角坐标系内点的坐标特征;2不等式.【题文】如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A. 34°B. 56°C. 66°D. 54°【答案】D【解析】试题分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.考点:平行线的性质.【题文】如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:2【答案】D.【解析】试题分析:∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2,故选D.考点:相似三角形的性质.【题文】某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. B. C. D.【答案】A.【解析】试题分析:设原计划平均每天生产x台机器,根据题意得:,故选A.考点:由实际问题抽象出分式方程.【题文】若,则的值为()A.﹣6 B.6 C.18 D.30【答案】B.【解析】试题分析:∵,即,∴原式=====﹣12+18=6.故选B.考点:整式的混合运算—化简求值;整体思想;条件求值.【题文】如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A. B. C. D.【答案】A.【解析】试题分析:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选A.考点:动点问题的函数图象;分类讨论.【题文】因式分解:=.【答案】2(a+2)(a﹣2).【解析】试题分析:==2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.【题文】计算:=.【答案】.【解析】试题分析:=.故答案为:.考点:单项式乘单项式.【题文】如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.【答案】.【解析】试题分析:过点A作AB⊥x轴于B,∵点A(3,t)在第一象限,∴AB=t,OB=3,又∵tanα==,∴t=.故答案为:.考点:解直角三角形;坐标与图形性质.【题文】如果单项式与是同类项,那么的值是.【答案】.【解析】试题分析:根据题意得:,解得:,则==.故答案为:.考点:同类项.【题文】三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为.【答案】12.【解析】试题分析:,(x﹣5)(x﹣8)=0,所以,,而三角形的两边长分别是3和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为:12.考点:一元二次方程的解;三角形三边关系.【题文】如图,在⊙O中,弦AC=,点B是圆上一点,且∠ABC=45°,则⊙O的半径R=.【答案】.【解析】试题分析:∵∠ABC=45°,∴∠AOC=90°,∵OA=OC=R,∴,解得R=.故答案为:.考点:圆周角定理;勾股定理;与圆有关的计算.【题文】将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC= cm.【答案】6.【解析】试题分析:如图,延长原矩形的边,∵矩形的对边平行,∴∠1=∠ACB,由翻折变换的性质得,∠1=∠ABC ,∴∠ABC=∠ACB,∴AC=AB,∵AB=6cm,∴AC=6cm.故答案为:6.考点:翻折变换(折叠问题).【题文】古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2,…第n个三角形数记为xn,则xn+xn+1=.【答案】.【解析】试题分析:∵x1=1,x2═3=1+2,x3=6=1+2+3,x4═10=1+2+3+4,x5═15=1+2+3+4+5,…∴xn=1+2+3+…+n=,xn+1=,则xn+xn+1=+=,故答案为:.考点:规律型:数字的变化类.【题文】计算:.【答案】6.【解析】试题分析:本题涉及负整数指数幂、绝对值、特殊角的三角函数值、零指数幂、二次根式化简5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式==6.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【题文】如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【答案】(1)答案见解析;(2)A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).【解析】试题分析:(1)直接利用关于x轴对称点的性质得出各对应点位置进而得出答案;(2)直接利用平移的性质得出各对应点位置进而得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).考点:作图-轴对称变换;作图-平移变换.【题文】已知关于x的方程.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.【答案】(1);(2)答案见解析.【解析】试题分析:(1)直接把x=1代入方程求出m的值;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.试题解析:(1)根据题意,将x=1代入方程,得:1+m+m﹣2=0,解得:;(2)∵△===>0,∴不论m取何实数,该方程都有两个不相等的实数根.考点:根的判别式;一元二次方程的解.【题文】图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON位置运动到与地面垂直的OM位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)(1)求AB的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N点运动到M点的路径的长度.(结果保留π)【答案】(1)1.17;(2).【解析】试题分析:(1)过B作BE⊥AC于E,求出AE,解直角三角形求出AB即可;(2)求出∠MON的度数,根据弧长公式求出即可.试题解析:(1)过B作BE⊥AC于E,则AE=AC﹣BD=0.66米﹣0.26米=0.4米,∠AEB=90°,AB=≈1.17(米);(2)∠MON=90°+20°=110°,所以的长度是:=(米).考点:解直角三角形的应用;弧长的计算.【题文】在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(l试题解析:(1)画树状图得:则点M所有可能的坐标为:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)∵点M(x,y)在函数的图象上的有:(1,﹣2),(2,﹣1),∴点M(x,y)在函数的图象上的概率为:.考点:列表法与树状图法;反比例函数图象上点的坐标特征.【题文】2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m=,n=;(3)扇形统计图中,热词B所在扇形的圆心角是多少度?【答案】(1)300;(2)60,90;(3)72°.【解析】试题分析:(1)根据A的人数为105人,所占的百分比为35%,求出总人数,即可解答;(2)C所对应的人数为:总人数×30%,B所对应的人数为:总人数﹣A所对应的人数﹣C所对应的人数﹣D 所对应的人数,即可解答;(3)根据B所占的百分比×360°,即可解答.试题解析:(1)105÷35%=300(人).答:一共调查了300名同学;(2)n=300×30%=90(人),m=300﹣105﹣90﹣45=60(人).故答案为:60,90;(3)×360°=72°.答:扇形统计图中,热词B所在扇形的圆心角是72度.考点:条形统计图;扇形统计图.【题文】如图,函数的图象与函数(x>0)的图象交于A(m,1),B(1,n)两点.(1)求k,m,n的值;(2)利用图象写出当x≥1时,和的大小关系.【答案】(1)k=3,m=3,n=3;(2)当1<x<3时,;当x>3时,;当x=1或x=3时,.【解析】试题分析:(1)把A与B坐标代入一次函数解析式求出m与a的值,确定出A与B坐标,将A坐标代入反比例解析式求出k的值即可;(2)根据B的坐标,分x=1或x=3,1<x<3与x>3三种情况判断出和的大小关系即可.试题解析:(1)把A(m,1)代入一次函数解析式得:1=﹣m+4,即m=3,∴A(3,1),把A(3,1)代入反比例解析式得:k=3,把B(1,n)代入一次函数解析式得:n=﹣1+4=3;(2)∵A(3,1),B(1,3),∴由图象得:当1<x<3时,;当x>3时,;当x=1或x=3时,.考点:反比例函数与一次函数的交点问题.【题文】如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:=OE•OF.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由EC∥AB,∠EDA=∠ABF,可证得∠DAB=∠ABF,即可证得AD∥BC,则得四边形ABCD为平行四边形;(2)由EC∥AB,可得,由AD∥BC,可得,等量代换得出,即=OE•OF.试题解析:(1)∵EC∥AB,∴∠EDA=∠DAB,∵∠EDA=∠ABF,∴∠DAB=∠ABF,∴AD∥BC,∵DC∥AB,∴四边形ABCD为平行四边形;(2)∵EC∥AB,∴△OAB∽△OED,∴,∵AD∥BC,∴△OBF∽△ODA,∴,∴,∴=OE•OF.考点:相似三角形的判定与性质;平行四边形的判定与性质.【题文】如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D 三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.【答案】(1)证明见解析;(2)DE与圆O相切;(3).【解析】试题分析:(1)连接AD,由AB=AC,BD=CD,利用等腰三角形三线合一性质得到AD⊥BC,利用90°的圆周角所对的弦为直径即可得证;(2)DE与圆O相切,理由为:连接OD,由O、D分别为AB、CB中点,利用中位线定理得到OD与AC平行,利用两直线平行内错角相等得到∠ODE为直角,再由OD为半径,即可得证;(3)由AB=AC,且∠BAC=60°,得到三角形ABC为等边三角形,连接BF,DE为三角形CBF中位线,求出BF的长,即可确定出DE的长.试题解析:(1)连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径;(2)DE与圆O相切,理由为:连接OD,∵O、D分别为AB、BC的中点,∴OD为△ABC的中位线,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∵OD 为圆的半径,∴DE与圆O相切;(3)解:∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=6,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D为BC中点,∴E为CF中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得:BF==,则DE=BF=.考点:圆的综合题;综合题;圆的有关概念及性质.【题文】如图,已知抛物线经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.【答案】(1),y=﹣x+3;(2);(3)存在面积最大,最大是,此时点P(,).【解析】试题分析:(1)用待定系数法求出抛物线,直线解析式;(2)分两种情况进行计算即可;(3)确定出面积达到最大时,直线PC和抛物线相交于唯一点,从而确定出直线PC解析式,根据锐角三角函数求出BD,计算即可.试题解析:(1)∵抛物线经过A(3,0),B(0,3)两点,∴,∴,∴,设直线AB的解析式为y=kx+n,∴,∴,∴y=﹣x+3;(2)由运动得,OE=t,AF=t,∴AE=OA﹣OE=3﹣t,∵△AEF为直角三角形,∴①△AOB∽△AEF,∴,∴,∴t=,②△AOB∽△AFE,∴,∴,∴t=;(3)如图,存在,过点P作PC∥AB交y轴于C,∵直线AB解析式为y=﹣x+3,∴设直线PC解析式为y=﹣x+b,联立,∴,∴,∴△=9﹣4(b﹣3)=0,∴b=,∴BC=﹣3=,x=,∴ P(,).过点B作BD⊥PC,∴直线BD解析式为y=x+3,∴BD=,∴BD=,∵AB=,S最大=AB×BD==.即:存在面积最大,最大是,此时点P(,).考点:二次函数综合题.。
2013甘肃白银中考数学
白银市2013年普通高中招生考试数学试卷一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合要求的,请将符合题意的选项字母填入题后的括号内. 1.(2013甘肃白银,1,3分)3的相反数是( )A .3B .-3C .31 D .31 【答案】B2.(2013甘肃白银,2,3分)下列运算中,结果正确的是( )A .4a -a =3aB .a 10÷a 2=a 5C .a 2+a 3=a 5D .a 3·a 4=a 12 【答案】A3. (2013甘肃白银,3,3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( )【答案】C4. (2013甘肃白银,4,3分)如图是由两个相同的正方体和一个圆锥体组成的立体图形,其主视图是( )【答案】B5. (2013甘肃白银,5,3分)如图,把一块含有45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是( )A .15°B .20°C .25°D .30°【答案】C6. (2013甘肃白银,6,3分)一元二次方程x 2+x -2=0根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定 【答案】A7. (2013甘肃白银,7,3分)分式方程321+=x x 的解是( ) A .x =-2 B .x =1 C .x =2 D .x =3 【答案】D8. (2013甘肃白银,8,3分)某超市一月份的营业额为36万元,三月份的营业额为48万元.设每月的平均增长率为x ,则可列方程为( )A .48(1-x )2=36 B .48(1+x )2=36 C .36(1-x )2=48 D .36(1+x )2=48 【答案】D9. (2013甘肃白银,9,3分)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,在下列五个结论中:①2a -b <0 ②abc <0 ③a +b +c <0 ④a -b +c >0 ⑤4a +2b +c >0,错误..的个数有( )A .1个B .2个C .3个D .4个【答案】B10.(2013甘肃白银,10,3分)如图,已知⊙P 的圆心在定角α∠(0°<α<180°) 的角平分线上运动,且⊙P 与α∠的两边相切,则图中阴影部分的面积S 关于⊙P 的半径r (r >0)变化的函数图象大致是( )【答案】C二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中的横线上. 11.(2013甘肃白银,11,4分)分解因式:x 2-9=______. 【答案】(x +3)(x -3)12.(2013甘肃白银,12,4分)不等式2x +9≥3(x +2)的正整数解是______. 【答案】1,2,313.(2013甘肃白银,13,4分)等腰三角形的周长为16,其一边长为6,则另两边为______. 【答案】5,5或6,414.(2013甘肃白银,14,4分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长______米.【答案】515.(2013甘肃白银,15,4分)如图,已知BC =EC ,∠BCE =∠ACD ,要使△ABC ≌△DEC ,则应添加的一个条件为______.(答案不唯一,只需填一个)【答案】AC =DC 或∠B =∠E 或∠A =∠D16.(2013甘肃白银,16,4分)若代数式112--x 的值为零,则x =______. 【答案】317.(2013甘肃白银,17,4分)已知⊙O 1与⊙O 2的半径分别是方程x 2-4x +3=0的两根,且圆心距O 1O 2=t +2,若这两个圆相切..,则t =_______. 【答案】0或218.(2013甘肃白银,18,4分)定义运算“★”:对于任意实数a 、b ,都有a ★b =a 2-3a +b ,如:3★5=32-3×3+5.若x ★2=6,则实数x 的值是_______. 【答案】-1或4三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(2013甘肃白银,19,6分)计算:01)3(8)41(45cos 2-----︒-π.【答案】解:原式=122)4(222----⨯=12242--+=23-.20.(2013甘肃白银,20,6分)先化简,再求值:11112-÷⎪⎭⎫ ⎝⎛+-x xx ,其中x =23-. 【答案】解:11112-÷⎪⎭⎫ ⎝⎛+-x x x =x x x x x )1)(1(1-+⋅+=x -1. 当x =23-时,x -1=25123-=--.21.(2013甘肃白银,21,8分)两个城镇A 、B 与两条公路l 1、l 2位置如图所示.电信部门需在C 处修建一座信号发射塔,要求发射塔到两个城镇A 、B 的距离必须相等,到两条公路l 1,l 2的距离也必须相等,那么点C 应选在何处?请在下图中,用尺规作图找出所有符合条件的点C .(不写已知、求作、作法,只保留作图痕迹)【答案】解:如图所示:22.(2013甘肃白银,22,8分)某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF (如图所示).已知立杆AB 的高度是3米,从侧面D 点测得路况警示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况警示牌宽BC 的值.【答案】解:在Rt △ABD 中,∠BAD =90°,∠ADB =45°,AB =3,∴AD =AB =3. 在Rt △ADC 中,∠DAC =90°,∠ ADC =60°,AD AC ADC =∠tan . ∴ADBCAB +=︒60tan . ∴333BC+=. ∴333-=BC . 答:路况警示牌宽BC 为)333(-米.23.(2013甘肃白银,23,10分)如图,一次函数221-=x y 与反比例函数xmy =的图象相交于点A ,且点A 的纵坐标为1. (1)求反比例函数的解析式;(2)根据图象写出当x >0时,一次函数的值大于反比例函数的值的x 的取值范围.【答案】解:(1)把y =1代入221-=x y 得2211-=x ,解得x =6,所以点A 的坐标为(6,1),把点A 的坐标(6,1)代入x m y =得61m=,解得m =6.所以反比例函数的解析式为xy 6=.(2)x >6.四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤. 24.(2013甘肃白银,24,8分)为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别.摸球之前将袋内的小球搅匀.甲先摸两次,每次摸出一个球(第一次摸后不放回).把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球.如果甲摸出的两个球都是红色,甲得1分,否则甲得0分.如果乙摸出的球是白色,乙得1分,否则,乙得0分.得分高的获得入场券,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率; (2)请你用所学的知识说明这个游戏是否公平? 【答案】解:(1) 列表如下:甲得1分的情况有:(1,2),(1,3), (2,1),(2,3), (3,1),(3,2),所以甲得1分的概率为P =21126=. 或画树状图如下:甲得1分的情况有:(1,2),(1,3), (2,1),(2,3), (3,1),(3,2),所以甲得1分的概率为P =21126=. (2) 乙得1分的概率为41.甲得1分的概率为21.所以这个游戏不公平.25.(2013甘肃白银,25,10分)在读书月活动中,学校准备购买一批课外读物.为使购买的课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其它四个类别对部分同学进行了抽样调查(每位同学只选一类).下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次抽样调查一共抽查了________名同学; (2)条形统计图中,m =_____,n =_______;(3)扇形统计图中,艺术类读物所在扇形的圆心角是________度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其它类读物多少册比较合理?【答案】解:(1) 200.(2) 40, 60. (3) 72. (4) 30÷200×6000=900.购买其它类读物900册比较合理.26.(2013甘肃白银,26,10分)如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF =BD ,连结BF .(1)线段BD 与CD 有何数量关系,为什么?(2)当△ABC 满足什么条件时,四边形AFBD 是矩形?请说明理由.【答案】解:(1)BD =CD .理由如下: ∵AF ∥BC , AF =BD ,∴四边形AFBD 是平行四边形.∴AF =BD . ∵AF ∥BC , ∴∠AFE =∠DCE , ∠F AE =∠CDE , 又E 是AD 的中点,∴AE =DE . ∴△AFE ≌△DCE . ∴AF =CD . 又AF =BD ,∴BD =CD . (2) △ABC 满足AB =AC 时,四边形AFBD 是矩形.理由如下:∵AB =AC ,BD =CD ,∴AD ⊥BC . ∴∠ADB =90°. 又四边形AFBD 是平行四边形,∴四边形AFBD 是矩形.27.(2013甘肃白银,27,10分)如图,在⊙O 中,半径OC 垂直于弦AB ,垂足为点E .(1)若OC =5,AB =8,求tan ∠BAC ;(2)若∠DAC =∠BAC ,且点D 在⊙O 的外部,判断直线AD 与⊙O 的位置关系,并加以证明.【答案】解:(1) ∵OC ⊥AB ,∴AE =21AB =21×8=4. 又OA =OC =5,在Rt △AOE 中,OE =3452222=-=-AE OA . ∴CE =OC -OE =5-3=2. 在Rt △AEC 中,tan ∠BAC =2142==AE EC . (2) AD 与⊙O 相切.理由如下:延长AO 交⊙O 于点F ,连结FC 、BC .∵OC ⊥AB ,∴BC ⌒=AC ⌒.∴∠ABC =∠BAC ,又∠DAC =∠BAC ,∴∠DAC =∠ABC .又∠ABC =∠AFC ,∴∠DAC =∠AFC.∵AF为⊙O直径,∴∠ACF =90°. ∴∠AFC +∠CAF =90°. ∴∠DAC +∠CAF =90°. 即∠DAF =90°. ∴AD 与⊙O 相切.28.(2013甘肃白银,28,12分)如图,在直角坐标系xoy 中,二次函数y =x 2+(2k -1)x +k +1的图象与x 轴交于O 、A 两点. (1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B ,使△AOB 的面积等于6.求点B 的坐标; (3)对于(2)中的点B ,在此抛物线上是否存在点P ,使∠POB =90°?若存在,求出点P 的坐标,并求出△POB 的面积;若不存在,请说明理由.【答案】解:(1)把点O (0,0)代入y =x 2+(2k -1)x +k +1得:0=k +1.解得k =-1. ∴y =x 2-3x . (2)设B (m ,m 2-3m ).当y =0时,x 2-3x =0.x =0或x =3.所以点A 坐标为(3,0).则有:633212=-⨯⨯m m .解得:m =-1或m =4. 这时B (-1,4)或(4,4). ∵点B 在对称轴右边,∴点B 的坐标为 (4,4).(3)存在. 如图, ∵点B 的坐标为 (4,4). ∴∠BOA =45°. 而∠POB =90°,∴∠POA =45°. 故可设P (n ,-n ). 把点P (n ,-n )代入y =x 2-3x 得:-n =n 2-3n . ∴n =0(舍去)或n =2. ∴P (2,-2). 这时,OB =244422=+,OP =222222=+. ∴△POB 的面积为:822242121=⨯⨯=⋅OP OB .。
2013年宁夏回族自治区中考数学试卷及解析
宁夏回族自治区2013年中考数学试卷一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.(3分)(2013•宁夏)计算(a2)3的结果是()A.a5B.a6C.a8D.3a2考点: 幂的乘方与积的乘方.分析:根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.解答:解:(a2)3=a6.故选B.点评:本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.2.(3分)(2013•宁夏)一元二次方程x(x﹣2)=2﹣x的根是()A.﹣1 B.2C.1和2 D.﹣1和2考点: 解一元二次方程-因式分解法.专题: 计算题.分析:先移项得到x(x﹣2)+(x﹣2)=0,然后利用提公因式因式分解,最后转化为两个一元一次方程,解方程即可.解答:解:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,∴x1=2,x2=﹣1.故选D.点评:本题考查了运用因式分解法解一元二次方程的方法:利用因式分解把一个一元二次方程化为两个一元一次方程.3.(3分)(2013•宁夏)如图是某水库大坝横断面示意图.其中AB、CD分别表示水库上下底面的水平线,∠ABC=120°,BC的长是50m,则水库大坝的高度h是()A.25m B.25m C.25m D.m考点: 解直角三角形的应用-坡度坡角问题.分析:首先过点C作CE⊥AB于点E,易得∠CBE=60°,在Rt△CBE中,BC=50m,利用正弦函数,即可求得答案.解答:解:过点C作CE⊥AB于点E,∵∠ABC=120°,∴∠CBE=60°,在Rt△CBE中,BC=50m,∴CE=BC•sin60°=25(m).故选A.点评:此题考查了坡度坡角问题.注意能构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.4.(3分)(2013•宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°考点: 翻折变换(折叠问题).分析:由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.解答:解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选C.点评:此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.5.(3分)(2013•宁夏)雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是() A.B.C.D.考点: 由实际问题抽象出二元一次方程组.分析:等量关系有:①甲种帐篷的顶数+乙种帐篷的顶数=1500顶;②甲种帐篷安置的总人数+乙种帐篷安置的总人数=8000人,进而得出答案.解答:解:根据甲、乙两种型号的帐篷共1500顶,得方程x+y=1500;根据共安置8000人,得方程6x+4y=8000.列方程组为:.故选:D.点评:此题主要考查了由实际问题抽象出二元一次方程组,列方程组解应用题的关键是找准等量关系,此题中要能够分别根据帐篷数和人数列出方程.6.(3分)(2013•宁夏)函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是() A.B.C.D.考点: 反比例函数的图象;一次函数的图象.分析:首先把一次函数化为y=ax﹣a,再分情况进行讨论,a>0时;a<0时,分别讨论出两函数所在象限,即可选出答案.解答:解:y=a(x﹣1)=ax﹣a,当a>0时,反比例函数在第一、三象限,一次函数在第一、三、四象限,当a<0时,反比例函数在第二、四象限,一次函数在第二、三、四象限,故选:C.点评:此题主要考查了反比例函数与一次函数图象,关键是掌握一次函数图象与系数的关系.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.7.(3分)(2013•宁夏)如图是某几何体的三视图,其侧面积()A.6B.4πC.6πD.12π考点: 由三视图判断几何体.分析:先判断出该几何体为圆柱,然后计算其侧面积即可.解答:解:观察三视图知:该几何体为圆柱,高为3cm,底面直径为2cm,侧面积为:πdh=2π×3=6π.故选C.点评:本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体.8.(3分)(2013•宁夏)如图,以等腰直角△ABC两锐角顶点A、B为圆心作等圆,⊙A与⊙B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为()A.B.C.D.考点: 扇形面积的计算;相切两圆的性质.分析:根据题意可判断⊙A与⊙B是等圆,再由直角三角形的两锐角互余,即可得到∠A+∠B=90°,根据扇形的面积公式即可求解.解答:解:∵⊙A与⊙B恰好外切,∴⊙A与⊙B是等圆,∵AC=2,△ABC是等腰直角三角形,∴AB=2,∴两个扇形(即阴影部分)的面积之和=+==πR2=.故选B.点评:本题考查了扇形的面积计算及相切两圆的性质,解答本题的关键是得出两扇形面积之和的表达式,难度一般.二、填空题(每小题3分,共24分)9.(3分)(2013•宁夏)分解因式:2a2﹣4a+2=2(a﹣1)2.考点: 提公因式法与公式法的综合运用.专题: 计算题.分析:先提公因式2,再利用完全平方公式分解因式即可.解答:解:2a2﹣4a+2,=2(a2﹣2a+1),=2(a﹣1)2.点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.(3分)(2013•宁夏)点P(a,a﹣3)在第四象限,则a的取值范围是0<a<3.考点: 点的坐标;解一元一次不等式组.分析:根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.解答:解:∵点P(a,a﹣3)在第四象限,∴,解得0<a<3.故答案为:0<a<3.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.(3分)(2013•宁夏)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.考点: 概率公式;轴对称图形.分析:根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.解答:解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.故答案为:3.点评:本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.(3分)(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB 的长为2cm.考点: 垂径定理;勾股定理.分析:通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.解答:解:过点O作OD⊥AB交AB于点D,∵OA=2OD=2cm,∴AD===cm,∵OD⊥AB,∴AB=2AD=cm.点评:本题综合考查垂径定理和勾股定理的运用.13.(3分)(2013•宁夏)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为﹣6.考点: 反比例函数图象上点的坐标特征;菱形的性质.专题: 探究型.分析:先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k 的值.解答:解:∵菱形的两条对角线的长分别是6和4,∴A(﹣3,2),∵点A在反比例函数y=的图象上,∴2=,解得k=﹣6.故答案为:﹣6.点评:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.14.(3分)(2013•宁夏)△ABC中,D、E分别是边AB与AC的中点,BC=4,下面四个结论:①DE=2;②△ADE∽△ABC;③△ADE的面积与△ABC的面积之比为1:4;④△ADE 的周长与△ABC的周长之比为1:4;其中正确的有①②③.(只填序号)考点: 相似三角形的判定与性质;三角形中位线定理.分析:根据题意做出图形,点D、E分别是AB、AC的中点,可得DE∥BC,DE=BC=2,则可证得△ADE∽△ABC,由相似三角形面积比等于相似比的平方,证得△ADE的面积与△ABC的面积之比为1:4,然后由三角形的周长比等于相似比,证得△ADE的周长与△ABC的周长之比为1:2,选出正确的结论即可.解答:解:∵在△ABC中,D、E分别是AB、AC的中点,∴DE∥BC,DE=BC=2,∴△ADE∽△ABC,故①②正确;∵△ADE∽△ABC,=,∴△ADE的面积与△ABC的面积之比为1:4,△ADE的周长与△ABC的周长之比为1:2,故③正确,④错误.故答案为:①②③.点评:此题考查了相似三角形的判定与性质以及三角形中位线的性质,难度不大,注意掌握数形结合思想的应用,要求同学们掌握相似三角形的周长之比等于相似比,面积比等于相似比的平方.15.(3分)(2013•宁夏)如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为2a.考点: 旋转的性质.分析:由在Rt△ABC中,∠ACB=90°,∠A=α,可求得:∠B=90°﹣α,由旋转的性质可得:CB=CD,根据等边对等角的性质可得∠CDB=∠B=90°﹣α,然后由三角形内角和定理,求得答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠A=α,∴∠B=90°﹣α,由旋转的性质可得:CB=CD,∴∠CDB=∠B=90°﹣α,∴∠BCD=180°﹣∠B﹣∠CDB=2α.即旋转角的大小为2α.故答案为:2α.点评:此题考查了旋转的性质、等腰三角形的性质以及三角形内角和定理.此题难度不大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.16.(3分)(2013•宁夏)若不等式组有解,则a的取值范围是a>﹣1.考点: 不等式的解集.分析:先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围.解答:解:∵由①得x≥﹣a,由②得x<1,故其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1.故答案为:a>﹣1.点评:考查了不等式组的解集,求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出不等式组的解集并与已知解集比较,进而求得另一个未知数的取值范围.三、解答题(共24分)17.(6分)(2013•宁夏)计算:.考点: 实数的运算;负整数指数幂;特殊角的三角函数值.专题: 计算题.分析:分别进行负整数指数幂、二次根式的化简及绝对值的运算,代入特殊角的三角函数值合并即可.解答:解:原式===.点评:本题考查了实数的运算,涉及了绝对值、负整数指数幂及特殊角的三角函数值,属于基础题.18.(6分)(2013•宁夏)解方程:.考点: 解分式方程.分析:观察可得最简公分母是(x﹣2)(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘以(x﹣2)(x+3),得6(x+3)=x(x﹣2)﹣(x﹣2)(x+3),6x+18=x2﹣2x﹣x2﹣x+6,化简得,9x=﹣12x=,解得x=.经检验,x=是原方程的解.点评:本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定要验根.19.(6分)(2013•宁夏)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.考点: 作图-位似变换;作图-旋转变换.分析:(1)由A(﹣1,2),B(﹣3,4)C(﹣2,6),可画出△ABC,然后由旋转的性质,即可画出△A1B1C1;(2)由位似三角形的性质,即可画出△A2B2C2.解答:解:如图:(1)△A1B1C1即为所求;(2)△A2B2C2即为所求.点评:此题考查了位似变换的性质与旋转的性质.此题难度不大,注意掌握数形结合思想的应用.20.(6分)(2013•宁夏)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表班级平均数方差中位数极差一班168 168 6二班168 3.8(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.考点: 方差;加权平均数;中位数;极差;统计量的选择.分析:(1)根据方差、中位数及极差的定义进行计算,得出结果后补全表格即可;(2)应选择方差为标准,哪班方差小,选择哪班.解答:解:(1)一班的方差=[(168﹣168)2+(167﹣168)2+(170﹣168)2+…+(170﹣168)2]=3.2;二班的极差为171﹣165=6;二班的中位数为168;补全表格如下:班级平均数方差中位数极差一班168 3.2 168 6二班168 3.8 168 6(2)选择方差做标准,∵一班方差<二班方差,∴一班可能被选取.点评:本题考查了方差、极差及中位数的知识,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.四、解答题(共48分)21.(6分)(2013•宁夏)小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:(1)求m的值;(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.考点: 频数(率)分布直方图;列表法与树状图法.分析:(1)根据班级总人数有50名学生以及利用条形图得出m的值即可;(2)根据在6~10小时的5名学生中随机选取2人,利用树形图求出概率即可.解答:解:(1)m=50﹣6﹣25﹣3﹣2=14;(2)记6~8小时的3名学生为,8~10小时的两名学生为,P(至少1人时间在8~10小时)=.点评:此题主要考查了频数分布表以及树状图法求概率,正确画出树状图是解题关键.22.(6分)(2013•宁夏)在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;求证:DF=DC.考点: 矩形的性质;全等三角形的判定与性质.专题: 证明题.分析:根据矩形的性质和DF⊥AE于F,可以得到∠DEC=∠AED,∠DFE=∠C=90,进而依据AAS可以证明△DFE≌△DCE.然后利用全等三角形的性质解决问题.解答:证明:连接DE.(1分)∵AD=AE,∴∠AED=∠ADE.(1分)∵有矩形ABCD,∴AD∥BC,∠C=90°.(1分)∴∠ADE=∠DEC,(1分)∴∠DEC=∠AED.又∵DF⊥AE,∴∠DFE=∠C=90°.∵DE=DE,(1分)∴△DFE≌△DCE.∴DF=DC.(1分)点评:此题比较简单,主要考查了矩形的性质,全等三角形的性质与判定,综合利用它们解题.23.(8分)(2013•宁夏)在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O 交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.(1)求证:AC与⊙O相切.(2)若BC=6,AB=12,求⊙O的面积.考点: 切线的判定;相似三角形的判定与性质.分析:(1)连接OE,求出∠ODE=∠F=∠DEO,推出OE∥BC,得出OE⊥AC,根据切线的判定推出即可;(2)证△AEO∽△ACB,得出关于r的方程,求出r即可.解答:证明:(1)连接OE,∵OD=OE,∴∠ODE=∠OED,∵BD=BF,∴∠ODE=∠F,∴∠OED=∠F,∴OE∥BF,∴∠AEO=∠ACB=90°,∴AC与⊙O相切;(2)解:由(1)知∠AEO=∠ACB,又∠A=∠A,∴△AOE∽△ABC,∴,设⊙O的半径为r,则,解得:r=4,∴⊙O的面积π×42=16π.点评:本题考查了等腰三角形的性质,切线的判定,平行线的性质和判定,相似三角形的性质和判定的应用,主要考查学生的推理和计算能力,用了方程思想.24.(8分)(2013•宁夏)如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x=(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.考点: 二次函数综合题.专题: 综合题.分析:(1)根据抛物线的对称轴得到抛物线的顶点式,然后代入已知的两点理由待定系数法求解即可;(2)首先求得点B的坐标,然后分CM=BM时和BC=BM时两种情况根据等腰三角形的性质求得点M的坐标即可.解答:解:(1)设抛物线的解析式把A(2,0)C(0,3)代入得:解得:∴即(2)由y=0得∴x1=1,x2=﹣3∴B(﹣3,0)①CM=BM时∵BO=CO=3 即△BOC是等腰直角三角形∴当M点在原点O时,△MBC是等腰三角形∴M点坐标(0,0)②BC=BM时在Rt△BOC中,BO=CO=3,由勾股定理得∴BC=∴BM=∴M点坐标(点评:本题考查了二次函数的综合知识,第一问考查了待定系数法确定二次函数的解析式,较为简单.第二问结合二次函数的图象考查了等腰三角形的性质,综合性较强.25.(10分)(2013•宁夏)如图1,在一直角边长为4米的等腰直角三角形地块的每一个正方形网格的格点(纵横直线的交点及三角形顶点) 上都种植同种农作物,根据以往种植实验发现,每株农作物的产量y(单位:千克) 受到与它周围直线距离不超过1米的同种农作物的株数x(单位:株) 的影响情况统计如下表:x(株) 1 2 3 4y(千克) 21 18 15 12(1)通过观察上表,猜测y与x之间之间存在哪种函数关系,求出函数关系式并加以验证;(2)根据种植示意图填写下表,并求出这块地平均每平方米的产量为多少千克?y(千克) 21 18 15 12频数(3)有人为提高总产量,将上述地块拓展为斜边长为6米的等腰直角三角形,采用如图2所示的方式,在每个正方形网格的格点上都种植了与前面相同的农作物,共种植了16株,请你通过计算平均每平方米的产量,来比较那种种植方式更合理?考点: 一次函数的应用.分析:(1)设y=kx+b,然后根据表格数据,取两组数x=1,y=21和x=2,y=18,利用待定系数法求一次函数解析式解答;(2)根据图1查出与它周围距离为1米的农作物分别是1株、2株、3株、4株棵树即为相应的频数,然后利用加权平均数的计算方法列式进行计算即可得解;(3)先求出图2的面积,根据图形查出与它周围距离为1米的农作物分别是1株、2株、3株、4株棵树即为相应的频数,然后利用加权平均数的计算方法列式进行计算求出平均每平方米的产量,然后与(2)的计算进行比较即可得解.解答:解(1)设y=kx+b,把x=1,y=21和x=2,y=18代入y=kx+b得,,解得,则y=﹣3x+24,当x=3时y=﹣3×3+24=15,当x=4时y=﹣3×4+24=12,故y=﹣3x+24是符合条件的函数关系;(2)由图可知,y(千克)21、18、15、12的频数分别为2、4、6、3,图1地块的面积:×4×4=8(m2),所以,平均每平方米的产量:(21×2+18×4+15×6+12×3)÷8=30(千克);(3)图2地块的面积:×6×3=9,y(千克)21、18、15、12的频数分别为3、4、5、4,所以,平均每平方米产量:(21×3+18×4+15×5+12×4)÷9=258÷9≈28.67(千克),∵30>28.67,∴按图(1)的种植方式更合理.点评:本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,(2)(3)两个小题,理解“频数”的含义并根据图形求出相应的频数是解题的关键.26.(10分)(2013•宁夏)在▱ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE,CP.已知∠A=60°;(1)若BC=8,AB=6,当AP的长为多少时,△CPE的面积最大,并求出面积的最大值.(2)试探究当△CPE≌△CPB时,▱ABCD的两边AB与BC应满足什么关系?考点: 四边形综合题.专题: 计算题.分析:(1)延长PE交CD的延长线于F,设AP=x,△CPE的面积为y,由四边形ABCD为平行四边形,利用平行四边形的对边相等得到AB=DC,AD=BC,在直角三角形APE中,根据∠A 的度数求出∠PEA的度数为30度,利用直角三角形中30度所对的直角边等于斜边的一半表示出AE与PE,由AD﹣AE表示出DE,再利用对顶角相等得到∠DEF为30度,利用30度所对的直角边等于斜边的一半表示出DF,由两直线平行内错角相等得到∠F 为直角,表示出三角形CPE的面积,得出y与x的函数解析式,利用二次函数的性质即可得到三角形CPE面积的最大值,以及此时AP的长;(2)由△CPE≌△CPB,利用全等三角形的对应边相等,对应角相等得到BC=CE,∠B=∠PEC=120°,进而得出∠ECD=∠CED,利用等角对等边得到ED=CD,即三角形ECD为等腰三角形,过D作DM垂直于CE,∠ECD=30°,利用锐角三角形函数定义表示出cos30°,得出CM与CD的关系,进而得出CE与CD的关系,即可确定出AB与BC满足的关系.解答:解:(1)延长PE交CD的延长线于F,设AP=x,△CPE的面积为y,∵四边形ABCD为平行四边形,∴AB=DC=6,AD=BC=8,∵Rt△APE,∠A=60°,∴∠PEA=30°,∴AE=2x,PE=x,在Rt△DEF中,∠DEF=∠PEA=30°,DE=AD﹣AE=8﹣2x,∴DF=DE=4﹣x,∵AB∥CD,PF⊥AB,∴PF⊥CD,∴S△CPE=PE•CF,即y=×x×(10﹣x)=﹣x2+5x,配方得:y=﹣(x﹣5)2+,当x=5时,y有最大值,即AP的长为5时,△CPE的面积最大,最大面积是;(2)当△CPE≌△CPB时,有BC=CE,∠B=∠PEC=120°,∴∠CED=180°﹣∠AEP﹣∠PEC=30°,∵∠ADC=120°,∴∠ECD=∠CED=180°﹣120°﹣30°=30°,∴DE=CD,即△EDC是等腰三角形,过D作DM⊥CE于M,则CM=CE,在Rt△CMD中,∠ECD=30°,∴cos30°==,∴CM=CD,∴CE=CD,∵BC=CE,AB=CD,∴BC=AB,则当△CPE≌△CPB时,BC与AB满足的关系为BC=AB.点评:此题考查了四边形的综合题,涉及的知识有:平行四边形的性质,含30度直角三角形的性质,平行线的判定与性质,以及二次函数的性质,是一道多知识点综合的探究题.。
2024年甘肃省白银市中考数学真题试卷及答案解析
白银市2024年初中毕业升学暨高中阶段学校招生考试数学试卷考生注意:本试卷满分为150分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.下列各数中,比2-小的数是()A.1-B.4-C.4D.12.如图所示,该几何体的主视图是()A. B. C. D.3.若55A ∠=︒,则A ∠的补角为()A.35︒B.45︒C.115︒D.125︒4.计算:4222a ba b a b -=--()A.2B.2a b -C.22a b - D.2a ba b--5.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,60ABD ∠=︒,2AB =,则AC 的长为()A.6B.5C.4D.36.如图,点A ,B ,C 在O 上,AC OB ⊥,垂足为D ,若35A ∠=︒,则C ∠的度数是()A.20︒B.25︒C.30︒D.35︒7.如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x 尺,长桌的长为y 尺,则y 与x 的关系可以表示为()A.3y x =B.4y x =C.31y x =+D.41y x =+8.近年来,我国重视农村电子商务的发展.下面的统计图反映了2016—2023年中国农村网络零售额情况.根据统计图提供的信息,下列结论错误的是()A.2023年中国农村网络零售额最高B.2016年中国农村网络零售额最低C.2016—2023年,中国农村网络零售额持续增加D.从2020年开始,中国农村网络零售额突破20000亿元9.敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A 区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为()15,16,那么有序数对记为()12,17对应的田地面积为()A.一亩八十步B.一亩二十步C.半亩七十八步D.半亩八十四步10.如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.D.二、填空题:本大题共6小题,每小题4分,共24分.11.因式分解:228x -=________.12.已知一次函数24y x =-+,当自变量2x >时,函数y 的值可以是________(写出一个合理的值即可).13.定义一种新运算*,规定运算法则为:*n m n m mn =-(m ,n 均为整数,且0m ≠).例:32*32232=-⨯=,则(2)*2-=________.14.围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点________的位置,则所得的对弈图是轴对称图形.(填写A ,B ,C ,D 中的一处即可,A ,B ,C ,D 位于棋盘的格点上)15.如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =-++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8mDE =的矩形,则可判定货车________完全停到车棚内(填“能”或“不能”).16.甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形OBC 和扇形OAD 有相同的圆心O ,且圆心角100O ∠=︒,若120OA =cm ,60OB =cm ,则阴影部分的面积是______2cm .(结果用π表示)三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17..18.解不等式组:()223122x x x x ⎧-<+⎪⎨+<⎪⎩19.先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b =-.20.马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:①以点M 为圆心,OM 长为半径,作弧交O 于A ,B 两点;②延长MO 交O 于点C ;即点A ,B ,C 将O的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O 的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB ,AC ,BC ,若O 的半径为2cm ,则ABC 的周长为______cm .21.在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.(1)请用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲乙双方公平吗?请说明理由.22.习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH 垂直于地面,测角仪CD ,EF 在AH 两侧, 1.6m CD EF ==,点C 与点E 相距182m (点C ,H ,E 在同一条直线上),在D 处测得简尖顶点A 的仰角为45︒,在F 处测得筒尖顶点A 的仰角为53︒.求风电塔筒AH 的高度.(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈.)四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.在阳光中学运动会跳高比赛中,每位选手要进行五轮比赛,张老师对参加比赛的甲、乙、丙三位选手的得分(单位:分,满分10分)进行了数据的收集、整理和分析,信息如下:信息一:甲、丙两位选手的得分折线图:信息二:选手乙五轮比赛部分成绩:其中三个得分分别是9.0,8.9,8.3;信息三:甲、乙、丙三位选手五轮比赛得分的平均数、中位数数据如下:选手甲乙丙统计量平均数m9.18.9中位数9.29.0n根据以上信息,回答下列问题:(1)写出表中m ,n 的值:m =_______,n =_______;(2)从甲、丙两位选手的得分折线图中可知,选手_______发挥的稳定性更好(填“甲”或“丙”);(3)该校现准备推荐一位选手参加市级比赛,你认为应该推荐哪位选手,请说明理由.24.如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0k y x x=>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0k y x x =>的图象于C ,D 两点.(1)求一次函数y ax b =+和反比例函数k y x=的表达式;(2)连接AD ,求ACD 的面积.25.如图,AB 是O 的直径, BCBD =,点E 在AD 的延长线上,且ADC AEB ∠=∠.(1)求证:BE 是O 的切线;(2)当O 的半径为2,3BC =时,求tan AEB ∠的值.26.【模型建立】(1)如图1,已知ABE 和BCD △,AB BC ⊥,AB BC =,CD BD ⊥,AE BD ⊥.用等式写出线段AE ,DE ,CD 的数量关系,并说明理由.【模型应用】(2)如图2,在正方形ABCD 中,点E ,F 分别在对角线BD 和边CD 上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形ABCD 中,点E 在对角线BD 上,点F 在边CD 的延长线上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.27.如图1,抛物线()2y a x h k =-+交x 轴于O ,()4,0A 两点,顶点为(2,B .点C 为OB 的中点.(1)求抛物线2()y a x h k =-+的表达式;(2)过点C 作CH OA ⊥,垂足为H ,交抛物线于点E .求线段CE 的长.(3)点D 为线段OA 上一动点(O 点除外),在OC 右侧作平行四边形OCFD .①如图2,当点F落在抛物线上时,求点F的坐标;+的最小值.②如图3,连接BD,BF,求BD BF参考答案一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.【答案】B【解析】【分析】本题主要考查了有理数比较大小,根据正数大于0,0大于负数,两个负数比较大小,绝对值越大其值越小进行求解即可.-=>-=>-=,【详解】解;∵442211∴42114-<-<-<<,∴四个数中比2-小的数是4-,故选:B .2.【答案】C【解析】【分析】本题考查了简单几何体的三视图,根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看得到的图形是:故选:C .3.【答案】D【解析】【分析】根据和为180︒的两个角互为补角,计算即可.本题考查了补角,熟练掌握定义是解题的关键.【详解】55A ∠=︒。
2024年甘肃省白银市中考数学试题(解析版)
白银市2024年初中毕业升学暨高中阶段学校招生考试数学试卷考生注意:本试卷满分为150分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.下列各数中,比2-小的数是()A.1- B.4- C.4 D.1【答案】B【解析】【分析】本题主要考查了有理数比较大小,根据正数大于0,0大于负数,两个负数比较大小,绝对值越大其值越小进行求解即可.【详解】解;∵442211-=>-=>-=,∴42114-<-<-<<,∴四个数中比2-小的数是4-,故选:B .2.如图所示,该几何体的主视图是()A. B. C. D.【答案】C【解析】【分析】本题考查了简单组合体的三视图,根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看得到是图形是:故选:C .3.若55A ∠=︒,则A ∠的补角为()A.35︒ B.45︒ C.115︒ D.125︒【答案】D【解析】【分析】根据和为180︒的两个角互为补角,计算即可.本题考查了补角,熟练掌握定义是解题的关键.【详解】55A ∠=︒。
则A ∠的补角为18055125︒-︒=︒.故选:D .4.计算:4222a b a b a b -=--()A.2B.2a b -C.22a b -D.2a b a b --【答案】A【解析】【分析】本题主要考查了同分母分式减法计算,熟知相关计算法则是解题的关键.【详解】解:()42422222222a b a b a b a b a a b a bb --===-----,故选:A .5.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,60ABD ∠=︒,2AB =,则AC 的长为()A.6B.5C.4D.3【答案】C【解析】【分析】根据矩形ABCD 的性质,得12OA OB OC OD AC ====,结合60ABD ∠=︒,得到AOB 是等边三角形,结合2AB =,得到12OA OB AB AC ===,解得即可.本题考查了矩形的性质,等边三角形的判定和性质,熟练掌握矩形的性质是解题的关键.【详解】根据矩形ABCD 的性质,得12OA OB OC OD AC ====,∵60ABD ∠=︒,∴AOB 是等边三角形,∵2AB =,∴122OA OB AB AC ====,解得4AC =.故选C .6.如图,点A ,B ,C 在O 上,AC OB ⊥,垂足为D ,若35A ∠=︒,则C ∠的度数是()A.20︒B.25︒C.30︒D.35︒【答案】A【解析】【分析】根据35A ∠=︒得到70O ∠=︒,根据AC OB ⊥得到90CDO ∠=︒,根据直角三角形的两个锐角互余,计算即可.本题考查了圆周角定理,直角三角形的性质,熟练掌握圆周角定理,直角三角形的性质是解题的关键.【详解】∵35A ∠=︒,∴70O ∠=︒,∵AC OB ⊥,∴90CDO ∠=︒,∴9020C O ∠=︒-∠=︒.故选C .7.如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x 尺,长桌的长为y 尺,则y 与x 的关系可以表示为()A.3y x =B.4y x =C.31y x =+D.41y x =+【答案】B【解析】【分析】本题主要考查了列函数关系式,观察可知,小桌的长是小桌宽的两倍,则小桌的长是2x ,再根据长桌的长等于小桌的长加上2倍的小桌的宽列出对应的函数关系式即可.【详解】解:由题意可得,小桌的长是小桌宽的两倍,则小桌的长是2x ,∴24y x x x x =++=,故选:B .8.近年来,我国重视农村电子商务的发展.下面的统计图反映了2016—2023年中国农村网络零售额情况.根据统计图提供的信息,下列结论错误的是()A.2023年中国农村网络零售额最高B.2016年中国农村网络零售额最低C.2016—2023年,中国农村网络零售额持续增加D.从2020年开始,中国农村网络零售额突破20000亿元【答案】D【解析】【分析】根据统计图提供信息解答即可.本题考查了统计图的应用,熟练掌握统计图的意义是解题的关键.【详解】A.根据统计图信息,得到124491367917083107946205945<<<<<<21700<024900,故2023年中国农村网络零售额最高,正确,不符合题意;B.根据题意,得124491367917083107946205945<<<<<<21700<024900,故2016年中国农村网络零售额最低,正确,不符合题意;C.根据题意,得124491367917083107946205945<<<<<<21700<024900,故2016—2023年,中国农村网络零售额持续增加,正确,不符合题意;D.从2021年开始,中国农村网络零售额突破20000亿元,原说法错误,符合题意;故选D .9.敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A 区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为()15,16,那么有序数对记为()12,17对应的田地面积为()A.一亩八十步B.一亩二十步C.半亩七十八步D.半亩八十四步【答案】D【解析】【分析】根据()1516,可得,横从上面从右向左看,纵从右边自下而上看,解答即可.本题考查了坐标与位置的应用,熟练掌握坐标与位置的应用是解题的关键.【详解】根据()1516,可得,横从上面从右向左看,纵从右边自下而上看,故()12,17对应的是半亩八十四步,故选D .10.如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.D.【答案】C【解析】【分析】结合图象,得到当0x =时,4PO AO ==,当点P 运动到点B 时,2PO BO ==,根据菱形的性质,得90AOB BOC ∠=∠=︒,继而得到AB BC ===P 运动到BC 中点时,PO 的长为12BC =本题考查了菱形的性质,图象信息题,勾股定理,直角三角形的性质,熟练掌握菱形的性质,勾股定理,直角三角形的性质是解题的关键.【详解】结合图象,得到当0x =时,4PO AO ==,当点P 运动到点B 时,2PO BO ==,根据菱形的性质,得90AOB BOC ∠=∠=︒,故AB BC ===,当点P 运动到BC 中点时,PO 的长为12BC =故选C .二、填空题:本大题共6小题,每小题4分,共24分.11.因式分解:228x -=________.【答案】()()222x x +-【解析】【分析】先提取公因式,再套用公式分解即可.本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.【详解】()2222822x x -=-()()222x x =+-.故答案为:()()222x x +-.12.已知一次函数24y x =-+,当自变量2x >时,函数y 的值可以是________(写出一个合理的值即可).【答案】2-(答案不唯一)【解析】【分析】根据2x >,选择3x =,此时2342y =-⨯+=-,解得即可.本题考查了函数值的计算,正确选择自变量是解题的关键.【详解】根据2x >,选择3x =,此时2342y =-⨯+=-,故答案为:2-.13.定义一种新运算*,规定运算法则为:*n m n m mn =-(m ,n 均为整数,且0m ≠).例:32*32232=-⨯=,则(2)*2-=________.【答案】8【解析】【分析】根据定义,得()()2(2)*22228-=--⨯-=,解得即可.本题考查了实数新定义计算,正确理解定义是解题的关键.【详解】根据定义,得()()2(2)*22228-=--⨯-=,故答案为:8.14.围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点________的位置,则所得的对弈图是轴对称图形.(填写A ,B ,C ,D 中的一处即可,A ,B ,C ,D 位于棋盘的格点上)【答案】A##C【解析】【分析】根据轴对称图形的定义解答即可.本题考查了轴对称图形,熟练掌握定义是解题的关键.【详解】根据轴对称图形的定义,发现放在B ,D 处不能构成轴对称图形,放在A 或C 处可以,故答案为:A 或C .15.如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =-++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8mDE =的矩形,则可判定货车________完全停到车棚内(填“能”或“不能”).【答案】能【解析】【分析】本题主要考查了二次函数的实际应用,根据题意求出当2x =时,y 的值,若此时y 的值大于1.8,则货车能完全停到车棚内,反之,不能,据此求解即可.【详解】解:∵4m CD =,()62.68B ,,∴642-=,在20.020.3 1.6y x x =-++中,当2x =时,20.0220.32 1.6 2.12y =-⨯+⨯+=,∵2.12 1.8>,∴可判定货车能完全停到车棚内,故答案为:能.16.甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形OBC 和扇形OAD 有相同的圆心O ,且圆心角100O ∠=︒,若120OA =cm ,60OB =cm ,则阴影部分的面积是______2cm .(结果用π表示)【答案】3000π【解析】【分析】根据扇形面积公式计算即可.本题考查了扇形面积公式,熟练掌握公式是解题的关键.【详解】∵圆心角100O ∠=︒,120OA =cm ,60OB =cm ,∴阴影部分的面积是2210012010060360360ππ⨯⨯⨯⨯-3000π=2cm 故答案为:3000π.三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17..【答案】0【解析】【分析】根据二次根式的混合运算计算即可.本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.【详解】-0===.18.解不等式组:()223122x x x x ⎧-<+⎪⎨+<⎪⎩【答案】173x <<【解析】【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:()223122x x x x ⎧-<+⎪⎨+<⎪⎩①②解不等式①得:7x <,解不等式②得:13x >,∴不等式组的解集为173x <<.19.先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b =-.【答案】2a b +,3【解析】【分析】本题主要考查了整式的化简求值,先根据平方差公式和完全平方公式去小括号,然后合并同类项,再根据多项式除以单项式的计算法则化简,最后代值计算即可.【详解】解:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦()()22224442a ab b a b b⎡⎤=++--÷⎣⎦()22224442a ab b a b b=++-+÷()2422ab b b=+÷2a b =+,当2a =,1b =-时,原式()2213=⨯+-=.20.马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:①以点M 为圆心,OM 长为半径,作弧交O 于A ,B 两点;②延长MO 交O 于点C ;即点A ,B ,C 将O 的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O 的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB ,AC ,BC ,若O 的半径为2cm ,则ABC 的周长为______cm .【答案】(1)见解析(2)【解析】【分析】(1)根据尺规作图的基本步骤解答即可;(2)连接AM ,设,AB OM 的交点为D ,根据两圆的圆心线垂直平分公共弦,得到AD OM ⊥,根据O 的半径为2cm ,MC 是直径,ABC 是等边三角形,计算即可.本题考查了尺规作图,圆的性质,等边三角形的性质,熟练掌握作图和圆的性质是解题的关键.【小问1详解】根据基本作图的步骤,作图如下:则点A ,B ,C 是求作的O 的圆周三等分点.【小问2详解】连接AM ,设,AB OM 的交点为D ,根据两圆的圆心线垂直平分公共弦,得到AD OM ⊥,∵O 的半径为2cm ,MC 是直径,ABC 是等边三角形,∴90CAM ∠=︒,60,4cm CMA MC ∠=︒=,∴)sin sin 604cm AC MC CMA =∠=︒⨯=,∴ABC 的周长为)cm AB BC AC ++=,故答案为:21.在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.(1)请用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲乙双方公平吗?请说明理由.【答案】(1)712(2)这个游戏规则对甲乙双方不公平,理由见解析【解析】【分析】本题主要考查了树状图法或列表法求解概率,游戏的公平性:(1)先画出树状图得到所有等可能性的结果数,再找到两球上的数字之和为奇数的结果数,最后利用概率计算公式求解即可;(2)同(1)求出乙获胜的概率即可得到结论.【小问1详解】解:画树状图如下:由树状图可知,一共有12种等可能性的结果数,其中两球上的数字之和为奇数的结果数有7种,∴甲获胜的概率为712;【小问2详解】解:这个游戏规则对甲乙双方不公平,理由如下:由(1)中的树状图可知,两球上的数字之和为偶数的结果数有5种,∴乙获胜的概率为512,∵571212<,∴甲获胜的概率大于乙获胜的概率,∴这个游戏规则对甲乙双方不公平.22.习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH 垂直于地面,测角仪CD ,EF 在AH 两侧, 1.6m CD EF ==,点C 与点E 相距182m (点C ,H ,E 在同一条直线上),在D 处测得简尖顶点A 的仰角为45︒,在F 处测得筒尖顶点A 的仰角为53︒.求风电塔筒AH 的高度.(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈.)【答案】105.6m【解析】【分析】本题主要考查了解直角三角形的实际应用,矩形的性质与判定,过点D 作DG AH ⊥于G ,连接FG ,则四边形CDGH 是矩形,可得 1.6m GH CD ==,DG CH =,再证明四边形EFGH 是矩形,则FG HE =,90HGF ∠=︒,进一步证明D G F 、、三点共线,得到182m DF =;设m AG x =,解Rt ADG 得到m DG x =;解Rt AFG △得到3m 4FG x ≈;则31824x x +=,解得104x =,即104m AG =,则105.6m AH AG GH =+=.【详解】解:如图所示,过点D 作DG AH ⊥于G ,连接FG ,则四边形CDGH 是矩形,∴ 1.6m GH CD ==,DG CH =,∵ 1.6m CD EF ==,∴GH EF =,由题意可得GH CE EF CE ⊥,⊥,∴GH EF ,∴四边形EFGH 是矩形,∴FG HE =,90HGF ∠=︒,∴180DGH FGH +=︒∠∠,∴D G F 、、三点共线,∴182m DF DG FG CH HE CE =+=+==;设m AG x =,在Rt ADG 中,tan AG ADG DG∠=,∴tan 45xDG︒=∴m DG x =;在Rt AFG △中,tan AG AFG FG ∠=,∴tan 53x FG ︒=∴3m 4FG x ≈;∴31824x x +=,解得104x =,∴104m AG =,∴105.6m AH AG GH =+=,∴风电塔筒AH 的高度约为105.6m .四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.在阳光中学运动会跳高比赛中,每位选手要进行五轮比赛,张老师对参加比赛的甲、乙、丙三位选手的得分(单位:分,满分10分)进行了数据的收集、整理和分析,信息如下:信息一:甲、丙两位选手的得分折线图:信息二:选手乙五轮比赛部分成绩:其中三个得分分别是9.0,8.9,8.3;信息三:甲、乙、丙三位选手五轮比赛得分的平均数、中位数数据如下:选手统计量甲乙丙平均数m9.18.9中位数9.29.0n根据以上信息,回答下列问题:(1)写出表中m,n的值:m=_______,n=_______;(2)从甲、丙两位选手的得分折线图中可知,选手_______发挥的稳定性更好(填“甲”或“丙”);(3)该校现准备推荐一位选手参加市级比赛,你认为应该推荐哪位选手,请说明理由.【答案】(1)9.1;9.1(2)甲(3)应该推荐甲选手,理由见解析【解析】【分析】本题主要考查了平均数,众数,方差与稳定性之间的关系:(1)根据平均数与众数的定义求解即可;(2)根据统计图可知,甲的成绩的波动比乙的成绩的波动小,则选手甲发挥的稳定性更好;(3)从平均成绩,中位数和稳定性等角度出发进行描述即可.【小问1详解】解:由题意得,9.28.89.38.79.59.15m++++==;把丙的五次成绩按照从低到高排列为:8.38.49.19.39.4,,,,,∴丙成绩的中位数为9.1分,即9.1n=;故答案为:9.1;9.1;【小问2详解】解:由统计图可知,甲的成绩的波动比乙的成绩的波动小,则选手甲发挥的稳定性更好,故答案为:甲;【小问3详解】解:应该推荐甲选手,理由如下:甲的中位数和平均数都比乙的大,且甲的成绩稳定性比乙好,∴应该推荐甲选手.24.如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0k y x x=>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0k y x x =>的图象于C ,D 两点.(1)求一次函数y ax b =+和反比例函数k y x=的表达式;(2)连接AD ,求ACD 的面积.【答案】(1)一次函数y ax b =+的解析式为132y x =+;反比例函数()0k y x x =>的解析式为()80y x x =>;(2)6【解析】【分析】本题主要考查了一次函数与反比例函数综合:(1)先根据一次函数图象的平移规律3y ax b ax =+=+,再把点A 的坐标分别代入对应的一次函数解析式和反比例函数解析式中,利用待定系数法求解即可;(2)先分别求出C 、D 的坐标,进而求出CD 的长,再根据三角形面积计算公式求解即可.【小问1详解】解:∵将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,∴3y ax b ax =+=+,把()24A ,代入3y ax =+中得:234a +=,解得12a =,∴一次函数y axb =+的解析式为132y x =+;把()24A ,代入()0k y x x =>中得:()402k x =>,解得8k =,∴反比例函数()0k y x x =>的解析式为()80y x x=>;【小问2详解】解:∵BC x ∥轴,()02B ,,∴点C 和点D 的纵坐标都为2,在132y x =+中,当1322y x =+=时,2x =-,即()22-,C ;在()80y x x =>中,当82y x ==时,4x =,即()42D ,;∴()426CD =--=,∵()24A ,,∴()()11642622ACD A C S CD y y =⋅-=⨯⨯-=△.25.如图,AB 是O 的直径, BCBD =,点E 在AD 的延长线上,且ADC AEB ∠=∠.(1)求证:BE 是O 的切线;(2)当O 的半径为2,3BC =时,求tan AEB ∠的值.【答案】(1)见解析(2)tan 3AEB ∠=【解析】【分析】(1)连接BD ,OC OD =,证明OB 垂直平分CD ,得出90AFD ∠=︒,证明CD BE ∥,得出90ABE AFD ∠=∠=︒,说明AB BE ⊥,即可证明结论;(2)根据AB 是O 的直径,得出90ACB ∠=︒,根据勾股定理求出AC ===,根据三角函数定义求出tan 3AC ABC BC ∠==,证明AEB ABC ∠=∠,得出7tan tan 3AEB ABC ∠=∠=即可.【小问1详解】证明:连接BD ,OC OD =,如图所示:∵ BC BD =,∴BC BD =,∵OC OD =,∴点O 、B 在CD 的垂直平分线上,∴OB 垂直平分CD ,∴90AFD ∠=︒,∵ADC AEB ∠=∠,∴CD BE ∥,∴90ABE AFD ∠=∠=︒,∴AB BE ⊥,∵AB 是O 的直径,∴BE 是O 的切线;【小问2详解】解:∵O 的半径为2,∴224AB =⨯=,∵AB 是O 的直径,∴90ACB ∠=︒,∵3BC =,∴AC ===∴tan 3AC ABC BC ∠==,∵ AC AC=,∴ADC ABC ∠=∠,∵AEB ADC ∠=∠,∴AEB ABC ∠=∠,∴7tan tan 3AEB ABC ∠=∠=.【点睛】本题主要考查了切线的判定,勾股定理,求一个角的正切值,圆周角定理,垂直平分线的判定,平行线的判定和性质,解题的关键是作出辅助线,熟练掌握相关的判定和性质.26.【模型建立】(1)如图1,已知ABE 和BCD △,AB BC ⊥,AB BC =,CD BD ⊥,AE BD ⊥.用等式写出线段AE ,DE ,CD 的数量关系,并说明理由.【模型应用】(2)如图2,在正方形ABCD 中,点E ,F 分别在对角线BD 和边CD 上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形ABCD 中,点E 在对角线BD 上,点F 在边CD 的延长线上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.【答案】(1)DE CD AE +=,理由见详解,(2)AD DF =+,理由见详解,(3)AD DF =-,理由见详解【解析】【分析】(1)直接证明ABE BCD △≌△,即可证明;(2)过E 点作EM AD ⊥于点M ,过E 点作EN CD ⊥于点N ,先证明Rt Rt AEM FEN ≌,可得AM NF =,结合等腰直角三角形的性质可得:2MD DN DE ==,NF ND DF MD DF =-=-,即有2NF AM AD MD AD DE ==-=-,2NF DE DF =-,进而可得22AD DE DE DF -=-,即可证;(3)过A 点作AH BD ⊥于点H ,过F 点作FG BD ⊥,交BD 的延长线于点G ,先证明HAE GEF ≌,再结合等腰直角三角形的性质,即可证明.【详解】(1)DE CD AE +=,理由如下:∵CD BD ⊥,AE BD ⊥,AB BC ⊥,∴90ABC D AEB ∠=∠=∠=︒,∴90ABE CBD C CBD ∠+∠=∠+∠=︒,∴ABE C ∠=∠,∵AB BC =,∴ABE BCD △≌△,∴BE CD =,AE BD =,∴DE BD BE AE CD =-=-,∴DE CD AE +=;(2)AD DF =+,理由如下:过E 点作EM AD ⊥于点M ,过E 点作EN CD ⊥于点N ,如图,∵四边形ABCD 是正方形,BD 是正方形的对角线,∴45ADB CDB ∠=∠=︒,BD 平分ADC ∠,90ADC ∠=︒,BD ==,即DE BD BE BE =-=-,∵EN CD ⊥,EM AD ⊥,∴EM EN =,∵AE EF =,∴Rt Rt AEM FEN ≌,∴AM NF =,∵EM EN =,EN CD ⊥,EM AD ⊥,90ADC ∠=︒,∴四边形EMDN 是正方形,∴ED 是正方形EMDN 对角线,MD ND =,∴2MD DN DE ==,NF ND DF MD DF =-=-,∴2NF AM AD MD AD DE ==-=-,2NF DE DF =-,∴22AD DE DE DF -=-,即AD DF =-,∵DE BE =-,∴)AD BE DF =--,即有AD DF =+;(3)AD DF =-,理由见详解,过A 点作AH BD ⊥于点H ,过F 点作FG BD ⊥,交BD 的延长线于点G ,如图,∵AH BD ⊥,FG BD ⊥,AE EF ⊥,∴90AHE G AEF ∠=∠=∠=︒,∴90AEH HAE AEH FEG ∠+∠=∠+∠=︒,∴HAE FEG ∠=∠,又∵AE AF =,∴HAE GEF ≌,∴HE FG =,∵在正方形ABCD 中,45BDC ∠=︒,∴45FDG BDC ∠=∠=︒,∴45DFG ∠=︒,∴DFG 是等腰直角三角形,∴2FG DF =,∴2HE FG DF ==,∵45ADB ∠=︒,AH HD ⊥,∴ADH 是等腰直角三角形,∴2HD AD =,∴22DE HD HE AD DF =-=-,∴22BD BE DE AD -==-,∵BD D =,22BE AD DF -=-,∴AD DF =-.【点睛】本题主要考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,角平分线的性质等知识,题目难度中等,作出合理的辅助线,灵活证明三角形的全等,并准确表示出各个边之间的数量关系,是解答本题的关键.27.如图1,抛物线()2y a x h k =-+交x 轴于O ,()4,0A 两点,顶点为(2,B .点C 为OB 的中点.(1)求抛物线2()y a x h k =-+的表达式;(2)过点C 作CH OA ⊥,垂足为H ,交抛物线于点E .求线段CE 的长.(3)点D 为线段OA 上一动点(O 点除外),在OC 右侧作平行四边形OCFD .①如图2,当点F 落在抛物线上时,求点F 的坐标;②如图3,连接BD ,BF ,求BD BF +的最小值.【答案】(1)22y x =-+(2)2(3)①(2F ②【解析】【分析】(1)根据顶点为(2,B .设抛物线2(2)y a x =-+()4,0A 代入解析式,计算求解即可;(2)根据顶点为(2,B .点C 为OB 的中点,得到(C ,当1x =时,22y =-+=,得到331,2E ⎛ ⎝⎭.结合CH OA ⊥,垂足为H ,得到33322CE =-=的长.(3)①根据题意,得(C ,结合四边形OCFD 是平行四边形,设(F m ,结合点F 落在抛物线232m =-+,解得即可;②过点B 作BN y ⊥轴于点N ,作点D 关于直线BN 的对称点G ,过点G 作GH y ⊥轴于点H ,连接DG ,CH ,FG ,利用平行四边形的判定和性质,三角形不等式,勾股定理,矩形判定和性质,计算解答即可.【小问1详解】∵抛物线的顶点坐标为(2,B .设抛物线2(2)y a x =-+把()4,0A 代入解析式,得()2420a -+=,解得32a =-,∴()2233222y x x =--+=-+.【小问2详解】∵顶点为(2,B .点C 为OB 的中点,∴(C ,∵CH OA ⊥,∴CH y ∥轴,∴E 的横坐标为1,设()1,E m ,当1x =时,33322m =-+=,∴331,2E ⎛⎫ ⎪ ⎪⎝⎭.∴33322CE ==.【小问3详解】①根据题意,得(C ,∵四边形OCFD 是平行四边形,∴点C ,点F 的纵坐标相同,设(F m ,∵点F 落在抛物线上,22m =-+,解得12m =22m =(舍去);故(2F +.②过点B 作BN y ⊥轴于点N ,作点D 关于直线BN 的对称点G ,过点G 作GH y ⊥轴于点H ,连接DG ,CH ,FG ,则四边形ODGH 是矩形,∴,OD HG OD HG = ,∵四边形OCFD 是平行四边形,∴,OD CF OD CF = ,∴,GH CF GH CF = ,∴四边形CFGH 是平行四边形,∴FG CH =,∵BG F BF G +≥,故当B G F 、、三点共线时,BG BF +取得最小值,∵BG BD =,∴BG BF +的最小值,就是BD BF +的最小值,且最小值就是CH ,延长FC 交y 轴于点M ,∵OD CF ∥,∴90HMC HOD ∠=∠=︒,∵(C ,∴1,CM OM ==∵(2,B ,∴ON NH ==,∴HM ON NH OM =+-=∴HC ===,故BD BF +的最小值是.【点睛】本题考查了二次函数待定系数法,中点坐标公式,平行四边形的判定和性质,矩形的判定和性质,勾股定理,轴对称,三角形不等式求线段和的最小值,熟练掌握平行四边形的性质,轴对称,三角形不等式求线段和的最小值是解题的关键.。
2013中考数学真题及答案汇编相当经典不用花钱(八)
【答案】B 【解析】方差小的比较稳定,故选 B。 5.(2013 山西,5,2 分)下列计算错误的是( )
A.x3+ x3=2x3
B.a6÷a3=a2
C.
12 2
3
1 1 D. 3
3
【答案】B
【解析】a6÷a3= a63 a3 ,故 B 错,A、C、D 的计算都正确。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并中3试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甘肃省白银市2013年中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内
3.(3分)(2011•桂林)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中
..
.
4.(3分)(2012•襄阳)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()
...
5.(3分)(2013•白银)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()
2
7.(3分)(2012•广西)分式方程的解是()
8.(3分)(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设
9.(3分)(2013•白银)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:
①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,
错误的个数有()
<
10.(3分)(2010•岳阳)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()
...
=﹣
二、填空题:本大题共8小题,每小题4分,共32分,把答案写在题中的横线上11.(4分)(2011•连云港)分解因式:x2﹣9=(x+3)(x﹣3).
12.(4分)(2012•广安)不等式2x+9≥3(x+2)的正整数解是1,2,3.
13.(4分)(2012•随州)等腰三角形的周长为16,其一边长为6,则另两边为6,4或5,5.
14.(4分)(2009•朝阳)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为5米.
根据相似三角形的性质可知=,即=
15.(4分)(2013•白银)如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为AC=CD.(答案不唯一,只需填一个)
16.(4分)(2012•温州)若代数式的值为零,则x=3.
由题意得
解:由题意得,
17.(4分)(2012•盐城)已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且O1O2=t+2,若这两个圆相切,则t=2或0.
18.(4分)(2013•白银)现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是﹣1或4.
三、解答题(一):本大题共5小题,共38分,解答时,应写出必要的文字说明、证明过程或演算步骤。
19.(6分)(2012•广元)计算:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.
角的余弦等于
﹣)
×﹣(﹣﹣
+4﹣
.
20.(6分)(2011•朝阳)先化简,再求值:,其中x=﹣.
•
21.(8分)(2013•白银)两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C 处修建一座信号反射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)
22.(8分)(2013•白银)某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF(如图所示),已知立杆AB的高度是3米,从侧面D点测到路况警示牌顶端C点和底端B点的仰角分别是60°和45°,求路况警示牌宽BC的值.
=
.
﹣
23.(10分)(2013•白银)如图,一次函数与反比例函数的图象相交于点A,
且点A的纵坐标为1.
(1)求反比例函数的解析式;
(2)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.
)代入
四、解答题(二):本大题共5小题,共50分,解答时,应写出必要的文字说明、证明过程或演算步骤。
24.(8分)(2013•白银)为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.
(1)运用列表或画树状图求甲得1分的概率;
(2)请你用所学的知识说明这个游戏是否公平?
25.(10分)(2012•乐山)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了200名同学;
(2)条形统计图中,m=40,n=60;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是72度;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
)根据艺术类读物所在扇形的圆心角是:
)艺术类读物所在扇形的圆心角是:×
26.(10分)(2013•白银)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A 点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)BD与CD有什么数量关系,并说明理由;
(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.
中,
27.(10分)(2013•白银)如图,在⊙O中,半径OC垂直于弦AB,垂足为点E.
(1)若OC=5,AB=8,求tan∠BAC;
(2)若∠DAC=∠BAC,且点D在⊙O的外部,判断直线AD与⊙O的位置关系,并加以证明.
=3
==
28.(12分)(2013•白银)如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB的面积;若不存在,请说明理由.
=4,
OP==2
×。